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Abstract

Background: Machine learning (ML) methods still have limited applicability in personalized oncology due to low
numbers of available clinically annotated molecular profiles. This doesn't allow sufficient training of ML classifiers
that could be used for improving molecular diagnostics.

Methods: We reviewed published datasets of high throughput gene expression profiles corresponding to cancer
patients with known responses on chemotherapy treatments. We browsed Gene Expression Omnibus (GEO), The
Cancer Genome Atlas (TCGA) and Tumor Alterations Relevant for GEnomics-driven Therapy (TARGET) repositories.

Results: We identified data collections suitable to build ML models for predicting responses on certain
chemotherapeutic schemes. We identified 26 datasets, ranging from 41 till 508 cases per dataset. All the datasets
identified were checked for ML applicability and robustness with leave-one-out cross validation. Twenty-three datasets
were found suitable for using ML that had balanced numbers of treatment responder and non-responder cases.

Conclusions: We collected a database of gene expression profiles associated with clinical responses on chemotherapy
for 2786 individual cancer cases. Among them seven datasets included RNA sequencing data (for 645 cases) and the
others — microarray expression profiles. The cases represented breast cancer, lung cancer, low-grade glioma,
endothelial carcinoma, multiple myeloma, adult leukemia, pediatric leukemia and kidney tumors. Chemotherapeutics
included taxanes, bortezomib, vincristine, trastuzumab, letrozole, tipifarnib, temozolomide, busulfan and
cyclophosphamide.
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Background

Personalized approach provides important advantages in
clinical oncology in terms of improved patient survival
and lower drug toxicities [1, 2]. However, so far it can
only cover a minor fraction of cancer patients [3, 4] due
to lack of robust prognostic biomarkers for most of the
treatments [5]. The proportion of patients eligible for
personalized oncology slightly grows. For example, the
percentage of US patients with cancer estimated to
benefit from personalized prescriptions of targeted ther-
apeutics was only 0.7% in 2006, and it had increased to
~5% in 2018 [4]. However, this progress could be more
significant if more companion diagnostic tests would be
available for the standardly used cancer drugs. In this
regard, gene expression data, either obtained by RNA se-
quencing [1] or using microarrays [6], frequently provide
an advantage over genomic tests. Several trials and clin-
ical case reports were published recently evidencing high
efficiency of gene expression-based prescriptions of
cancer chemotherapeutics. Cancer gene expression data
can be used per se or can be normalized on the available
profiles of healthy human tissues [7].

Using transcriptomic data, bioinformatic models can
be built for patient-oriented ranking of cancer drugs [8].
These models can be hypothesis-driven, e.g. based on
the knowledge of the specific mechanisms of drugs anti-
cancer activities [9-11]. Alternatively, hypothesis-free
approaches like machine learning (ML) don’t need any
theoretic background but instead strongly require
sufficient training and validation datasets. Many ML
methods may be used for such applications, e.g. decision
trees [12, 13], random forests, RF [14, 15], linear [16],
logistic [17], lasso [18, 19], ridge [15, 20] regressions,
multi-layer perceptron, MLP [12, 15, 21, 22], support
vectors machines [12, 13, 15, 23-25], adaptive boosting
[26-28], as well as binomial naive Bayesian [15] method.

High-quality training and validation datasets are re-
quired to run both types of the above models. Nowadays
there is a shortage of clinically annotated molecular data
that would help developing ML-assisted diagnostic tools.
The datasets available are usually considered too small
for applying ML [23, 25, 26, 29-33]. Indeed, the figure
of dozens or hundreds of annotated biosamples is negli-
gible in comparison with ~ 20,000 protein coding genes
measured in transcriptomic assays. Intelligent data filter-
ing is, therefore, needed to reduce dimensionality of data
[8]. However, a recent approach using dynamic feature
extraction, or flexible data trimming, can significantly
improve performances of ML-based methods for the
real-world datasets [15, 25].

This study was performed to review available clinically
annotated datasets of cancer transcriptomic profiles that
may be suitable for applications in ML models. To our
knowledge, this is the largest published collection of
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processed gene expression data coupled with case
history excerpts indicating positive or negative response
to certain treatment protocols for cancer patients. This
manually curated collection of molecular datasets will be
helpful for those working with the ML or artificial
intelligence applications in oncology, as well as for the
fundamental research and development of cancer
biomarkers.

Methods

We curated GEO [34], TARGET [35] and TCGA [36]
repositories to extract cancer gene expression profiles
associated with the clinical outcomes of chemotherapeu-
tic treatments. We attempted to build a knowledgebase
of molecular datasets suitable for building ML classifiers
of clinical responses on chemotherapy treatments
(Table 1, Additional file 1). Every included dataset met
the following criteria:

— at least 40 gene expression profiles present;

— data obtained for the same cancer type and using
the same experimental platform

— every profile is linked with the case clinical history

— all cancers treated with at least one common drug
or chemotherapy regimen

— treatment outcomes are available enabling to classify
every case as either responder or non-responder.

We used different approaches to discriminate between
the treatment responders and non-responders. Where
available, e.g. for the datasets extracted from the GEO
repository, we used the responder/non-responder marks
assigned by the authors of the original communications
publishing these data. In many instances, the number of
response groups was more than two and included
groups like “partial responders”. However, most
frequently binary ML-assisted drug response classifiers
are needed that classify patients in only two classes:
either responders or non-responders [8, 23, 25, 29, 30].

If a binary classifier is needed, then the number of
clinical response groups in the training/validation data-
sets must be also condensed to two, i.e. responders and
non-responders. In such case, the groups identified by
the authors as partial responders probably can be
combined with the responders. This is the case for all
current breast cancer datasets, namely GSE25066 [37,
38], GSE41998 [39], GSE20271 [40], GSE50948 [41], GS
E18728 [48], GSE20181 [49, 59], GSE20194 [50], GSE23
988 [51], GSE22358 [52], GSE32646 [53], GSE37946
[54], GSE42822 [55], GSE59515 [57] and GSE76360 [58].

For the TCGA profiles, namely for the low-grade gli-
oma (TCGA-LGG), lung cancer (TCGA-LC), and uter-
ine corpus endothelial carcinoma (TCGA-UEC) datasets,
and for the acute myeloid leukemia dataset GSE5122
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Table 1 Overview of selected transcriptomic datasets of responders/non-responders to cancer chemotherapy, responders (R) vs
non-responders (NR)

Reference

[37, 38]

[39]

[45]

[35, 46]

[35,47]

[35]

Reference

[48]

Dataset
D

GSE25066

GSE41998

GSE20271

GSE50948

GSE9782

GSE39754

GSE68871

GSE55145

TARGET-

50

TARGET-
10

TARGET-

20

TARGET-
20

Dataset

D

GSE18728

GSE20181

GSE20194

GSE23988

GSE22358

GSE32646

Disease type

Breast cancer with
different hormonal
and HER2 status

Breast cancer with
different hormonal
and HER2 status

Breast cancer with
different hormonal
and HER2 status

Breast cancer with
different hormonal
and HER2 status

Multiple myeloma

Multiple myeloma

Multiple myeloma

Multiple myeloma

Childhood kidney

Wilms tumor

Childhood B acute
lymphoblastic
leukemia

Childhood acute
myeloid leukemia

Childhood acute
myeloid leukemia

Disease type

Breast cancer

Breast cancer

Breast cancer

Breast cancer

Breast cancer

Breast cancer

Therapy

Neoadjuvant taxane + anthracycline

Neoadjuvant doxorubicin + cyclophosphamide,
followed by paclitaxel

Paclitaxel + fluorouracil + adriamycin +
cyclophosphamide

Paclitaxel + doxorubincin followed by cyclophos-
phamide + methotrexate/
fluorouracil followed by trastuzumab

Bortezomib monotherapy

Vincristine + adriamycin + dexamethasone followed
by autologous stem cell transplantation (ASCT)

Bortezomib-thalidomide-dexamethasone

Bortezomib followed by ASCT

Vincristine sulfate + cyclosporine, cytarabine,
daunorubicin + conventional surgery + radiation
therapy

Vincristine sulfate +
carboplatin, cyclophosphamide, doxorubicin

Non-target drugs (asparaginase, cyclosporine,
cytarabine, daunorubicin, etoposide; methotrexate,
mitoxantrone) including busulfan and cyclo-
phosphamide

Same non-target drugs, but excluding busulfan and
cyclo- phosphamide

Therapy

Docetaxel, capecitabine

Letrozole

Paclitaxel; (tri) luoroacetyl chloride; 5-fluorouracil,

epirubicin, cyclophosphamide

Docetaxel, capecitabine

Docetaxel, capecitabine

Paclitaxel, 5-fluorouracil, epirubicin,
cyclophosphamide

Experimental
platform

Affymetrix Human
Genome U133
Array

Affymetrix Human
Genome U133
Array

Affymetrix Human
Genome U133A
Array

Affymetrix Human
Genome U133 Plus
2.0 Array

Affymetrix Human
Genome U133
Array

Affymetrix Human
Exon 1.0 ST Array

Affymetrix Human
Genome U133 Plus

Affymetrix Human
Exon 1.0 ST Array

lllumina HiSeq 2000

lllumina HiSeq 2000

lllumina HiSeq 2000

lllumina HiSeq 2000

Experimental
platform

Affymetrix Human
Genome U133 Plus
2.0 Array

Affymetrix Human
Genome U133A
Array

Affymetrix Human
Genome U133A
Array

Affymetrix Human
Genome U133A
Array

Agilent UNC Perou
Lab Homo sapiens
1X44K Custom
Array

Affymetrix Human
Genome U133 Plus
2.0 Array

Number N of cases (R vs NR)

508 (118 R: complete response +
partial response;

389 NR: residual disease +
progressive disease)

124 (90 R: complete response +
partial response;

34 NR: residual disease +
progressive disease)

85 (18 R: complete response +
partial response;

66 NR: residual disease +
progressive disease)

156 (53 R: complete response +
partial response; 103 NR: residual
disease + progressive disease)

169 (85 R: complete response +
partial response;

84 NR: no change + progressive
disease)

136 (74 R: complete, near-complete

and very good partial responders;
62 NR: partial, minor and worse)

118 (69 R: complete, near-complete

and very good partial responders;
49 NR: partial, minor and worse)

61 (33 R: complete, near-complete
and very good partial responders;
28 R: partial, minor and worse)

122 (36 R: complete, near-complete

and very good partial responders;
86 NR: partial, minor and worse)

98 (30 R, 68 NR: see Fig. 1)

54 (31 R, 23 NR: see Fig. 1)

142 (62 R, 80 NR: see Fig. 1)

Number NC of cases (R vs NR)

61 (23R: complete response +
partial response; 38 NR: residual
disease + progressive disease)

52 (37 R: complete response +
partial response; 15 NR: residual
disease + progressive disease)

52 (11 R: complete response +
partial response; 41 NR: residual
disease + progressive disease)

61 (20 R: complete response +
partial response; 41 NR: residual
disease + progressive disease)

122 (116 R: complete response +
partial response; 6 NR: residual
disease + progressive disease)

115 (27 R: complete response +
partial response; 88 NR: residual
disease + progressive disease)

Number of
core marker
genes (S)

20

16

12

14

16

Number of
core marker
genes (NS)

16
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Table 1 Overview of selected transcriptomic datasets of responders/non-responders to cancer chemotherapy, responders (R) vs

non-responders (NR) (Continued)

[54] GSE37946  Breast cancer Trastuzumab

[55] GSE42822  Breast cancer Docetaxel,

5-fluorouracil, epirubicin, cyclophosphamide,

capecitabine

[56] GSE5122  Acute myeloid Tipifarnib
leukemia
[57] GSE59515  Breast cancer Letrozole
[58] GSE76360 Breast cancer Trastuzumab
[36] TCGA- Low-grade glioma Temozolomide + (optionally) mibefradil
LGG
[36] TCGA-LC  Lung cancer all Paclitaxel + (optionally),
types cisplatin/carboplatin, reolysin
[36] TCGA-UC  Uterine corpus Paclitaxel + (optionally) carboplatin, cisplatin,
endothelial doxorubicin
carcinoma

Affymetrix Human
Genome U133A
Array

50 (27 R: complete response + 14
partial response; 23 NR: residual
disease + progressive disease)

Affymetrix Human
Genome U133A
Array

91 (38 R: complete response + 13
partial response; 53 NR: residual
disease + progressive disease)

Affymetrix Human
Genome U133A
Array

57 (13 R: complete response + 10
partial response + stable disease; 44
R: progressive disease)

lllumina HumanHT-
12V4.0 expression
beadchip

75 (51 R: complete response + 15
partial response; 24 NR: residual
disease + progressive disease)

lllumina HumanHT-
12 V3.0 expression
beadchip

48 (42 R: complete response + 3
partial response;

6 NR: residual disease + progressive
disease)

lllumina HiSeq 2000 131 (100 R: complete response + 9
partial response + stable disease; 31

NR: progressive disease)

lllumina HiSeq 2000 41 (24 R: complete response + 7
partial response + stable disease; 17

NR: progressive disease)

lllumina HiSeq 2000 57 (57 R: complete response + 2
partial response + stable disease; 7

NR: progressive disease)

[56], stable disease cases can be most probably classified
as the responders whereas progressive disease cases — as
the non-responders. For the multiple myeloma dataset
GSE9782 [42], the classification can be used as defined
by the authors, where patents with complete and partial
response were annotated as the responders, and with no
change and progressive disease — as the non-responders.
For three other multiple myeloma datasets, namely
GSE39753 [43], GSE68871 [44], and GSE55145 [45],
complete, near-complete and very good partial response
groups can be most likely considered as the responders,
whereas partial, minor and worse response groups — as
the non-responders.

Classification of the TARGET repository profiles was
more sophisticated as no responder classification was
given by the authors. This was the case for the datasets
of pediatric Wilms kidney tumor (TARGET-50), acute
myeloid leukemia (TARGET-20) and acute lympho-
blastic leukemia (TARGET-10) extracted from the gene
expression repository of National Cancer Institute [35].
However, these latter clinical cases were annotated by
the time of event-free survival. Distributions of the
event-free survival time enabled us to identify for every
dataset two different modes of survival with different
slopes (Fig. 1), that can be recognized as either re-
sponders or non-responders.

Results

For raw gene expression data, the number of features i.e.
interrogated genes, usually exceeds the number of tumor
cases by roughly two orders of magnitude. Therefore, for

robust application of ML the dimensionality of data
must be reduced to make the number of selected
features lower than the number of tumor cases or at
least comparable to it (Fig. 2a). To reduce dimensional-
ity, the gene expression data can be aggregated into the
higher-order molecular markers like activation profiles
of molecular pathways [23, 29, 30, 60, 61]. Alternatively,
the most informative fraction of the initial data can be
selected that can distinguish between the responder and
non-responder classes. For selection of such marker
features, several approaches have been proposed, e.g.
Pearson chi-squared test [62], correlation test [27, 62],
variance thresholding, genetic algorithms [63], univariate
feature selection, recursive feature elimination, principal
component analysis [27], CUR matrix [64], decompos-
ition [65] and covariate regression [66].

In the current research, we applied the following
leave-one-out-based method for finding robust marker
features [25] (Fig. 2c). Imagine that we have a gene ex-
pression dataset that embraces N clinical cases, each
with corresponding expression profile. For each clinical
case i=1, ... N, we determine the top Q marker genes
that distinguish responding and non-responding cases in
a sub-dataset that contains all samples but i. In other
words, for all N sub-datasets each having N-1 cases, we
interrogate each gene taken one by one and retrieve the
top Q set of genes that showed the highest ROC AUC
values for the difference between responder and non-
responder profiles. The quality metric area under the
ROC curve (AUC) is the universal metric of a biomarker
robustness that depends on its sensitivity and specificity



Borisov et al. BMC Medical Genomics 2020, 13(Suppl 8):111 Page 5 of 9

Q

5000

4000+

3000+

Event-free survival, days
- N
o o
o o
o o

0 20 40 60 80 100 120
TARGETS0 patients

o

»
o
o
o

3000

Event-free survival, days
- N
o o
o o
o o

0 25 50 75 100 125 150
TARGET10 patients

4000

days

. 3000

2000

1000+

0-//—//

T T

0 50 100 150 200 250
TARGET20 patients

Fig. 1 Distribution of event-free survival time for the patients with (a) childhood kidney Wilms tumor from TARGET-50 dataset, (b) childhood ALL
from TARGET-10 dataset and (c) childhood AML from TARGET-20 dataset [35]. Patients on the left from vertical threshold can be considered as
the non-responders, and on the right — as the responders to the treatment

Event-free survival
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reduction

Dataset
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Aggregation into molecular
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o Pathway activation strength
(PAS)

o Signaling pathway impact
analysis (SPIA)

o Insilico Pathway Activation
Network Decomposition
(iPANDA)

@

Most informative data selection

Pearson chi-squared test

Correlation test

Variance thresholding

Genetic algorithms

Univariate features selection

Recursive feature selection

CUR matrix decomposition

(e}

O O O O OO0 OO0 OO0

Core marker set selection
(current work)

Intra-platform merging
(normalization)
o quantile normalization (QN)
o differential expression
analysis for sequencing
data (DESeq2)
o

Cross-platform merging
(harmonization)
o Cross-platform
normalization (XPN)
o distance-weighted
discrimination (DWD)
o Shambhala (for arbitrary
number of platforms and
respective biosamples)

€ Workflow for core marker gene set determination

Calculate AUC for

sample i

Take the every gene to Select top Intersect the
dataset distinguish between _ | 30 genes | marker sets
without ™ responders and not- | with highest > oftop30
sample i responders without AuC genes

Repeat fori=1,.., N

Yy

\

Fig. 2 Possible scenarios of using ML to build classifiers based on gene expression datasets. a Methods data dimensionality reduction; b
approaches to merging and enlarging of gene expression datasets for ML application; ¢ general workflow for a core marker set determination

[67]. It positively correlates with the quality of a bio-
marker and varies from 0.5 till 1. The standard discrim-
ination threshold is 0.7 and the entries with higher AUC
are considered high-quality biomarkers, and vice versa
[68]. AUC is broadly used for detection of biomarkers in
oncology [69-73].

To provide trobust feature selection, the number Q
shouldn’t exceed the number of cases N. In the
current application, we took Q equal to 30 because
all tdatasets under consideration had more than 40
cases. The final list of core marker genes was
obtained by intersecting top Q gene sets for all N
sub-datasets.

We applied this procedure to all the clinically annotated
cancer transcriptomic datasets under consideration and
identified for them core marker genes (Table 1). Twenty-
three out of 26 datasets investigated provided 7-20 core
marker gene features for further ML applications (Table 1).

The remaining three datasets, namely GSE22358 [52],
GSE76360 [58] and TCGA-UEC [36], were poorly bal-
anced because the numbers of responders greatly
exceeded the respective numbers of non-responders, or
vice versa. For these three instances we were unable to
generate robust core marker gene sets for ML applications
because the number of such genes was too low (two-three
per dataset, Table 1).
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Discussion

By the current moment, ML hasn’t made a revolution in
biomedicine [12]. This may be partly connected with the
relatively recent emergence of experimental methods
generating big amounts of biomedical data combined
with the developed IT infrastructure. Among these
game-changing methods the major role was played by
the next-generation sequencing (NGS) and novel mass-
spectrometry approaches which made whole genome-,
transcriptome-, proteome- and metabolome analyses
relatively fast and cheap [74-76].

Yet further development of ML methods in personal-
ized oncology is still strongly limited by the low number
of clinically annotated cancer patient molecular datasets.
A dataset suitable for ML should have all together
enough number of high-throughput molecular profiles
and also the associated clinical case history records fea-
turing success of the therapeutic regimen used.

In this paper we reviewed three major repositories of
omics data for the available responder/non-responder
datasets including more the 40 cancer cases treated with
the same chemotherapeutics. We identified 26 datasets
with totally 2786 cases, ranging from 41 till 508 cases
per dataset (Table 1). We checked the robustness of
these datasets and their suitability for ML applications
using our previous method of core maker feature deter-
mination [25]. According to this test, 23/26 datasets
were suitable for ML, each having 7-20 core marker
genes/features for further ML applications. Contrarily,
the remaining three datasets produced only two or three
features, which may seem insufficient for the ML. Poor
performance of these three datasets was most likely due
to unbalanced numbers of clinical responder/non-re-
sponder cases included.

To increase the number of cases (Fig. 2b), the datasets
for the same disease or drug treatment conditions can
be merged using cross-dataset harmonization. Different
methods can be used to harmonize data obtained using
the same [77, 78] or two different experimental plat-
forms [79, 80], or even using multiple platforms [81]
(Fig. 2b).

In addition, when the cases are deficient, transfer learn-
ing methods may be used for a certain disease or drug
condition. Using this approach, the ML training process
may be preformed on the multiple available molecular
profiles corresponding to cell culture treated with certain
drugs [82], whereas the ML classifier validation may be
done on more rare patient cancer cases [23, 29, 30].

Conclusions

We identified 26 clinically annotated gene expression data-
sets ranging from 41 till 508 cases per dataset (Table 1).
Collectively, they covered 2786 individual cancer cases.
Among them seven datasets included RNA sequencing
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data (for 645 cases) and the others — microarray expression
profiles. The datasets represented breast cancer, lung
cancer, low-grade glioma, endothelial carcinoma, multiple
myeloma, adult leukemia, pediatric leukemia and kidney
tumors. Chemotherapeutics used included taxanes, borte-
zomib, vincristine, trastuzumab, letrozole, tipifarnib, temo-
zolomide, busulfan and cyclophosphamide.

We hope that presented collection of clinically anno-
tated transcriptomic profiles will be useful to those
working with data analysis in oncology, as well as for the
fundamental research and development of next-
generation cancer biomarkers.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512920-020-00759-0.

Additional file 1. Clinically annotated datasets and samples they
contain.
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