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Abstract

Background: Age-related macular degeneration (AMD) is a progressive retinal disease contributing to blindness
worldwide. Multiple estimates for AMD heritability (h2) exist; however, a substantial proportion of h2 is not
attributable to known genomic loci. The International AMD Genomics Consortium (IAMDGC) gathered the largest
dataset of advanced AMD (ADV) cases and controls available and identified 34 loci containing 52 independent risk
variants defining known AMD h2. To better define AMD heterogeneity, we used Pathway Analysis by Randomization
Incorporating Structure (PARIS) on the IAMDGC data and identified 8 statistical driver genes (SDGs), including 2
novel SDGs not discovered by the IAMDGC. We chose to further investigate these pathway-based risk genes and
determine their contribution to ADV h2, as well as the differential ADV subtype h2.

Methods: We performed genomic-relatedness-based restricted maximum-likelihood (GREML) analyses on ADV,
geographic atrophy (GA), and choroidal neovascularization (CNV) subtypes to investigate the h2 of genotyped
variants on the full DNA array chip, 34 risk loci (n = 2758 common variants), 52 variants from the IAMDGC 2016
GWAS, and the 8 SDGs, specifically the novel 2 SDGs, PPARA and PLCG2.

Results: Via GREML, full chip h2 was 44.05% for ADV, 46.37% for GA, and 62.03% for CNV. The lead 52 variants’ h2

(ADV: 14.52%, GA: 8.02%, CNV: 13.62%) and 34 loci h2 (ADV: 13.73%, GA: 8.81%, CNV: 12.89%) indicate that known
variants contribute ~ 14% to ADV h2. SDG variants account for a small percentage of ADV, GA, and CNV heritability,
but estimates based on the combination of SDGs and the 34 known loci are similar to those calculated for known
loci alone. We identified modest epistatic interactions among variants in the 2 SDGs and the 52 IAMDGC variants,
including modest interactions between variants in PPARA and PLCG2.
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Conclusions: Pathway analyses, which leverage biological relationships among genes in a pathway, may be useful
in identifying additional loci that contribute to the heritability of complex disorders in a non-additive manner.
Heritability analyses of these loci, especially amongst disease subtypes, may provide clues to the importance of
specific genes to the genetic architecture of AMD.
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Background
Genome-wide association studies (GWAS) have been in-
strumental in identifying genomic variants associated
with complex traits for over 10 years [1]. GWAS detect
such associations by comparing allele frequencies in in-
dividuals with and without a trait of interest in a specific
population [2]. These methods have been successfully
applied to find large numbers of disease-associated vari-
ants that contribute to the trait’s heritability [3]. Herit-
ability is defined as the fraction of phenotypic variance
explained by genetic variation in the context of a specific
range of environmental variation [3]. Broad-sense herit-
ability (H2) is the proportion of phenotypic variation that
includes dominance and epistasis; whereas, narrow-sense
heritability (h2) is the proportion of phenotypic variation
of additive genetic effects. Common variants may cap-
ture up to about two-thirds of narrow-sense heritability
for age-related macular degeneration (AMD), but despite
this, much of AMD heritability is still unexplained by
known variants [4]. The topic of missing heritability has
been discussed, especially regarding complex diseases,
and may be attributable to non-additive effects of gen-
omic variants that are not discernible from traditional
GWAS [3].
GWAS have been remarkably successful for identi-

fying genomic loci contributing substantially to AMD
risk. This progressive, adult-onset condition is among
the leading causes of blindness in the world in indi-
viduals over 60 and is expected to become a signifi-
cant health burden as the aging population increases
in size [5]. AMD leads to the decline of central vision
in patients as a result of lipid deposits (drusen),
photoreceptor loss, and inflammation in the macula
[6, 7]. It is clinically characterized into multiple sub-
types: early, intermediate, or advanced AMD stages
based on disease severity. Advanced AMD (ADV) is
further sub-categorized into geographic atrophy (GA)
or choroidal neovascularization (CNV).
The International AMD Genomics Consortium

(IAMDGC) performed the largest case-control GWAS
to date for ADV and identified 52 independent com-
mon and rare variants from 34 susceptibility loci, the
highest risk loci being the CFH and ARMS2/HTRA1
genes [8]. These 52 genomic variants contribute to

about half of the genomic heritability for ADV, which
leaves nearly half of ADV heritability unexplained [8].
In contrast to traditional case-control GWAS, in silico

pathway analyses of GWAS summary statistics identify
biological pathways, which are defined by interactions of
genes for a common biological function, harboring ex-
cesses of genomic variants that may be associated with a
trait [9, 10]. They accomplish this by grouping variants
into features that are then merged into pathways based
on curated information in publicly available pathway da-
tabases [9, 10]. Because pathway analyses focus broadly
on the collection of nominal genetic variants in bio-
logical pathways, they are not limited to assessing addi-
tive effects of individual variants on the trait and may be
leveraged to identify genetic variance with non-additive
effects. Ultimately, these analyses provide insights into
trait-associated biological processes and suggest which
genes are most pertinent for these pathway-level associa-
tions [11, 12]. However, they do not estimate the contri-
bution of genetic variants in these genes and pathways
to the trait’s heritability [13].
To uncover genomic loci undetectable by GWAS, we

performed in silico, knowledge-driven pathway analyses
of the summary statistics from the IAMDGC 2016
GWAS [14] using Pathway Analysis by Randomization
Incorporating Structure (PARIS) [11, 12]. In our com-
prehensive approach, we utilized multiple pathway data-
bases to determine which genes were consistently
contributing to significant pathway signals for ADV [14].
We identified eight statistical driver genes (SDGs) that
were significantly contributing to the significant AMD-
associated pathways from PARIS: C2, C3, LIPC, MICA,
NOTCH4, PLCG2, PPARA, and RAD51B. Of these eight
SDGs, two genes (PLCG2 and PPARA) fell outside of the
34 AMD susceptibility loci identified by the IAMDGC
GWAS [8]; we showed that these loci may be associated
with ADV risk [14].
While the 2016 IAMDGC GWAS uncovered several

AMD loci that explain a large portion of AMD heritability
[8], their study did not investigate potential non-additive
effects of AMD risk genes. Pathway analyses of GWAS
data consider known biological relationships among genes
in a pathway; therefore, we were able to identify two novel
AMD genes (PLCG2 and PPARA) that were not found in
the IAMDGC GWAS. To further examine the potential
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role of the 2 novel SDGs, we calculated the proportion of
ADV variance explained by (i) common variants in
PPARA and PLCG2, (ii) the 8 SDGs identified by pathway
analysis, and (iii) known and novel AMD loci identified by
the IAMDGC. We also applied this approach to the sub-
types of ADV (GA and CNV) to elucidate whether these
variants contribute more to the heritability of AMD in a
particular subtype of ADV. We further interrogated the
possible epistatic interactions among lead variants in the
known AMD genes as well as our novel SDGs to elucidate
if their contributions to AMD heritability could be attrib-
utable to non-additive effects.

Methods
Statistical driver genes for advanced AMD
We performed in silico pathway analyses using Pathway
Analysis by Randomization Incorporating Structure
(PARIS, v2.4) [12] on the largest available ADV case-
control GWAS results from the IAMDGC [8]. This in-
cluded summary statistics for 445,115 directly genotyped
variants on 16,144 advanced AMD cases and 17,832
controls [8]. The ADV cases include GA-specific cases
(n = 3235), CNV-specific cases (n = 10,749), and individ-
uals with both GA and CNV (n = 2160) [8]. Samples
were genotyped with the Illumina HumanCoreExome
Array as previously described [8] and are accessible
through the database of Genotypes and Phenotypes
(dbGAP; Accession: phs001039.v1.p1). Our knowledge-
driven pathway analyses utilized three pathway databases
(KEGG, Reactome, and GO) and led to the discovery of
eight statistical driver genes for ADV (Table 1) [14].
Statistical driver genes (SDGs) were defined as genes
that were strongly contributing (gene-level p < 0.0001) to
the statistical signal of the significant pathways (path-
way-level p < 0.0001) identified by PARIS. Two of these
SDGs (PPARA and PLCG2) remained significant

following the exclusion of the 34 known AMD loci iden-
tified by the IAMDGC from the pathway analysis be-
cause they fall outside of the known loci boundaries.

Variant selection and genotype extraction
For our heritability estimates, we extracted genotypes for
variants in one of these seven variant criteria subsets
(Table 3):

� IAMDGC Chip: Variants that were directly
genotyped by the IAMDGC on the Illumina
HumanCoreExome chip with custom content as
previously described [8]

� 8 SDGs ±50 kb: Variants in or within 50 kilobasepairs
(kb) of the eight SDGs (C2, C3, LIPC, MICA,
NOTCH4, PLCG2, PPARA, and RAD51B) [14]

� 2 Novel SDGs ±50 kb: Variants in or within 50 kb of
the PLCG2 and PPARA genes [14]

� Lead IAMDGC Variants: Variants that were
identified as one of the 52 lead variants from the
IAMDGC 2016 GWAS [8]

� 34 AMD Loci: Variants in the 34 susceptibility loci
identified by the IAMDGC 2016 GWAS
(Supplementary Table 5 in [8])

� 34 AMD Loci and 2 Novel SDGs ±50 kb: Variants
that occur in the 34 susceptibility loci identified by
the IAMDGC 2016 GWAS (Supplementary Table 5
in [8]) and variants that fall in or within 50 kb of the
PLCG2 and PPARA genes [14]

� 34 AMD Loci and 8 SDGs ±50 kb: Variants in the
34 susceptibility loci identified by the IAMDGC
2016 GWAS (Supplementary Table 5 in [8]) and
variants that fall in or within 50 kb of the eight
SDGs [14]

Gene and loci boundaries were based on build
GRCh37 of the human genome. Using PLINK v1.90 beta
[15, 16], we filtered the variants from the 34 loci and
SDGs based on minor allele frequency (MAF) and geno-
typing call rate to exclude variants that had MAF < 0.01
and missing genotype rate > 0.01. The variants from the
IAMDGC chip and the 52 lead variants were not filtered
for MAF or call rate; therefore, these two variant sets in-
clude common and rare variants. Penetrance was not
taken into account for the SDGs [14] because their asso-
ciation was based on summary statistics from the
IAMDGC 2016 GWAS. All variant sets were extracted
from the ADV case-control data, GA-specific case-
control data (GA), and CNV-specific case-control data
(CNV) (Table 2).

Estimation of AMD heritability with GCTA GREML
Genetic relationship matrices (GRMs) were con-
structed using Genome-wide Complex Trait Analysis

Table 1 Statistical driver genes for advanced AMD identified
with PARIS

Gene Chromosome Full Gene Name

C2 6 complement C2

MICA 6 MHC class I polypeptide-related sequence A

NOTCH4 6 notch receptor 4

RAD51B 14 RAD51 paralog B

LIPC 15 lipase C, hepatic type

PLCG2 16 phospholipase C gamma 2

C3 19 complement C3

PPARA 22 peroxisome proliferator activated
receptor alpha

The eight statistical driver genes were identified with pathway analysis using
PARIS and multiple biological pathway databases [14]. Two of these genes
(PLCG2 and PPARA) were not previously identified as a part of the IAMDGC
susceptibility loci and are noted in bold. Full gene names are based on the
HUGO Gene Nomenclature Committee (HGNC)
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(GCTA v1.91.3beta) [17] for each category of late
AMD disease states (ADV (GA and CNV combined),
GA, and CNV), and for each subset of variants we se-
lected (Tables 2 and 3, respectively). This included
variants within PPARA and PLCG2, variants within 8
previously identified SDGs, the 34 loci, the 52 lead
IAMDGC variants, and the full directly genotyped
IAMDGC chip. To obtain invertible and reliable
GRMs, variants were filtered by minor allele fre-
quency (MAF < 0.01) and missingness (missing geno-
type rate > 0.01) when constructing the GRMs for the
34 AMD loci and the SDGs. Without this filtering
step, GCTA is unable to create functional (invertible)
GRMs for subsequent restricted maximum-likelihood
(REML) analyses, which estimate the proportion of
phenotypic variance attributable to additive genetic
variance [17].
We used the genomic-relatedness-based restricted

maximum-likelihood (GREML) approach in the
GCTA v1.91.3beta software to estimate narrow-sense
heritability (h2) for each of the three advanced AMD
datasets (ADV, GA, and CNV) and for each of the 7
variant sets. The GREML approach does not measure
dominance variance or epistatic interactions. We also
estimated chip heritability adjusting for age informa-
tion available from the IAMDGC (age at diagnosis for
cases and age at exam for controls) and ten principal
components (PC) in the GREML analysis of the full
chip. The ten PCs were calculated from genome-wide
chip data using PLINK v1.90 beta [15, 16], which is a

port of GCTA (https://www.cog-genomics.org/plink/1.
9/strat). We also estimated h2 based on a population
prevalence of ADV in individuals of European descent
(0.5%, [5]), as the IAMDGC samples in this study
were filtered to unrelated individuals of European an-
cestry [8]. We validated that the estimates we ob-
served were not likely artifacts by re-performing our
analyses of the ADV data and a random set of 1112
variants (equal to the number of common variants in
the 8 SDGs) that met the same filtering criteria for
common variants in the 8 SDGs. In addition, we per-
formed the same analysis using random sets of 79
variants (equal to the number of variants in the 2
SDGs alone) that met the same filtering criteria for
the common variants in the 2 SDGs to validate that
the estimates we observed were not likely to be
artifacts.

Pairwise LD analysis of SDGs and 34 AMD loci
To evaluate the linkage and independence of the variants
in the 8 SDGs and the 34 AMD loci (Table 3), we exam-
ined pairwise linkage disequilibrium (LD) using two
computational tools: LDMatrix [18] and SNiPA [19].
Variant pairs with r2 > 0.7 were determined to be the
same signal and not considered in downstream assess-
ments. We further assessed whether or not each variant
in the pair was considered part of an SDG, one of the
AMD loci, or overlapped between the two groups of
variants.

Epistatic interaction analyses
To investigate heritability attributable to non-additive
interactions among the lead AMD variants from the
IAMDGC GWAS [8] and the novel SDGs [14], we per-
formed pairwise logistic regression-based epistasis ana-
lyses using PLINK v1.90 beta [15, 16]. Analyses were
performed over the full set of variants in or within 50 kb
of the 2 SDGs and the 52 lead variants from the 2016
IAMDGC GWAS [8]; therefore, the threshold for signifi-
cance was set at 2.31 × 10− 6 for multiple testing correc-
tion (Bonferroni correction for 21,675 tests). If both
variants in an epistatic interaction were from the same
gene/locus, we found their LD in the European popula-
tion using LDlink (https://ldlink.nci.nih.gov/, [18]). If the
r2 was greater than 0.7, we determined the signals to be
the same.

Results
Study data for ADV, GA, and CNV analyses
We aimed to determine the proportion of ADV, GA-
specific, and CNV-specific heritability explained by vari-
ants in and within 50 kilobasepairs (kb) of the SDGs
identified by PARIS (Tables 2 and 3). We extracted 2173
variants from all 8 previously identified SDGs and 234

Table 2 Demographics of participants in the study data

Data ADV GA CNV

Total Samples 33,976 21,067 28,581

Cases 16,144 3235 10,749

Controls 17,832 17,832 17,832

Values represent counts of samples in the IAMDGC data

Table 3 Characteristics of the marker data extracted from the
IAMDGC exome chip

Data ADV GA CNV

IAMDGC Chip 553,261 553,261 553,261

8 SDGs ±50 kb 1122 1122 1122

2 Novel SDGs ±50 kb 79 79 79

Lead IAMDGC Variants 52 52 52

34 AMD Loci 2758 2758 2758

34 AMD Loci and 2 Novel SDGs ±50 kb 2835 2992 2992

34 AMD Loci and 8 SDGs ±50 kb 3351 4411 3351

Values represent counts of pruned variants based on MAF and call rate. The 8
SDGs are C2, C3, LIPC, MICA, NOTCH4, PLCG2, PPARA, and RAD51B. The 2 novel
SDGs are PLCG2 and PPARA. The different numbers of variants for the
expanded loci analyses were attributable to the different MAFs observed for
each of the advanced AMD subtypes: ADV, GA, and CNV
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variants from the 2 novel SDGs (PPARA and PLCG2)
based on their gene boundaries (Methods). However, we
found that several of the variants in the SDGs either had
very low MAF or had a low genotype call rate in the
samples we analyzed and, therefore, they were removed
prior to GRM creation (Table 3).

Narrow-sense heritability explained by variants in SDGs
for ADV, GA, and CNV
To determine whether the SDGs contribute to the miss-
ing heritability of ADV or its subtypes (GA and CNV),
we performed GREML analyses of variants from the
SDGs. We found that the percent of ADV risk explained
by the common, high call rate variants in the 8 SDGs
was 3.76% (S.E. = 0.39) (Table 4). This was higher than
the estimate observed for GA and comparable to CNV
h2 estimate (2.53 and 3.71%, respectively) (Table 4). The
2 SDGs contribute to 0.097, 0.12, and 0.18% ADV, GA,
and CNV risk, respectively (Table 4).
To compare the SDG heritability estimates for ADV,

GA, and CNV to those observed for known AMD loci,
we performed GREML analyses of the common variants
with high call rates within the 34 loci identified by the
IAMDGC [8] for each disease subtype. We found that
common variants from the known loci contribute to
13.73% (S.E. = 0.83) ADV risk, 8.81% (S.E. = 0.75) GA
risk, and 12.89% (SE = 0.82) CNV risk (Table 4). The 52
lead variants identified by the IAMDGC alone explain
14.52% (S.E. = 2.48) of ADV risk. By comparison, the h2

estimates for these variants were lower (8.02 and
13.62%) for GA and CNV, respectively.
Given the individual estimates for the SDGs and 34

loci, we performed GREML analyses on combinations of
the SDGs and 34 loci for ADV, GA, and CNV. In all our
analyses, we found that the h2 estimates were very simi-
lar (Table 4). Together, the 34 loci and 8 SDGs contrib-
ute to 13.06, 8.78, and 12.59% h2 for ADV, GA, and
CNV, respectively (Table 4). The h2 estimates derived
from the 34 loci and 2 SDGs are comparable to these

values (ADV: 13.51%, GA: 8.60%, and CNV: 12.20%)
(Table 4). To interrogate existing linkage among the
SDG variants and those in the 34 AMD loci, we per-
formed pairwise linkage disequilibrium (LD) analyses of
these variants. No pairs of variants in high LD (r2 > 0.7)
were found between any of the variants in the 8 SDGs
and the expanded 34 loci. This indicates that the vari-
ants we compared did not have pre-existing LD outside
of the known AMD loci and were independent of each
other.
To replicate chip heritability calculations from the

2016 GWAS published by the IAMDGC, we performed
GREML analyses of the full datasets (i.e. chip heritabil-
ity) for ADV, GA, and CNV. The chip heritability for
ADV was 44.05% (S.E. = 1.29) (Table 5). We achieved
similar values (44.16% (S.E. = 1.29)) when we re-
performed our analyses with the first 10 principal com-
ponents (PCs) calculated for the full chip and ADV cases
and controls. Chip heritability estimates were higher for
GA and CNV (46.37 and 62.03%, respectively) than the
heritability estimate for the combined ADV dataset
(Table 5). These values were similar to the estimates cal-
culated for GA and CNV chip heritability including PCs
for those respective datasets (46.50 and 62.18%, respect-
ively). Values decreased after incorporating age data
available from the IAMDGC (age at diagnosis for cases
and age at exam for controls) and the first 10 PCs into
the GREML analyses for chip heritability of the ADV
and its subtypes (Table 5).
To further verify that contributions to ADV heritabil-

ity from the common variants in the 8 SDGs were un-
likely due to chance, we selected randomized variants
from the autosomal genome that met the same MAF cri-
teria we had used before. We recreated the GRM for the
ADV data and these variants and performed the same
GREML analyses we had on the 8 SDGs. The 1122 ran-
domized variants explain 1.76% (S.E. = 0.21), indicating
that the ADV heritability estimate for the 8 SDG (3.76%)
was not likely due to chance. In addition, we ran several

Table 4 Heritability estimates for advanced AMD (ADV), GA, and CNV based on our variant sets

Data ADV GA CNV

Estimate (%) S.E.
(%)

Estimate (%) S.E.
(%)

Estimate (%) S.E.
(%)

IAMDGC Chip 44.05 1.29 46.37 2.13 62.03 1.47

8 SDGs ± 50 kb 3.76 0.39 2.53 0.36 3.71 0.41

2 Novel SDGs ± 50 kb 0.097 0.048 0.12 0.076 0.18 0.076

Lead IAMDGC Variants 14.52 2.48 8.02 1.50 13.62 2.36

34 AMD Loci 13.73 0.83 8.81 0.75 12.89 0.82

34 AMD Loci and 2 Novel SDGs ± 50 kb 13.51 0.81 8.60 0.70 12.20 0.74

34 AMD Loci and 8 SDGs ± 50 kb 13.06 0.73 8.78 0.63 12.59 0.74

For the analyses including the SDGs and/or 34 loci, we pruned the variants based on minor allele frequency and genotype call rate in the samples. For the
estimates calculated for the full IAMDGC chip and lead IAMDGC variants, we did not apply variant filtering. kb: kilobasepairs
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(> 5) randomized variant analyses with different sets of
79 random variants to mimic the number of variants in
the 2 novel SDGs and found that they explain at most
0.076% (S.E. = 0.048). Although this is near the estimate
we calculated for the 2 SDGs alone (0.097%), it is un-
likely that the ADV heritability estimate for the 2 SDGs
alone (0.097%) was due to chance.

Epistasis analyses
To interrogate possible interactions among the 52 AMD
variants identified by the IAMDGC and the variants in
the novel SDGs (PPARA and PLCG2), we performed lo-
gistic regression-based epistasis analyses using PLINK
[15, 16]. Although we did not identify any significant in-
teractions, several modest epistatic interactions (p <
0.001) were uncovered between known AMD variants
and variants in PPARA and PLCG2 (Table 6). Interac-
tions between PPARA and PLCG2 variants were also
identified but did not reach the significance threshold
correcting for multiple testing (Table 7).

Discussion
In this study, we estimated the proportion of ADV herit-
ability attributable to the SDGs we previously identified
by pathway analysis of the summary statistics from the
IAMDGC 2016 GWAS [14]. This included common var-
iants from the 8 SDGs that exhibited significant signals
across significant pathways (p < 0.0001) from KEGG,

Reactome, and GO pathway databases and the 2 SDGs
(PPARA and PLCG2) that fell outside of the known
AMD loci identified by the IAMDGC in their recent
GWAS. To compare our results with those obtained by
the IAMDGC [8], we calculated heritability estimates for
the whole DNA array chip, 34 AMD loci, 52 lead vari-
ants from the 34 loci, and combinations of the SDGs
and the 34 loci. The estimates and 95% confidence inter-
vals we calculated for ADV (41.52–46.58%) and GA
(42.20–50.54%) chip heritability overlap with the 95%
confidence intervals for chip heritability determined by
the IAMDGC for ADV (44.5–48.8%, [8]) and GA (47.2–
57.4%, [8]). By contrast, our estimate for CNV chip her-
itability (59.15–64.91%) was much higher than what was
calculated by the IAMDGC (42.2–46.5%), [8]).
Our estimate for ADV heritability based on the 52 lead

variants is lower than that observed for these variants by
the IAMDGC (14.52% vs. 27.2%, respectively) [8]. This
difference is likely due to the different methods used to
estimate these values. The IAMDGC [8] calculated their
estimates by a theoretical, population-based formula
based on the log odds ratios, allele frequencies of the 52
variants and the assumed trait prevalence. This formula
assumes that all markers are independent, and therefore
that all contributions to genetic variance are additive
[20]. The IAMDGC also assumed disease prevalence of
1, 5%, or 10% in their analyses [8]. The addition of the
two lead variants of the PLCG2 and PPARA genes does

Table 5 Chip heritability estimates calculated by GREML for advanced AMD (ADV), GA, and CNV using quantitative covariates

Analyses ADV GA CNV

Estimate (%) S.E.
(%)

Estimate (%) S.E.
(%)

Estimate (%) S.E.
(%)

Full Chip (no covariates) 44.05 1.29 46.37 2.13 62.03 1.47

With Age 57.96 1.31 45.41 2.16 59.71 1.51

With 10 PCs 44.16 1.29 46.50 2.13 62.18 1.48

With Age + 10 PCs 42.06 1.31 41.24 1.97 60.21 1.51

These estimates were based on 15,656 advanced AMD (ADV) cases (2964 GA-specific cases and 10,340 CNV-specific cases) and 17,832 controls with age
information in the IAMDGC data or with an age over 50. Covariates included age information available from the IAMDGC (age at diagnosis for cases and age at
exam for controls) and 10 PCs calculated for each of the datasets

Table 6 Epistatic interactions from pairwise logistic regression-based epistasis testing between variants in or within 50 kb of the 2
novel SDGs (PPARA and PLCG2) and the 52 AMD-associated index variants from the 2016 IAMDGC GWAS

AMD Locus from IAMDGC GWAS AMD SDG Locus Epistatic Interaction

Chr Location (bp) rsID Locus Name Chr Location (bp) rsID Locus Name OR P

1 196,704,632 rs10922109 CFH 22 46,681,141 rs35883013 PPARA 1.55 0.00015

9 76,617,720 rs10781182 MIR6130/RORB 16 81,932,165 rs4889432 PLCG2 1.09 0.00048

5 39,327,888 rs62358361 C9 16 81,821,531 rs8043845 PLCG2 0.66 0.00073

14 68,769,199 rs61985136 RAD51B 16 81,900,628 rs4243218 PLCG2 1.08 0.00079

6 3,255,581 rs204993 C2/C3/CFB 22 46,685,754 rs182313981 PPARA 0.63 0.00093

19 45,411,941 rs429358 APOE 22 46,685,754 rs182313981 PPARA 0.53 0.00099

Locations are given in base pairs (bp) based on build 37 of the human genome. None of these interactions are significant after correcting for multiple testing (p <
2.31 × 10− 6). Chr: Chromosome, P: p-values from the logistic regression test, distributed as χ2 with 1 d.f
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not increase our heritability estimates for ADV (14.54%).
These results reinforce the notion that the variants in
these SDGs in isolate are not significant but in aggregate
contribute strongly to the statistical signals we previ-
ously observed for AMD-associated pathways. Their
association with AMD is likely not additive but rather as
a consequence of their interactions within AMD-
associated pathways, demonstrating the benefit of using
pathway analysis to identify genetic variance with non-
additive effects.
Heritability estimates based on each of our variant sets

varied based on the advanced AMD subtype analyzed
(ADV, GA, or CNV). With the exception of the chip
heritability estimates, the values estimated for ADV and
CNV were much higher than those calculated for GA.
This may be due to the lower sample size of GA cases in
the dataset. Based on the GCTA GREML power calcula-
tor (http://cnsgenomics.com/shiny/gctaPower/), we had
good (over 80%) power to detect genetic variance for
GA. It has been previously shown that particular AMD-
associated variants contribute to a particular subtype.
For instance, the IAMDGC identified the first subtype-
specific variant for CNV near the MMP9 gene on
chromosome 20 [8]. Additional genes involved in extra-
cellular matrix maintenance have been implicated in
ADV subtypes, not intermediate AMD [21]. Although
the HTRA1/ARMS2 locus contributes generally to ADV
risk (including both subtypes), it has been consistently
associated with increased CNV-specific risk [22–25], and
smokers with the Y402H risk allele of CFH have an in-
creased risk of developing wet AMD specifically [26].
Based on our calculations of the heritability explained

collectively by the SDGs and the 34 AMD loci, we
hypothesize that the contributions of the common vari-
ants in these regions may not be purely additive. Add-
itionally, we suspect that that the contributions of the
common variants in PPARA and PLCG2 drive the herit-
ability estimates for the combinations of variants we
tested given the nearly identical estimates for the com-
bination of the common variants from the 8 SDGs and
34 loci relative to the combination of the common vari-
ants from the 2 SDGs and 34 loci. In the IAMDGC
GWAS, the locus boundaries were defined by distance
and LD structure from the lead variant in each locus [8].
Therefore, based on the definitions of the 8 SDGs and

34 loci, we expanded the amount of variants covered in
6 of the 34 loci (Table 3) in our combined analysis (34
AMD Loci and 8 SDGs ±50 kb) in this study. Based on
our pairwise disequilibrium analysis, these additional
variants are mostly independent of the variants in the
known loci. Only a few variants were in LD (r2 > 0.7),
but these variants were only connected to one variant in
an SDG locus. By contrast, in the analysis of the com-
mon variants from the 34 loci and 2 SDGs, the 34 loci
themselves were not expanded despite the addition of
the 2 SDGs.
The variance explained by genetic variants in genes

from AMD-related pathway defined in the literature has
been previously explored using GCTA [13]. The 19
then-known AMD associated variants explained 13.3%
of AMD risk in general, and significant additional herit-
ability was attributable to variants in inflammatory and
complement pathways when accounting for the known
risk variants [13]. Other pathways, including angiogen-
esis and apoptosis, did not significantly contribute to
AMD heritability estimates [13]. By contrast, in our ap-
proach, pathways were identified via in silico pathway
analysis of large-scale GWAS data with PARIS and mul-
tiple curated pathway databases. We then focused specif-
ically on the SDGs that significantly contribute to AMD-
associated pathways in our analysis. Gene expression
profiles for the two novel SDGs (PLCG2 and PPARA)
have been observed in retinas from AMD cases and con-
trols [27]. In retinal tissue from unaffected individuals,
PPARA is highly expressed; whereas, PLCG2 is weakly
expressed [28, 29]. Neither of these genes were signifi-
cantly expressed in an age-adjusted analysis of CNV ret-
inas [27].
While we determined that common variants from the

SDGs contribute to the ADV, GA, and CNV heritability,
this study had several limitations. Even with our esti-
mates, there is a substantial portion of ADV, GA, and
CNV variance left unexplained by the loci interrogated
in this study. Additional sources of heritability not ex-
amined in this study include rare variants, structural var-
iants, further investigations into epistasis, and epigenetic
effects. Seven rare variants were among the 52 independ-
ent, genome-wide significant markers identified by the
IAMDGC in their recent GWAS [8]. In this study, we
excluded rare variants (MAF < 1%) from our GREML

Table 7 Epistatic interactions between variants in or within 50 kb of PLCG2 and PPARA from pairwise logistic regression-based
epistasis testing

PLG2 Variants PPARA Variants Epistatic Interaction

Chr Location (bp) rsID Locus Name Chr Location (bp) rsID Locus Name OR P

16 81,979,125 rs12921780 PLCG2 22 46,633,037 rs41479847 PPARA 1.38 0.00075

16 81,817,239 rs4580153 PLCG2 22 46,638,486 rs78864133 PPARA 1.16 0.00095

Locations are given in base pairs (bp) based on build 37 of the human genome. Neither of these interactions are significant after correcting for multiple testing
(p < 2.31 × 10−6). Chr: Chromosome, P: p-values from the logistic regression test, distributed as χ2 with 1 d.f
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analyses for the known loci and the SDGs, removing
about half of variants from the 8 SDG variants and about
two-thirds of the variants from PPARA and PLCG2
alone. Rare variants were not excluded in our previous
pathway analyses because PARIS does not take MAF
into account when identifying associated pathways [11,
12]. Therefore, we were unable to consider the complete
contributions of these variants to disease heritability.
Additionally, the IAMDGC data repository we utilized in
this study does not currently have further information
on environmental exposures or behaviors of the study
participants that may contribute to AMD risk, such as
smoking status and diet. Therefore, these non-genetic
factors could not be included in our study.
Given the non-additive nature of our heritability esti-

mates for the combinations of known AMD loci and the
SDGs for ADV and its subtypes, we hypothesize that the
variants in these loci may be interacting with one an-
other. Our epistasis analyses did not reveal any signifi-
cant epistatic interactions among the known AMD
variants and the variants in the 2 novel SDGs. However,
this is only an initial look at the possible representation
of epistatic interactions between these genes. We cur-
rently only examined epistatic effects directly between
the common, high call rate variants in the 2 novel SDG
and the 52 lead variants from the IAMDGC; therefore
there could be additional epistatic interactions among
other variants in PPARA and PLCG2 with the 34 AMD
loci. In addition, large-scale genome-wide epistatic ef-
fects have not been explored. Our identification of mod-
est interactions among these loci, including between the
novel SDGs, suggests that there may be region-wide in-
teractions that are individually too weak to discover
using these analyses. Further studies should be per-
formed to confirm potential epistatic interactions be-
tween variants in the known loci and the SDGs.
Additionally, because we performed our analyses on the
largest dataset of ADV cases and controls currently
available, we are unable to replicate our findings with a
comparable, independent dataset. As with many genetic
studies, our study only included individuals of European
descent. Additional work should be done to elucidate
the contributions of the SDGs to AMD heritability in di-
verse populations because different populations may
have different heritability estimates for ADV and its sub-
types [30, 31].

Conclusions
Our study elucidated the contribution of pathway SDGs
and known AMD loci to the heritability of ADV and its
subtypes. Heritability estimates for particular ADV sub-
types were previously uncharacterized. The SDGs we an-
alyzed in this study were previously identified from
pathway analyses utilizing multiple pathway databases.

This more comprehensive approach uncovered an ap-
preciable portion of ADV heritability that had not been
previously characterized. While they do not demonstrate
an additive amount of heritability to that estimated for
the 34 AMD susceptibility loci identified by the
IAMDGC, we suspect that this is due to interaction ef-
fects or the exclusion of rare variants from our analyses.
It has been previously shown that additional AMD loci
(RLBP1 and CLUL1) can be identified by accounting for
gene x age interaction effects [32]. We propose that
identifying statistical driver genes from in silico pathway
analyses of GWAS data may be a valid approach to rec-
ognizing patterns of heritability (including non-additive
contributions) from large-scale genomic data that are
undetectable by GWAS. We applied this approach to
ADV and its subtypes, but it could be applied to uncover
novel loci associated to other complex traits for which
GWAS have been performed. Additionally, pathway ana-
lysis provides biological context for the loci in GWAS,
which could aid in understanding the underlying mecha-
nisms of traits and developing targeted treatments for
diseases.
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