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Integrative genomics analysis of various
omics data and networks identify risk
genes and variants vulnerable to
childhood-onset asthma
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Abstract

Background: Childhood-onset asthma is highly affected by genetic components. In recent years, many genome-
wide association studies (GWAS) have reported a large group of genetic variants and susceptible genes associated
with asthma-related phenotypes including childhood-onset asthma. However, the regulatory mechanisms of these
genetic variants for childhood-onset asthma susceptibility remain largely unknown.

Methods: In the current investigation, we conducted a two-stage designed Sherlock-based integrative genomics
analysis to explore the cis- and/or trans-regulatory effects of genome-wide SNPs on gene expression as well as
childhood-onset asthma risk through incorporating a large-scale GWAS data (N = 314,633) and two independent
expression quantitative trait loci (eQTL) datasets (N = 1890). Furthermore, we applied various bioinformatics analyses,
including MAGMA gene-based analysis, pathway enrichment analysis, drug/disease-based enrichment analysis,
computer-based permutation analysis, PPI network analysis, gene co-expression analysis and differential gene
expression analysis, to prioritize susceptible genes associated with childhood-onset asthma.

Results: Based on comprehensive genomics analyses, we found 31 genes with multiple eSNPs to be convincing
candidates for childhood-onset asthma risk; such as, PSMB9 (cis-rs4148882 and cis-rs2071534) and TAP2 (cis-
rs9267798, cis-rs4148882, cis-rs241456, and trans-10,447,456). These 31 genes were functionally interacted with each
other in our PPI network analysis. Our pathway enrichment analysis showed that numerous KEGG pathways
including antigen processing and presentation, type I diabetes mellitus, and asthma were significantly enriched to
involve in childhood-onset asthma risk. The co-expression patterns among 31 genes were remarkably altered
according to asthma status, and 25 of 31 genes (25/31 = 80.65%) showed significantly or suggestively differential
expression between asthma group and control group.

Conclusions: We provide strong evidence to highlight 31 candidate genes for childhood-onset asthma risk, and
offer a new insight into the genetic pathogenesis of childhood-onset asthma.
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Background
Asthma is a complex and chronic respiratory disease
that is diagnosed by evaluating the presence of reversible
airflow obstruction and clinical symptoms, including
cough, wheeze, and episodic shortness of breath [1].
Around 334 million individuals worldwide suffer from
asthma, affecting 14% of children in the whole world [2].
Childhood asthma is a known risk factor for decreased
lung function and chronic obstructive pulmonary disease
(COPD) in adults [3–5]. Childhood asthma is signifi-
cantly affected by genetic determinants [6–8]. The herit-
ability of childhood asthma is estimated to range from
68 to 92% [8–10]. Thereby, there have been considerable
interests in characterizing the genetic components that
exert crucial effects on the aetiology of childhood-onset
asthma, which may promote the development of better
asthma control and effective treatments.
In the past decade, a plenty of genetic studies includ-

ing candidate gene-based association studies, positional
cloning studies, and genome-wide association studies
(GWAS) have been performed to investigate the genetic
architecture of both childhood-onset and adult-onset
asthma [11]. Especially in recent years, with the advance
of microarray and sequencing technology, GWAS as an
effective and powerful method has been extensively
employed. Since the first asthma-relevant GWAS was re-
ported in the year of 2007 [12], subsequent many GWAS
studies [7, 13–21] have been conducted and a growing
number of genetic loci have been identified to be associ-
ated with asthma-related phenotypes including age of
asthma onset and severe to moderate asthma. Very re-
cently, two GWAS studies [15, 16] using data from the
UK Biobank database were performed to identify shared
and distinct genetic risk loci for adult-onset asthma and
childhood-onset asthma. The genetic correlation be-
tween adult-onset asthma and childhood-onset asthma
was estimated to be 0.67 [16]. Pividori and coworkers
[15] identified 61 independent genetic loci significantly
associated with asthma. Among these independent loci,
23 were specific to childhood-onset asthma, one was
specific to adult-onset asthma, and 37 were common be-
tween both traits. Since GWAS generally concentrates
on examining the genetic associations of individual SNPs
and only reports top-ranked disease-associated SNPs
with significantly statistical evidence for disease risk,
many common variants with small marginal effects but
rather act jointly or interact with together were ignored
due to stringent multiple correction of GWAS [22]. Al-
though GWASs have been successful in detecting newly
genetic variants, the genetic components detected hith-
erto elucidate only a small part of asthma susceptibility.
To complement the typical GWAS analysis for individ-

ual SNPs, more integrative genomics studies by integrat-
ing GWAS data with other layers of omics data are

warranted to identify sets of functional genes for
childhood-onset asthma risk. Previous studies [23, 24]
have showed that the vast majority of GWAS-identified
SNPs are mapped within non-coding genomic regions.
Thus, these SNPs predisposed to have cis- and/or trans-
regulatory roles in modulating the expression level of a
specific gene [25]. For example, Moffatt and colleagues
[12] have demonstrated that genetic variants strongly
and significantly associated in cis with transcript levels
of ORMDL3 are determinants of susceptibility to child-
hood asthma. Accumulating genomics studies have re-
ported to explore whether GWAS-nominated genes
whose differential changes of transcription levels are cor-
related with complex diseases due to pleiotropy [26–30].
Recently, He and coworkers [26] introduced a Sherlock
integrative genomics analysis based on a Bayesian-based
inference method to integrate genetic data from GWAS
with existing eQTL data. Comparison of typical GWAS
approach that generally abandon a large number of com-
mon genetic variants with moderate-to-small effects,
Sherlock analysis is an effective and powerful tool for
utilizing these abandoned common variants in GWAS.
By using this tool, many novel risk genes, which are dif-
ficult to be identified by any single typical GWAS, were
prioritized to involve in the pathogenesis of numerous
complex diseases, including schizophrenia [31], major
depressive disorders [32, 33], and gout disease [34].
In current study, the primary goal is designed to iden-

tify whether GWAS-nominated SNPs are correlated with
both gene expression and childhood-onset asthma risk,
and highlight novel susceptible genes. In the discovery
stage, we conducted a Sherlock-based integrative gen-
omics analysis by integrating a large-scale GWAS sum-
mary dataset with an eQTL dataset to identify
expression-associated SNPs and risk genes for
childhood-onset asthma. To validate the findings of the
discovery stage, we re-performed the Sherlock analysis
in an independent eQTL dataset. Furthermore, we
employed systematical bioinformatics-based analyses
based on multi-layers of evidence to highlight the under-
lie roles of novel identified genes in the pathogenesis of
childhood-onset asthma.

Methods
GWAS datasets used in the current investigation
Dataset #1 GWAS summary dataset on childhood-onset
asthma
In the present study, we employed a large-scale GWAS
summary dataset on childhood-onset asthma [16] for
identifying susceptibility SNPs and genes. For this
GWAS on childhood-onset asthma, there were 13,962
affected individuals and 300,671 controls in the UK Bio-
bank study used for examining the genome-wide associ-
ation hits. Individuals in the control group did not suffer
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from any allergic disease, including asthma, eczema, hay
fever, or other allergies. To select these non-allergic con-
trols, the question of “Has a doctor ever told you that
you have had any of the conditions below?”, which in-
cluded “hay fever or allergic rhinitis” and “asthma” as
possible answers, was used in the UK Biobank data fields
(ID: 6152, 20,002, 41,202, 42,104, and 22,127). A number
of 9,020,834 directly genotyped or imputed and quality
passed autosomal variants were included in the linear
mixed model. Discrete covariates included age, gender,
and an indicator of the genotyping used. The informed
consent was obtained from all participants, and the eth-
ical approval was obtained from the Human Ethics
Committee of the QIMR Berghofer Medical Research
Institute, the ALSPAC Ethics and Law Committee, and
the local research ethics committees.

eQTL datasets used in the current investigation
Dataset #2 eQTL data for discovery
We first employed the monocyte eQTL dataset reported
by Zeller et al. [35] as the discovery eQTL dataset to cre-
ate the links between SNPs and gene expressions rele-
vant to childhood asthma. For this dataset, 1490
unrelated participants with both DNA and RNA avail-
able were enrolled from a single-center cohort study of
the Gutenberg Heart Study (GHS). Informed consent for
each individual was signed. The Affymetrix Genome-
wide Human SNP Array 6.0 (http://www.affymetrix.
com) containing a total of 900,392 SNPs was employed
to do the genome-wide genotyping. After utilizing a
strict quality control of HWE, GCR, and MAF, a number
of 675,350 SNPs remain for subsequent analysis. In
addition, the Illumina HT-12 v3 BeadChip (http://www.
Illumina.com) was used to conduct a genome-wide ex-
pression analysis for assessing the RNA expression levels
of 37,804 genes. Among these genes, there were 22,305
genes obtaining prominent expression. Then, after omit-
ting not well-characterized genes, a number of 12,808
well-characterized genes were chosen in the eQTL
analysis.

Dataset #3 eQTL data for independent validation
We further used the eQTL dataset published by Dixon
et al. [36] to carry out an independent Sherlock Bayesian
analysis. With regard to this dataset, a total of 400 chil-
dren were enrolled from families via a proband with
asthma. Written informed consent were obtained for all
included children. The ethical approval was obtained
from the UK Multicentre Research Ethics Committee.
Genome-wide genotyping were performed with the use
of manufacturers’ protocols using the Human Hap300
Genotyping BeadChip (Illumina) and the Sentrix
Human-1 Genotyping BeadChip in a BeadChip with full
automation. In addition, the Affymetrix U133 Plus 2.0

GeneChip was applied to do the genome-wide expres-
sion analysis. Based on stringent inclusion criteria, these
400 asthmatic kids with both genotypes and gene ex-
pression data based on lymphoblastoid cells were used
to generate an eQTL resource containing 54,675 tran-
scripts (20,599 genes) and 408,273 genotyped SNPs.

The inference method of Sherlock Bayesian integrative
analysis
Here, we used the Sherlock analysis [26] by pooling the
GWAS summary statistics of Ferreira et al. [16] with
Zeller et al. eQTL data based on circulating monocyte
samples [35] to reveal childhood-onset asthma-relevant
genes. As for the procedure of the Sherlock algorithm,
its first step is to utilize eQTL information to search
expression-associated SNPs (named eSNPs). Then, the
tool will test the association between eSNPs and
childhood-onset asthma using GWAS summary dataset.
At this step, the tool follows three judgmental scenarios:
(1) A positive score would be recorded to an eSNP if this
eSNP is significantly associated with childhood-onset
asthma in the GWAS. (2) A negative score would be
assigned to an eSNP if this eSNP is not significantly as-
sociated with childhood-onset asthma in the GWAS. (3)
No score would be given if this SNP is not an eSNP.
The scoring rubric of Sherlock algorithm increases the
total gene score with using an aggregation of the scores
of eSNPs. The logarithm of the Bayes Factor (LBF) is
used as an important indicator to predict childhood-
onset asthma-relevant risk genes. The P value is com-
puted by the Sherlock analysis for each gene through
simulation. The significance of each gene is adjusted by
the Benjamini-Hochberg correction for multiple testing.

Independent MAGMA gene-based enrichment analysis
As an independent technique for providing supportive
evidence of risk genes identified by Sherlock integrative
analysis, we employed a gene-based analysis with the use
of Multi-marker Analysis of GenoMic Annotation
(MAGMA; https://ctg.cncr.nl/software/magma) [37].
The SNP-based P values were extracted from childhood-
onset asthma GWAS summary data as input for
MAGMA gene-level analysis. For the MAGMA software,
the multiple regression model was used to incorporate
the linkage disequilibrium (LD) information among
SNPs within a specific defined gene region and identify
multi-variant combined effects. The SNP set of each
gene was defined according to the location of the SNP
whether located into the gene region or within extended
+/− 20 kb downstream or upstream of the gene [38]. We
used the data of 1000 Genome European panel as refer-
ence to evaluate the LD information between SNPs. The
method of Bonferroni correction was employed for
adjusting the P values.
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Pathway-based enrichment analysis
To annotate biological pathways and molecular functions
of these identified genes by Sherlock Bayesian integrative
analysis, we employed a pathway-based enrichment ana-
lysis with the use of the Database for Annotation,
Visualization, and Integrated Discovery (DAVID; http://
www.david.niaid.nih.gov) [39]. Based on the powerful
pathway database of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [40], we attempted to establish the bio-
logical link between risk genes and biochemical pathways.
Further, we annotated the biological functions of identi-
fied risk genes using gene ontology (GO) database based
on three functional categories: biological process (BP), cel-
lular component (CC), and molecular function (MF). The
hypergeometric test was employed to calculate the P value
of each enrichment analysis. We used the Benjamini-
Hochberg procedure to compute the false discovery rate
(FDR) for multiple testing.

Functional enrichment analysis based on multiple
databases
Based on the identified gene list, we used the online data-
base of WEB-based Gene SeT AnaLysis Toolkit (WebGes-
talt; http://www.webgestalt.org) [41] to perform a
functional annotation enrichment analysis. WebGestalt
software supports three well-documented and complemen-
tary methods for enrichment analysis, including network
topology-based analysis, over-representation analysis, and
gene set enrichment analysis. By using the over-
representation method, we searched the drug-relevant gene
sets of these identified genes from two drug databases of
DrugBank [42] and GLAD4U [43], and enriched these
genes into disease-related gene sets of DisGeNET [44] and
GLAD4U [43] databases. All the enrichment analyses were
based on the selected reference set of genome protein-
coding genes. The number of genes in each category of
gene set ranged from 5 to 2000. We also used the
Benjamini-Hochberg FDR for multiple testing.

Computer-based permutation analysis
As a previous study [45], we here conducted a computer-
based permutation analysis (Ntotal = 100,000 times) to de-
termine whether genes identified in the discovery stage
were significantly overlapped with that identified from the
replication stage and MAGMA analysis (Ni = N1, N2 over-
lapped gene number for each dataset) by comparison with
genes selected from background. By randomly choosing
the same number as the significant genes from whole
genes as background of each dataset (Nbackground = 9821 ~
19,233) for 105 times, we counted the number of genes
from random selection overlapped with genes identified in
the discovery stage (nj = n1, n2, n3…n100,000, overlapped
gene number for each time random selection). Subse-
quently, we computed how many times of the number of

genes for random selections were larger than the number

of genes for real observation. Empirical P value =
P

ðnj>NiÞ
Ntotal .

The P value less than or equal to 0.05 considers to be
significant.

GeneMANIA-based PPI network analysis
With the use of GeneMANIA software (http://www.gene-
mania.org) [46], we performed a protein-protein inter-
action (PPI) network-based analysis to identify the
functional interaction patterns of these identified
childhood-onset asthma-associated genes. Based on the
information of inputted gene list, the GeneMANIA tool, a
plug-in of Cytoscape platform, would predict genes with
similar functions and establish interacted links by integrat-
ing current existing genomics and proteomics informa-
tion, including shared protein domains, genetic
interactions, co-expression associations, pathway links,
physical interactions, co-localization, and predicted links.

Identification of childhood-onset asthma-related genes
expression profiles
We further downloaded two RNA expression datasets from
NCBI GEO database (Accession Nos. GSE123750 and
GSE103166) to replicate the functionality of these 31 identi-
fied genes. The first analyzed dataset of GSE123750 was
based on blood RNA expression profiles that were collected
samples from school-aged children who presented to mild-
to-moderate asthma (N = 37) and severe asthma (N = 75)
from the Unbiased Biomarkers for the Prediction of Re-
spiratory Disease Outcomes (U-BIOPRED) consortium.
Blood samples of this cross-sectional study were collected
at baseline. Significance was examined by using Student’s
T-test. P ≤ 0.05 was considered to be significant. The sec-
ond used dataset of GSE103166 [47] was based on nasal
swab specimens that were collected samples from children
with the emergency department with an acute exacerbation
of asthma or wheeze (N = 56) and age-matched controls
(N = 31). For this dataset, a group of convalescent samples
were also collected from children with follow-up at least 6
weeks after an acute exacerbation of asthma or wheeze
(N = 19). One-way ANOVA analysis was used to calculate
the significance among control, convalescent, and asthma
groups. In addition, we performed a co-expression patterns
analysis of these identified risk genes among different
groups. We made the R script for this co-expression pattern
analysis available in the public github website (https://
github.com/mayunlong89/CoA/blob/master/co_expres-
sion_pattern.R).

Results
Integrative genomics analysis in the discovery stage
In the discovery stage, we integrated GWAS summary sta-
tistics (N = 313,633) with eQTL data (N = 1490) to identify

Ma et al. BMC Medical Genomics          (2020) 13:123 Page 4 of 17

http://www.david.niaid.nih.gov
http://www.david.niaid.nih.gov
http://www.webgestalt.org
http://www.genemania.org
http://www.genemania.org
https://github.com/mayunlong89/CoA/blob/master/co_expression_pattern.R
https://github.com/mayunlong89/CoA/blob/master/co_expression_pattern.R
https://github.com/mayunlong89/CoA/blob/master/co_expression_pattern.R


whether abnormal gene expression convey susceptibil-
ity to childhood-onset asthma by using the Sherlock
Bayesian analysis. Figure 1 shows the workflow of the
present integrative genomics study. At this stage, we
found that a number of 560 genes were significantly
associated with childhood-onset asthma risk after
multiple corrections (FDR ≤ 0.05, Supplemental Table
S1). For example, the top-ranked asthma-risk genes
with eSNPs were identified to be significant: HLA-
DRD3 (FDR = 2.05 × 10− 4), HLA-DQA1 (FDR = 2.05 ×
10− 4), HLA-DRB4 (FDR = 2.05 × 10− 4), NOTCH4
(FDR = 2.05 × 10− 4), PSMB9 (FDR = 2.05 × 10− 4), PALZ
(FDR = 2.05 × 10− 4), HLA-DRB5 (FDR = 2.05 × 10− 4),
HLA-DPB1 (FDR = 2.05 × 10− 4), and HLA-DRB1
(FDR = 2.05 × 10− 4). Of note, 37 of 560 genes have
been well-documented in the database of GWAS cata-
log (Supplemental Table S1).

Gene-based enrichment analysis of GWAS on childhood-
onset asthma
To validate the reliability of these identified
childhood-onset asthma-relevant genes, we adopted
an independent method of gene-level analysis with

the use of MAGMA software. After Bonferroni cor-
rection for multiple testing of MAGMA-based ana-
lysis, we found 503 genes were associated with
childhood-onset asthma (MAGMA-based P ≤ 2.56 ×
10− 6). The top-ranked significant genes of MAGMA-
based analysis were yielded by HLA-DQA1 (MAGMA-
based P = 3.38 × 10− 64), LOC101928947 (MAGMA-
based P = 8.07 × 10− 61), ORMDL3 (MAGMA-based
P = 4.55 × 10− 58), HLA-DQB1 (MAGMA-based P =
5.70 × 10− 57), GSDMA (MAGMA-based P = 1.61 ×
10− 53), LRRC3C (MAGMA-based P = 1.39 × 10− 49),
GSDMB (MAGMA-based P = 7.60 × 10− 48), ERBB2
(MAGMA-based P = 8.28 × 10− 45), and IL18R1
(MAGMA-based P = 2.61 × 10− 44). The genes of HLA-
DQA1, NOTCH4, HLA-DRB5, HLA-DPB1, HLA-DRB1,
ADORA1, TLR6, and IL18R1 have been previously re-
ported to be associated with asthma risk (Supplemen-
tal Table S1). Among them, 83 genes were overlapped
with Sherlock-identified genes in the discovery stage
(Supplemental Table S2). Of note, 53 of 83 genes not
documented in the GWAS Catalog database were
newly identified to be associated with childhood-onset
asthma in our analysis (Supplemental Table S2).

Fig. 1 The workflow of current study for all the genomics analysis
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Pathway-based enrichment analysis
Furthermore, we performed a pathway-based enrich-
ment analysis by using these identified 83 genes based
on the KEGG pathway resource. We found a number of
20 KEGG biological pathways were significantly enriched
by these genes (FDR < 0.05, Fig. 2a-b and Supplemental
Table S3). The top-ranked significant pathways were
Antigen processing and presentation (FDR = 1.77 ×
10− 11), Graft-versus-host disease (FDR = 2.34 × 10− 10),
and Allograft rejection (FDR = 7.41 × 10− 10). Interest-
ingly, the pathway of asthma (FDR = 4.63 × 10− 7) showed
a significant enrichment by these identified 83 genes
(Fig. 2a-b). In addition, we also performed a gene ontol-
ogy (GO) analysis based on the categories of molecular
function (MF), cellular component (CC), and biological
process (BP), separately. For the GO-term of MF, we de-
tected MHC class II receptor activity (FDR = 3.84 ×
10− 8) and peptide antigen binding (FDR = 2.51 × 10− 6)
were significantly enriched (Fig. 2c and Supplemental
Table S4). With respect to the term of CC, six GO-
terms were remarkably enriched by these 83 identified
genes (Fig. 2d and Supplemental Table S5); for example,
MHC class II protein complex (FDR = 3.16 × 10− 11) and
integral component of luminal side of endoplasmic

reticulum membrane (FDR = 3.81 × 10− 8). As for the
term of BP, there were seven GO-terms significantly
overrepresented by these 83 genes (Fig. 2e and Sup-
plemental Table S6); for example, immune response
(FDR = 7.46 × 10− 8) and antigen processing and pres-
entation of exogenous peptide antigen via MHC class
II (FDR = 4.67 × 10− 7).

Functional enrichment analysis of disease- and drug-
relevant gene sets
In addition, we performed a functional enrichment ana-
lysis of disease-related gene sets based on two databases
of GLAD4U and DisGeNET. We found that 69 signifi-
cant gene sets relevant to different diseases were
enriched by these identified 83 genes (Fig. 3, Supplemen-
tal Fig. S1 and Supplemental Tables S7-S8). For example,
the top-ranked enriched diseases were Autoimmune dis-
eases (FDR < 1.0 × 10− 16), Immune system diseases
(FDR = 6.0 × 10− 16), Asthma (FDR = 1.61 × 10− 6), and
Drug allergy (FDR = 9.02 × 10− 3). Subsequently, we also
conducted a functional enrichment analysis of drug-
related gene sets based on two databases of GeneBank
and GLAD4U. A number of 29 significant gene sets rele-
vant to different drugs were significantly overrepresented

Fig. 2 DAVID-based enrichment analysis of 83 childhood-onset asthma-related genes. a The scatter diagram shows the enrichment results of
KEGG pathway analysis based on 83 genes. y axis represents the significant value of each enriched pathway based on the negative log10(FDR). x
axis represents the enrichment value of each enriched pathway based on the log2(Fold enrichment). b KEGG pathway enrichment analysis for 83
identified genes with 20 molecular pathways. c-e The scatter diagram shows the enrichment results of three GO-terms enrichment analysis based
on 83 genes. y axis represents the significant value of each enriched GO-term based on the negative log10(FDR). x axis represents the
enrichment value of each enriched GO-term based on the log2(Fold enrichment). c for molecular function (MF); d for cellular component (CC); e
for biological process (BP)
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by these 83 genes (Supplemental Figs. S2-S3 and Supple-
mental Tables S9-S10).

Integrative genomics analysis based on an independent
dataset in the replication stage
To further confirm the validity of above identified
genes, we re-conducted the Sherlock Bayesian ana-
lysis with using the same parameter settings based
on an independent eQTL dataset (Dataset #3). We
found a number of 1164 significant or suggestive
asthma-associated genes from the dataset #3 (Sher-
lock-based P < 0.05; Fig. 4a). Compared identified
genes from Dataset #2 in the discovery stage with
those from Datasets #3 and #1, we found that there
existed a high number of overlapped genes across
three identified gene sets (Fig. 4a and Supplemental
Fig. S4a). Based on the 105 times permutation ana-
lysis, we found the number of genes in Dataset #2

overlapped with that in Datasets #1 (Permuted P = 0,
Fig. 4b and Supplemental Fig. S4b) and #3 (Per-
muted P = 0, Fig. 4c and Supplemental Fig. S4c) were
very significantly higher than genes randomly se-
lected from background genes.
Based on independent biological and technical replica-

tions, we prioritized a number of 31 childhood-onset
asthma-risk genes with multiple significant eSNPs across
all analyses (Fig. 4a and Table 1). A number of 13 genes
have been documented to implicate in asthma risk in
the GWAS catalog and previous studies; for example,
HLA-DQA1, HLA-DRB5, HLA-DRB1, TLR6, and
MPHOSPH9. Interestingly, there were 18 genes newly
identified to be associated with childhood-onset asthma;
e.g., PSMB9, TAP2, PMM1, and ACTR1A. Except for
PSMD3, none of these 31 genes obtained any significant
or suggestive association signals from MAGMA ana-
lysis of GWAS data on Null phenotype (Table 1). For

Fig. 3 Disease-based enrichment analysis of 83 childhood-onset asthma-related genes. The scatter diagram was plotted based on the database
of GLAD4U by using the WebGestalt software. y axis represents the significant value of each enriched pathway based on the negative log10(FDR).
x axis represents the enrichment value of each enriched pathway based on the log2(Enrichment ratio). The intensity of the color stands for the
negative log10(FDR) of each enriched pathway, as indicated on the bar on the right of scatter plot. Each dot represents a given pathway, and the
size of dot showed the gene set size of each enriched pathway
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each identified gene, one or more eSNPs were identi-
fied to be significantly associated with expression level
of the gene and childhood-onset asthma risk (Supple-
mental Table S11). For example, two cis-eSNPs of
rs4148882 (PeQTL = 2.32 × 10− 19 and PGWAS = 5.80 ×
10− 9) and rs2071534 (PeQTL = 1.30 × 10− 8 and
PGWAS = 8.49 × 10− 6) have regulatory effects on
PSMB9 gene. With regard to TAP2 gene, one trans-
regulatory eSNPs of rs10447456 (PeQTL = 1.23 × 10− 6

and PGWAS = 5.79 × 10− 3) and three cis-regulatory

eSNPs of rs9267798 (PeQTL = 6.68 × 10− 6 and PGWAS =
8.72 × 10− 4), rs4148882 (PeQTL = 3.71 × 10− 11 and
PGWAS = 5.80 × 10− 9), and rs241456 (PeQTL = 1.40 ×
10− 16 and PGWAS = 2.16 × 10− 27) were detected.

GeneMANIA-based PPI network analysis of identified 31
asthma-associated genes
To further identify the underlying molecular links of these
31 childhood-onset asthma-associated genes, we con-
ducted a GeneMANIA-based PPI network analysis via

Fig. 4 Consistent evidence of childhood-onset asthma-relevant genes based on independent datasets and techniques. a Venn diagram of three
identified childhood-onset asthma-relevant gene sets: Dataset #1 based on MAGMA analysis of GWAS summary data (P value of each gene with
Bonferroni correction), Dataset #2 based on Sherlock integrative analysis of integrating GWAS and Zeller et al. eQTL data (P value of each gene
with FDR correction), and Dataset #3 based on Sherlock analysis of integrating GWAS and Dixon et al. eQTL data (raw P value of each gene was
applied). b Computer-based permutation analysis of 105 times for the comparison of genes with adjusted P-values from Dataset #2 with that
from MAGMA analysis. c Computer-based permutation analysis of 105 times for the comparison of genes with adjusted P-values from Dataset #2
with that from Dataset #3
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using multiple layers of existing evidence. Figure 5 shows
that these identified risk genes are built a biological sub-
network, demonstrating that there were highly biological
interactions among these susceptibility genes. The co-
expression links among these identified genes account for
the largest proportion of 74.35% (Fig. 5). The genes of
HLA-DRB5, HLA-DQA1, HLA-DPB1, CTSW, PSMB9, and
TAP2 have the most number of edges with both predicted
genes and childhood-onset asthma-related genes. For ex-
ample, PSMB9 gene showed a remarkably co-expression
link with TAP2 gene, as well as there existed a physical
interaction between these two genes.

Gene expression profiles of 31 identified genes between
childhood-onset asthma and control groups
To test the co-expression patterns and differential
gene expression of these 31 identified genes, we

performed both co-expression analysis and differential
gene expression (DGE) analysis in two RNA expres-
sion datasets (i.e., GSE123750 and GSE103166) on
childhood-onset asthma. For the dataset of
GSE123750, by using the Pearson correlation analysis,
we observed that the co-expression patterns of 31
genes were obviously changed in severe asthma group
compared with mild-to-moderate asthma group (P =
0.0024; Fig. 6a and Supplemental Fig. S5). Subse-
quently, by performing a DGE analysis, we found that
the expression levels of 14 genes showed significant
or suggestive differences in severe asthmatic samples
compared with that in mild-to-moderate asthmatic
samples (Fig. 6b-k and Supplemental Fig. S6a-d); For
example, HSPA1A (P = 0.0062), SMARCE1 (P = 0.025),
CD52 (P = 0.02), TLR6 (P = 0.0086), and AHI1 (P =
0.0019).

Fig. 5 GeneMANIA-based PPI network of 31 identified childhood-onset asthma-relevant genes. The 31 asthma-associated risk genes are colored
with red color, and the predicted genes are colored with green color. The underlying molecular links among these identified genes were
attributed based on the physical interactions, pathway links, predicted links, co-expression, genetic interactions, co-localization, and shared
protein domains
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With regard to the dataset of GSE103166, we also
applied the Pearson correlation analysis and identified
the distinct co-expression patterns of 31 genes among
control, convalescence, and asthma groups (Fig. 7a),
which is consistent with our above results from the
GSE123750 dataset. We further found 8 genes of
HSPA1A (Anova P = 0.018), HLA-DPB1 (Anova P =
0.00063), HLA-DRB5 (Anova P = 0.0018), ARL3
(Anova P = 0.0057), HLA-DRB1 (Anova P = 0.018),
HLA-DQA1 (Anova P = 0.0014), LST1 (Anova P =
0.011), and RAD50 (Anova P = 0.05) were significantly
differentially expressed across three groups (Fig. 7b-i),
and detected other 8 genes showed suggestively differ-
ential expressions across three groups (Fig. 7j-k and
Supplemental Fig. S7a-f).

Discussion
Childhood-onset asthma is influenced by the combin-
ation of environmental and genetic factors [6–9]. Many
GWASs have been conducted for revealing the genetic
determinants underlying childhood-onset asthma [7, 13–
21]. However, the detailed molecular functions of identi-
fied genetic variants on childhood-onset asthma risk re-
main largely ambiguous. Due to the cause of linkage
disequilibrium (LD) between SNPs, these GWAS-
identified SNPs to a large degree encompassed many
highly LD SNPs with similar significant levels of associ-
ation signals, which enhance the difficulty of pinpointing
the causative variants. In addition, since GWASs for
complex diseases have typically yielded a large number
of genetic loci with limited annotations and no

Fig. 6 Differential expression profiles of 31 identified genes between mild-to-moderate asthma and severe asthma group. a Co-expression
patterns of 31 identified genes between mild-to-moderate asthma and severe asthma group. b-k Boxplots show the differential expression
profiles of 10 genes between mild-to-moderate asthma and severe asthma group. b HSPA1A, c SMARCE1, d CD52, e TLR6, f AHI1, g HLA-B, h
DEXI, i HLA-C, j ME2, k HLA-DOB. The significance of each gene was calculated by using the Student’s t test

Ma et al. BMC Medical Genomics          (2020) 13:123 Page 11 of 17



remarkable functional consequences, mostly located in
noncoding regions [23, 24], it is reasonable to speculate
that these variants prone to regulate RNA expression or
transcription level of a specific gene rather than its pro-
tein function [48–51]. Alterations in RNA expression or
transcription levels have important roles in complex dis-
eases [12, 52, 53]. Since only depended on the typical
GWAS for identifying the significant association signal
of each single SNP is impossible to uncover the complex
regulatory mechanisms of diseases-relevant SNPs, more
comprehensive integrative genomics-based studies are
needed to understand the genetic mechanisms of
childhood-onset asthma susceptibility.
In the current investigation, we applied a two-stage de-

signed integrative genomics analysis to reveal the func-
tional effects of genetic variants from the whole genome
on regulating transcriptional abundance as well as
childhood-onset asthma risk. In the discovery stage,
based on the Sherlock-based Bayesian analysis by

integrating a large-scale GWAS summary dataset with
an eQTL dataset, we identified 560 significant genes as-
sociated with childhood-onset asthma. Among these sig-
nificant genes, 37 genes have been documented to be
associated with asthma in the GWAS Catalog database.
Furthermore, a recent GWAS study on childhood-onset
asthma [15] reported by Pividori and coworkers has ap-
plied the PrediXcan method based on five tissues includ-
ing whole blood, lung, skin, small intestine, and spleen to
identify genes whose expressions were predicted by vari-
ants associated with asthma. The authors found 113
unique causal genes at 22 GWAS loci for asthma. Com-
pared with their results, we found 40 of 113 genes were
replicated by our Sherlock analysis (Supplemental Table
S12). In addition, we also found that there were 26 genes
reported to be associated with type 1 diabetes or rheuma-
toid arthritis (Supplemental Table S12). For example, the
genes of HLA-DRB1 [54–56], TAP2 [57], DEXI [58], and
JAZF1 [59]. Consistently, we performed a MAGMA gene-

Fig. 7 Differential expression profiles of 31 identified genes among control, convalescence, and severe asthma group. a) Co-expression patterns
of 31 identified genes among control, convalescence, and severe asthma group. b) - k) Boxplots show the differential expression profiles of 10
genes among control, convalescence, and severe asthma group. b HSPA1A, c HLA-DPB1, d HLA-DRB5, e ARL3, f HLA-DRB1, g HLA-DQA1, h LST1,
i RAD50, j TLR6, k CD52. The significance of each gene was calculated by using one-way ANOVA analysis
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based analysis of current-used GWAS for independent
technical replication. There were 83 Sherlock-identified
genes significantly replicated.
In addition, we selected six autoimmune diseases in-

cluding type I diabetes, rheumatoid arthritis, multiple
sclerosis, Crohn’s disease, Coeliac disease, and primary
biliary cirrhosis with GWAS summary statistics from the
UK-Biobank database to calculate the genetic correla-
tions with childhood onset asthma by using LD score re-
gression [60], and found there were non-significant LD
regression scores between childhood onset asthma and
six autoimmune diseases (Supplemental Table S13),
which is in agreement with an earlier study on adult
asthma and autoimmune diseases [18]. By performing a
colocalization analysis using coloc R package [61], we
found only a few of SNPs showed low or moderate pos-
terior possibility between childhood onset asthma and
six autoimmune diseases (Supplemental Table S14), sug-
gesting that these identified association signals between
risk genes and childhood-onset asthma not suffer re-
markable influence from other autoimmune diseases.
Subsequently, we used these 83 identified genes to

perform functional enrichment analyses, and identified a
number of significant enriched pathways and GO-terms,
including the pathways of Antigen processing and pres-
entation, type I diabetes mellitus, and asthma. Further,
based on the disease-based enrichment analysis, we ob-
served these identified genes were overrepresented in
gene sets associated with numerous diseases, including
autoimmune diseases, immune system diseases, and
asthma. These enriched functional terms, pathways and
disease-related gene sets provide a reference clue for
guiding future genetic or genomics-based researches. As
the approach used in previous studies [31, 32], we re-
conducted the Sherlock analysis in an independent
eQTL dataset for biological replication. Among the 83
genes, there were 31 genes were significantly replicated.
Furthermore, in silico permutation analysis showed that
these identified disease-risk genes are attributed to gen-
etic determinants rather than false positives or random
events. Given that the basic concept of Sherlock integra-
tive analysis is on the basis of abnormal expression or
transcription levels of risk genes contribute risk to the
development of complex diseases [62], we further carried
out both co-expression analysis and DGE analysis in two
independent RNA datasets and found that most of these
31 genes (25/31 = 80.65%) showed significantly or sug-
gestively differential expressions according to asthma
status. Taken together, the two-stage designed analysis
used in the present study ensures the reliability and spe-
cificity of our findings.
Based on aforementioned systematical genomics ana-

lysis, we highlighted 31 convincing genes associated with
childhood-onset asthma. Among them, 13 of 31 genes

have been reported to be significantly associated with
asthma-related phenotypes, including age of asthma on-
set, childhood-onset asthma, adult-onset asthma,
diisocyanate-induced asthma, and pleiotropy of asthma
and allergic diseases; namely, HLA-DQA1 [15–18, 21,
63], HLA-DRB5 [16, 63], HLA-DRB1 [16, 18, 21], TLR6
[15, 18], MPHOSPH9 [16], JAZF1 [15, 16, 64], TDRKH
[16], SMARCE1 [15, 16, 18], RAD50 [16, 18, 63, 65–67],
HLA-B [15, 16], POLI [16], SLC22A5 [7, 15, 18, 21], and
NDFIP1 [16, 21, 63, 68]. Furthermore, it should be noted
that 18 childhood-onset asthma-associated genes, which
were not documented in the GWAS Catalog database,
were newly identified from our current comprehensive
genomics analysis. For example, the genes of PSMB9,
TAP2, HLA-DPB1, PMM1, and PSMD3. Among these
identified 31 convincing genes associated with
childhood-onset asthma risk, we found that there existed
multiple risk eSNPs associated with transcriptional
abundance of a specific gene and disease risk per se sim-
ultaneously. To name a few, rs4148882 and rs2071534
exert cis effects on regulating the expression level of
PSMB9. Rs9267798, rs4148882, and rs241456 also have
cis-regulatory function in modulating the gene of TAP2
expression. We noticed that the eSNP of rs4148882 has
cis-regulatory roles in influencing both PSMB9 and
TAP2 expression, indicating that these two genes may
have convergent effects on childhood-onset asthma sus-
ceptibility, which is in line with the findings in our
GeneMANIA-based PPI network analysis.
A growing number of studies have demonstrated that

disease-associated genes with similar functions may col-
lectively contribute risk to complex diseases [69–73], in-
cluding asthma [74]. Consistently, our GeneMANIA-
based PPI network analysis demonstrated that these 31
genes were highly interacted with each other based on
multiple layers of evidence. For example, the hub gene
of PSMB9 is significantly co-expressed with identified
genes of TAP2, ARL3, TLR6, HLA-DRB1, CD52, and
HLA-DOB, and predicted genes of ME1, CD74, HLA-G,
and HLA-DRB4 based on previous reported studies [75–
78]. Additionally, the identified childhood-onset asthma-
associated gene of JAZF1 has evidence of genetic inter-
actions with identified genes of AHI1, NSMCE1, TDRK
H, CD52, and HLA-DRB1 based on a genome-wide map
of genetic interaction inferred from radiation hybrid ge-
notypes [79]. Although multiple evidence support there
exist highly biological connections among these identi-
fied genes, it should be cautious that these biological re-
lationships provided by GeneMANIA tool were based on
multiple tissues, which were not filtered for tissues spe-
cifically related to asthma.
For the hub gene of PSMB9, which is located in the

class II region of the major histocompatibility complex
(MHC), its protein of proteasome is a multicatalytic
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proteinase complex with a highly ordered ring-shaped
20S core structure. Gamma interferon induced the ex-
pression of PSMB9 gene, of which product replaces cata-
lytic subunit 1 in the immunoproteasome. A recent
genome-wide methylation study [80] indicated the top-
associated CpG site of cg04908668 in the PSMB9 gene
might implicate in nitrogen dioxide (NO2)-exposure-re-
lated lung function damage or respiratory disease. Ab-
normal expressed of PSMB9 and TAP2 gene are
prominently associated with POCD, and both PSMB9
and TAP2 gene accompanied with other COPD-
expressed genes such as PSMB8 and TAP1 involved in
the antigen processing and presentation pathway, which
might change phenotypes of alveolar epithelial type II
cells in COPD lungs [81]. Consistently, our results indi-
cate the top-ranked pathway of antigen processing and
presentation pathway enriched by identified risk genes
potentially implicated in the aetiology of childhood-
onset asthma. With regard to the hub gene of TAP2, it
encodes a membrane-associated protein, which is a
member of the superfamily of ATP-binding cassette
(ABC) transporters. Many genetic variants in TAP2 gene
have been reported to contribute susceptibility to pul-
monary tuberculosis [82, 83], diffuse panbronchiolitis
[84], aspirin exacerbated respiratory disease [85], and
idiopathic bronchiectasis [86]. Down-regulated expres-
sion of TAP2 and TAP1 may partially deficient HLA
Class I expression and then deficient antigen processing
in small cell lung cancer lines (SCLC) [87]. Together,
these results indicate these identified eSNPs and risk
genes are more likely to be functional candidates for fur-
ther molecular experiments.

Conclusions
In sum, current integrative genomics analysis provides
an effective approach to connect genetic variants across
the whole genome with genes through their cis- and/or
trans-regulatory effects on expression, which is more
biologically relevant and interpretable than a pure
GWAS analysis for individual association signals. Based
on multiple lines of evidence, we highlighted 31 genes
including PSMB9 and TAP2 with multiple eSNPs as
childhood-onset asthma-associated causative candidates.
More molecular experiments are warranted to be con-
ducted for uncovering the detailed biological mecha-
nisms of these prioritized genes for childhood-onset
asthma risk.
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