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Abstract

Background: Systemic sclerosis (SSc), a multi-organ disorder, is characterized by vascular abnormalities,
dysregulation of the immune system, and fibrosis. The mechanisms underlying tissue pathology in SSc have not
been entirely understood. This study intended to investigate the common and tissue-specific pathways involved in
different tissues of SSc patients.

Methods: An integrative gene expression analysis of ten independent microarray datasets of three tissues was
conducted to identify differentially expressed genes (DEGs). DEGs were mapped to the search tool for retrieval of
interacting genes (STRING) to acquire protein–protein interaction (PPI) networks. Then, functional clusters in PPI
networks were determined. Enrichr, a gene list enrichment analysis tool, was utilized for the functional enrichment
of clusters.

Results: A total of 12, 2, and 4 functional clusters from 619, 52, and 119 DEGs were determined in the lung,
peripheral blood mononuclear cell (PBMC), and skin tissues, respectively. Analysis revealed that the tumor necrosis
factor (TNF) signaling pathway was enriched significantly in the three investigated tissues as a common pathway. In
addition, clusters associated with inflammation and immunity were common in the three investigated tissues.
However, clusters related to the fibrosis process were common in lung and skin tissues.

Conclusions: Analysis indicated that there were common pathological clusters that contributed to the
pathogenesis of SSc in different tissues. Moreover, it seems that the common pathways in distinct tissues stem
from a diverse set of genes.
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Background
Systemic sclerosis (SSc) is a rare, multisystemic, auto-
immune disease that involves the skin and various in-
ternal organs, including the lungs, gastrointestinal tract,
heart, and kidneys. The exact pathogenesis of SSc re-
mains unknown, but it seems that vascular abnormal-
ities, inflammation, dysregulation of immune system,
and extracellular matrix (ECM) deposition can lead to
progressive connective tissue fibrosis. Organ failures that

arise from fibrosis are the most significant causes of
mortality in SSc patients [1, 2].
Although the etiopathogenesis of SSc has not been

well identified, accumulated evidence suggests that mul-
tiple genes and their interactions with environmental
factors play important roles in this context [3, 4]. Trad-
itional researches have been performed in order to dem-
onstrate the involvement of a particular gene or protein
in SSc physiopathology [5, 6]. Although these studies
generate invaluable data, they provide a small amount of
evidence that is insufficient to clarify the complex inter-
actions between multiple genes or proteins simultan-
eously. Consequently, it is essential to utilize new
approaches for realizing the alterations of different genes
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and pathways in complicated pathological conditions,
like SSc [7, 8]. These approaches could have a major role
in the holistic understanding of complex disease patterns
and developing effective therapies.
Microarrays have been extensively applied for under-

standing biological mechanisms, discovering new drug
targets, and evaluating drug responses [9, 10]. In
addition, results obtained from microarray technology
might be helpful in generating abundant complex data-
sets that mostly address the same biological inquiries
[11–17]. Integration of relevant gene expression datasets
can improve the reliability of the outputs and facilitate
the identification of altered molecular pathways and
complex disease pathogeneses [8, 18, 19].
Skin involvement is one of the most common clinical

manifestations of SSc and is known to be a key marker
of disease activity [20]. The lung is frequently involved
in SSc, and such condition is known as the major cause
of death among SSc patients [21]. PBMC is a valuable
resource for investigating the immune responses in-
volved in autoimmune diseases like SSc [22]. The in-
volvement of multiple organs makes it difficult to
recognize the SSc pathogenesis. Moreover, it is not yet
clearly understood what pathways may affect SSc devel-
opment in different organs [23]. Consequently, the
present study accomplished an integrative analysis of
microarray gene expression data of PBMC as well as the
lungs and skin of SSc patients to identify the shared and
tissue-specific pathways involved in different tissues.

Methods
Methods flowchart
The method procedures and steps are illustrated in
Fig. 1.

Gene expression dataset selection
Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/) was searched for gene expression
datasets regarding SSc [24]. Datasets containing case and
control samples were selected. In addition, only SSc pa-
tients who had received no treatment were included. A
total of 10 datasets possessed the selection criteria and
were selected for this study. Three datasets for lung tis-
sue (accession number: GSE81292, GSE48149, and
GSE76808), three datasets for PBMC (accession number:
GSE19617, GSE22356, and GSE33463), and four datasets
for skin tissue (accession number: GSE32413, GSE45485,
GSE9285, and GSE76807) were selected. The selected
datasets comprised 69 (52 cases and 17 controls), 186
(125 cases and 61 controls), and 88 (30 cases and 58
controls) samples for lung, PBMC, and skin, respectively.
Table 1 provides detailed information of each dataset
and highlights the first author, tissue type, accession
number, and references.

Datasets preprocessing
The data was preprocessed using R statistical program-
ming language. Series matrix files and related annotations
for each dataset were obtained from the GEO database.
Selected datasets were divided into different groups based
on their tissue types. Then, preprocessing steps were car-
ried out in each tissue group independently. The data in
each dataset was normalized using a quantile
normalization technique function. Raw expression levels
were log2 transformed. The mean was applied to replicate
expressions of the same participants. To merge datasets in
each tissue, probes were converted to the Entrez gene ID.
The probes which were assigned to no Entrez ID were re-
moved. The multiple expressions which were assigned to
identical Entrez IDs were collapsed to the mean expres-
sion using the aggregate function in R. To make gene ex-
pression comparable across samples, batches were
removed using well-established ComBat function from the
SVA R/Bioconductor package [25].

Identifying differentially expressed genes (DEGs)
DEGs between healthy controls and patients in PBMCs
as well as lung and skin tissues were identified using the
Limma package [26]. DEGs were considered significant
with an adjusted p-value< 0.05 based on the false discov-
ery rate (FDR) using the Benjamini-Hochberg (BH) pro-
cedure and the logarithm of fold change (logFC) > ± 0.5.
A total of 52, 619, and 119 DEGs between the SSc group
and healthy controls were identified in PBMC, lung, and
skin tissues, respectively. A complete list of DEGs in
lung, PBMC, and skin datasets are provided as Add-
itional file 1:Tables S1, Additional file 2:Tables S2, and
Additional file 3: Tables S3, respectively. Analysis
showed that there was no shared DEGs between all three
investigated tissues; however, there were some common
DEGs between each pair of tissues (Table 2).

Protein-protein interaction (PPI) network analysis
The search tool for retrieval of interacting genes
(STRING) (https://string-db.org) database, which inte-
grates both known and predicted PPIs, can be applied to
predict functional interactions of proteins [27]. To seek
potential interactions between DEGs according to differ-
ent tissues, the STRING tool was employed. Active
interaction sources, including text mining, experiments,
databases, and co-expression as well as species limited to
“Homo sapiens” and an interaction score > 0.4 were ap-
plied to construct the PPI networks. Cytoscape software
version 3.6.1 was used to visualize the PPI network. To
detect highly connected regions of the network, Cluster-
ONE 1.0 software was used based on the following cri-
teria: minimum size = 5, minimum density = 0.05, and
edge weights = combined_score. Minimum size is the
minimum size of each cluster; minimum density
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represents the average edge weight within the cluster if
missing edges are supposed to have a weight of zero,
and edge weights determine the weight of each edge
[28]. In the networks, the nodes correspond to the pro-
teins and the edges represent the interactions. STRING
was employed to seek potential interactions among
DEGs corresponding to different tissues. Active inter-
action sources, including experimental repositories,
computational prediction methods, and public text col-
lections as well as species limited to “Homo sapiens” and
a combined score > 0.4, were applied.

Functional and pathway enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses
were conducted using Enrichr (http://amp.pharm.mssm.
edu/Enrichr/) for clusters obtained from different SSc
tissues. Enrichr is a web-based tool that allows the evalu-
ation of annotations with its extensive gene-set libraries
[29]. The GO Biological Process 2018 and KEGG 2016
of each tissue were determined. The significant terms
and pathways were selected with the threshold of ad-
justed p-value < 0.05. The five most significant (adjusted

Fig. 1 Flowchart of methods
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p-value < 0.05) GO biological processes and KEGG path-
ways in each cluster of lungs, PBMC, and skin datasets
are listed in Tables 3, 4, and 5, respectively.

Results
Data quality control
To ensure normal distribution of the data, the boxplots
for each dataset were displayed. To confirm batch effects
removal, the boxplots for each dataset were illustrated
after applying the ComBat function. Boxplots before and
after batch effect removal are shown in Fig. 2.

Network analysis of the DEGs
The PPI networks for lung, PBMC, and skin DEGs were
constructed and used to identify 2, 12, and 4 clusters of
highly interconnected nodes in PBMC, lung and skin tis-
sues, respectively.

Functional enrichment analysis of clusters
Fig. 3 shows the 12 significant clusters that were found
in the lung PPI network analysis using ClusterONE. In
the cluster L.1, the most significant biological processes
and pathways were associated with immunity and in-
flammatory responses, including cytokine- and
chemokine-mediated signaling pathways, cytokine-
cytokine receptor interaction, as well as JAK-STAT and
TNF signaling pathways. Cluster L.2 was enriched in

immunity pathways containing MAPK and TNF signal-
ing pathways and osteoclast differentiation. Enrichment
was also observed in biological processes like transcrip-
tional regulation of the RNA polymerase II gene pro-
moter as well as genes involved in the immune system
[30]. Moreover, cluster L.12 was related to the terms
and pathways relevant to immunity, including neutrophil
degradation, neutrophil-mediated immunity, and osteo-
clast differentiation. As mentioned, 3 out of 12 clusters
of the lung PPI network were correlated with inflamma-
tory and immunity responses.
Several enriched biological processes and pathways in

cluster L.3 were involved in cell proliferation and death.
For example, mitotic cell cycle phase transition, cell cycle,
p53, and FoxO signaling pathways were represented in
this cluster. Cluster L.8 was enriched in the regulation of
bone morphogenetic proteins (BMPs) and proliferation.
Clusters L.4, L.5, and L.10 all contained biological pro-

cesses and pathways dependent upon G-protein coupled
receptor (GPCR) signaling. GPCRs are a major family of
cell surface receptors that are involved in the physio-
logical processes, including regulation of immune sys-
tems, cellular motility, and differentiation [31].
The enrichment of ECM organization terms and

pathways was observed to be associated with cluster
L.6. For example, ECM organization, collagen fibril
organization, and protein complex subunit
organization terms as well as protein digestion and
absorption and ECM-receptor interaction pathways
were enriched in cluster L.6. Likewise, cluster L.11
was observed to be more represented in ECM degrad-
ation terms, such as proteolysis and ECM disassem-
bly. However, no meaningful KEGG pathways were
assigned to this cluster.
As shown in Table 3, clusters L.7 and L.9 were more rep-

resentative of metabolic terms and pathways, such as the
cholesterol metabolic process, synthesis and degradation of
ketone bodies, and keratan sulfate metabolic process.
The PPI network of PBMC was divided into two

significant clusters. These two clusters and the bio-
logical processes and pathways relevant to the PPI
network of PBMC are listed in Table 4. Type 1
interferon and cytokine-mediated signaling pathways
were prevalent in cluster P.1. However, there was no
significant KEGG pathway related to this cluster.
Moreover, the biological processes in cluster P.2
were involved in responses to various substances.
Apoptosis, TNF signaling pathway, and osteoclast
differentiation were more common KEGG pathways
in this cluster. As shown in Fig. 4a, all clusters in
the PPI network of PBMC were enriched in terms
and pathways related to immunity.
Four significant clusters were found in the skin PPI

network. Table 5 shows that cluster S.1 contains terms

Table 1 Characteristics of datasets included in this study
First Author Tissue GEO Accession Reference

Christmann R Lung GSE81292 [1]

Feghali-Bostwick CA Lung GSE48149 –

Christmann R Lung GSE76808 [2]

Pendergrass S PBMC GSE19617 [3]

Risbano MG PBMC GSE22356 [4]

Cheadle C PBMC GSE33463 [5]

Pendergrass S Skin GSE32413 [6]

Hinchcliff M Skin GSE45485 [7]

Milano A Skin GSE9285 [8]

Whitfield ML Skin GSE76807 –

Abbreviation: GEO: Gene Expression Omnibus; PBMC: peripheral blood
mononuclear cell

Table 2 Shared DEGs between pair tissues

Pair tissues Shared DEGs

lung -
PBMC

KLF9, CD69, CISH, GP9, JUN, JUNB, JUND, MT2A, NFE2,
SPOCK2, RGCC, CCNL1, SIK1

lung - skin COL5A2, COL6A3, COMP, VCAN, DIO2, FBN1, CFI, IGFBP2,
IGFBP7, CYR61, JCHAIN, IL6, PTX3, RGS16, SLC14A1, GDF15,
SULF1, STEAP1

PBMC -
skin

IFI27, PLSCR1, CXCR4, IFI44

Abbreviation: DEGs: Differentially Expressed Genes
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Table 3 Most significant GO and KEGG pathways enriched in lung clusters
Go Biological Process P-value KEGG Pathway P-value

cluster L.1 (Inflammation & immunity) – size/DEGs = 56/54

- cytokine-mediated signaling pathway 1.65E-17 - Cytokine-cytokine receptor interaction 5.61E-22

- inflammatory response 3.73E-11 - Hematopoietic cell lineage 1.05E-10

- cellular response to cytokine stimulus 1.25E-12 - Chemokine signaling pathway 2.66E-09

- chemokine-mediated signaling pathway 2.78E-10 - JAK-STAT signaling pathway 1.06E-08

- positive regulation of leukocyte migration 6.87E-08 - TNF signaling pathway 3.78E-07

cluster L.2 (Inflammation & immunity) – size/DEGs = 48/47

- regulation of transcription from RNA polymerase II promoter 1.92E-12 - MAPK signaling pathway 1.48E-09

- positive regulation of transcription from RNA polymerase II promoter 1.04E-10 - TNF signaling pathway 1.04E-05

- positive regulation of transcription, DNA-templated 6.58E-10 - Osteoclast differentiation 2.04E-05

- regulation of cell cycle 1.13E-08 - Inflammatory bowel disease (IBD) 0.000298

- regulation of transcription, DNA-templated 7.42E-06 - Amphetamine addiction 0.000298

cluster L.3 (Cell proliferation & cell death) - size/DEGs = 20/19

- positive regulation of cyclin-dependent protein serine/threonine kinase activity 0.000225 - p53 signaling pathway 1.44E-07

- positive regulation of cell cycle 0.000225 - Cell cycle 1.4E-06

- mitotic cell cycle phase transition 0.000225 - FoxO signaling pathway 6.39E-05

- G1/S transition of mitotic cell cycle 0.000225 - Progesterone-mediated oocyte maturation 0.000704

- cell cycle G2/M phase transition 0.000284 - Oocyte meiosis 0.001103

cluster L.4 (GPCR signaling) - size/DEGs = 9/9

- adenylate cyclase-activating G-protein coupled receptor signaling pathway 5.98E-17 - Neuroactive ligand-receptor interaction 7.6E-09

- adenylate cyclase-modulating G-protein coupled receptor signaling pathway 2.53E-15 - Regulation of lipolysis in adipocytes 0.001669

- cAMP-mediated signaling 1.11E-11 - Renin secretion 0.001669

- G-protein coupled receptor signaling pathway, coupled to cyclic nucleotide sec-
ond messenger

4.58E-08 - Salivary secretion 0.002418

- positive regulation of cAMP metabolic process 5.94E-06 - Vascular smooth muscle contraction 0.003501

cluster L.5 (GPCR signaling) - size/DEGs = 19/19

- regulation of small GTPase mediated signal transduction 1E-10 - Axon guidance 0.006298

- regulation of intracellular signal transduction 3.27E-07

- regulation of actin filament-based process 2.44E-05

- regulation of cell migration 2.44E-05

- regulation of actin cytoskeleton organization 3.37E-05

cluster L.6 (ECM organization) - size/DEGs = 13/11

- extracellular matrix organization 3.55E-11 - Protein digestion and absorption 1.08E-15

- collagen fibril organization 1.56E-07 - AGE-RAGE signaling pathway in diabetic
complications

6.03E-05

- protein complex subunit organization 6.15E-07 - Amoebiasis 6.03E-05

- skeletal system development 6.58E-07 - ECM-receptor interaction 6.03E-05

- skin development 6.58E-07 - Platelet activation 8.48E-05

cluster L.7 (Metabolic process) - size/DEGs = 8/7

- secondary alcohol biosynthetic process 1.83E-08 - Terpenoid backbone biosynthesis 5.16E-07

- cholesterol biosynthetic process 1.83E-08 - Synthesis and degradation of ketone bodies 2.52E-05

- sterol biosynthetic process 1.87E-08 - Steroid biosynthesis 7.07E-05

- cholesterol metabolic process 1.19E-07 - Metabolic pathways 8.42E-05

- acetyl-CoA metabolic process 2.02E-07 - Butanoate metabolism 8.42E-05

cluster L.8 (Regulation of BMPs) - size/DEGs = 20/20

- regulation of BMP signaling pathway 5.24E-11 - Signaling pathways regulating pluripotency of
stem cells

1.69E-09

- BMP signaling pathway 4.87E-08 - Hedgehog signaling pathway 1.8E-08

- cellular response to BMP stimulus 5E-08 - Basal cell carcinoma 1.96E-08
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and pathways related to the extracellular matrix
organization. However, clusters S.2 and S.4 were mostly
enriched in the immunity biological processes and
KEGG pathways. Cluster S.3 represents terms and path-
ways related to immunity, including complement, coagu-
lation cascade, and platelet degradation, as well as terms
related to the ECM organization, comprising ECM
organization and ECM disassembly. The PPI network of
skin clusters is depicted in Fig. 4b.

TNF signaling significantly enriched in three investigated
tissues
Analysis showed that the TNF signaling pathway was
enriched significantly in cluster L.1 and cluster L.2 of
lung tissue, cluster P.2 of PBMC, and cluster S.2 of skin
tissue. Moreover, it was detected that the TNF signaling
arose from the function of different sets of genes in indi-
vidual tissues. The TNF signaling-related genes in each
cluster of the three evaluated tissues are represented in
Table 6.

Discussion
Despite the vast amount of research on SSc, its etio-
pathogenesis has not yet been fully clarified. Conse-
quently, an effective systemic or targeted therapy does
not exist [32]. Genome-wide transcriptional profiling
and genome-wide association studies in different tissues
from SSc patients have produced valuable information,
which can be integrated thoroughly to approach SSc
pathophysiology with a comprehensive understanding.
Integrative gene expression analysis and the construction
of PPI networks can be performed using gene expression
data extracted from RNA-seq and microarray. RNA-Seq
increases accuracy for low-abundance transcripts [33]
and has higher resolution for identifying tissue-specific
expressions [34]. However, it is a relatively new method,
and there is a small amount of RNA-seq data concerning
different tissues of SSc in databases compared to micro-
array. Therefore, in the present study, microarray data
from several SSc tissues was used to investigate whether
common pathways influence SSc pathogenesis across af-
fected tissues.

Table 3 Most significant GO and KEGG pathways enriched in lung clusters (Continued)
Go Biological Process P-value KEGG Pathway P-value

- regulation of ossification 5.47E-08 - Hippo signaling pathway 4.83E-08

- positive regulation of cartilage development 2.94E-07 - TGF-beta signaling pathway 8E-06

cluster L.9 (Metabolic process) - size/DEGs = 11/11

- keratan sulfate catabolic process 0.00139 - Phospholipase D signaling pathway 0.001041

- keratan sulfate metabolic process 0.002787 - Rap1 signaling pathway 0.001615

- sulfur compound catabolic process 0.002787 - cAMP signaling pathway 0.029672

- keratan sulfate biosynthetic process 0.002787 - Ras signaling pathway 0.029672

- glycosaminoglycan catabolic process 0.005613

cluster L.10 (GPCR signaling) - size/DEGs = 22/21

- axon guidance 0.00022 - Axon guidance 1.8E-07

- transmembrane receptor protein tyrosine kinase signaling pathway 0.000396 - Focal adhesion 0.0014420.011273

- axonogenesis 0.000396 - Primary immunodeficiency 0.032572

- cell migration involved in sprouting angiogenesis 0.007527 - B cell receptor signaling pathway

- ephrin receptor signaling pathway 0.007527

cluster L.11 (ECM degradation) - size/DEGs = 23/23

- proteolysis 0.000176 None

- extracellular matrix disassembly 0.00022

- regulation of endopeptidase activity 0.005145

- extracellular matrix organization 0.007401

- regulation of membrane protein ectodomain proteolysis 0.014697

cluster L.12 (Inflammation and immunity) - size/DEGs = 12/11

- neutrophil degranulation 0.004647 - Insulin secretion 0.010314

- neutrophil mediated immunity 0.004647 - Osteoclast differentiation 0.012295

- neutrophil activation involved in immune response 0.004647

- potassium ion transport 0.014375

- metal ion transport 0.027277

Abbreviation: GPCR: G-protein coupled receptor; BPMs: Bone morphogenetic proteins
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The GO and KEGG pathway analyses of clusters in
PBMC as well as lung and skin tissues indicated the
clusters contained biological processes and pathways, in-
cluding extracellular matrix organization, immune re-
sponse, inflammatory response, cell proliferation, and
apoptosis, which may play roles in SSc pathogenesis.

Although no shared DEGs were detected among the
three evaluated tissues, TNF signaling pathway was
enriched significantly in all three as a common pathway.
Therefore, it seems that this common pathway arises
from diverse sets of genes in distinct tissues. TNF has a
pivotal role in response to infections and in the

Table 4 Most significant GO and KEGG pathways enriched in PBMC clusters

Go Biological Process P-value KEGG Pathway P-value

Cluster P.1 (Inflammation and immunity) - size/DEGs = 7/7

- type I interferon signaling pathway 1.16E-07 None

- cellular response to type I interferon 1.16E-07

- endosomal vesicle fusion 0.000119

- cytokine-mediated signaling pathway 0.000503

- negative regulation of viral genome replication 0.001647

Cluster P.2 (Inflammation and immunity) - size/DEGs = 9/9

- response to organophosphorus 5.96E-06 - Apoptosis 1.16E-07

- response to purine-containing compound 5.96E-06 - Osteoclast differentiation 6.68E-06

- response to cytokine 1.34E-05 - TNF signaling pathway 0.000265

- cellular response to organic substance 1.34E-05 - Influenza A 0.000798

- response to cAMP 2.61E-05 - Viral carcinogenesis 0.001022

Table 5 Most significant GO and KEGG pathways enriched in skin clusters

Go Biological Process P-value KEGG Pathway P-value

cluster S.1 (ECM organization) - size/DEGs = 11/11

- extracellular matrix organization 9.32E-10 - Protein digestion and absorption 7.46E-09

- skeletal system development 5.4E-07 - ECM-receptor interaction 5.35E-05

- eye morphogenesis 6.6E-06 - Focal adhesion 0.000526

- collagen fibril organization 1.51E-05 - PI3K-Akt signaling pathway 0.001831

- eye development 3.74E-05

cluster S.2 (Inflammation and immunity) - size/DEGs = 14/14

- inflammatory response 3.4E-06 - Legionellosis 3.16E-06

- neutrophil mediated immunity 5.53E-05 - Pertussis 5.59E-06

- cellular response to cytokine stimulus 5.53E-05 - Rheumatoid arthritis 7.79E-06

- response to lipopolysaccharide 0.000268 - TNF signaling pathway 1.31E-05

- positive regulation of apoptotic cell clearance 0.000619 - Phagosome 4.02E-05

cluster S.3 (ECM organization) - size/DEGs = 7/7

- platelet degranulation 1.5E-08 - Complement and coagulation cascades 0.002555

- regulated exocytosis 1.83E-08

- extracellular matrix organization 1.08E-07

- post-translational protein modification 0.003869

- extracellular matrix disassembly 0.005238

cluster S.4 (Inflammation and immunity) - size/DEGs = 5/5

- type I interferon signaling pathway 0.001321 - RIG-I-like receptor signaling pathway 0.01738

- negative regulation of viral genome replication 0.001321

- negative regulation of viral life cycle 0.001321

- cellular response to type I interferon 0.001321

- regulation of viral genome replication 0.001321
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pathogenesis of different immune-mediated disorders, like
rheumatoid arthritis (RA) and spondyloarthritis (SpA) [35,
36]. However, its role in fibrotic disorders like SSc is con-
troversial [37]. Investigations have demonstrated that an-
tagonists of TNF prevent fibrosis in mouse models of
silica-induced and bleomycin-induced pulmonary fibrosis
[38, 39]. Moreover, progressive lung fibrosis has been indi-
cated in patients with RA after treatment with infliximab
(a TNF-α blocker) [40]. Conversely, the anti-fibrotic ef-
fects of TNF have been indicated in several in vitro studies
[41, 42].

Among the cytokines with increased levels in SSc,
transforming growth factor (TGF)-β, interleukin (IL)-6,
and IL-4 are considered as main fibrogenic cytokines in
this disease. Different immune cell types, such as macro-
phages, T cells, B cells, and dendritic cells (DCs) have
also been implicated in the immunopathogenesis of SSc.
The involvement of multiple cytokines, cell types, and
organs makes it difficult to clarify the precise pathogen-
esis of SSc. However, it seems that activation of the im-
mune system and initiation of the autoimmunity trigger
the tissue fibrosis [43, 44]. Consistently, analysis in the

Fig. 2 Boxplots of data before and after batch effect correction. a) Boxplot of PBMC data before batch effect removal. b) Boxplot of PBMC data
after batch effect removal. c) Boxplot of lung data before batch effect removal. d) Boxplot of lung data after batch effect removal. e) Boxplot of
skin data before batch effect removal. f) Boxplot of skin data after batch effect removal. Different datasets were displayed in different colors
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Fig. 3 Lung PPI network. Twelve distinct functional clusters were detected in lung tissue. Each cluster is a set of highly-connected nodes and is
illustrated in a discrete color

Fig. 4 a) PBMC PPI network. Two distinct functional clusters were identified in PBMC. b) Skin PPI network. Four distinct functional clusters were
detected in skin tissue. Each cluster is a set of highly-connected nodes and is illustrated in a discrete color
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current study indicated that several biological processes
and pathways, such as cytokine-mediated signaling, in-
flammatory response, and TNF signaling which are in-
volved in immunity and inflammatory processes, were
significantly enriched in the three investigated tissues.
Cheadle and colleagues have performed an integrative

analysis of microarray data from PAH, pulmonary hyper-
tension (PH), and idiopathic arterial hypertension (IPAH),
SSc diseases. Their analysis showed that erythrocyte signa-
ture was enriched significantly in PBMCs from PH pa-
tients in comparison with SSc and healthy individuals
[13]. However, we performed an integrative gene expres-
sion analysis only on SSc patients and our analysis re-
vealed that the clusters regarding to the immunity and
inflammatory processes and pathways were significantly
enriched in PBMCs of the SSc patients.
Although all the biological processes and pathways ob-

tained from the PPI network analysis of PBMC were im-
plicated mostly in clusters that can be labeled as
immunity or inflammatory, the lung and skin tissues
were enriched in other clusters in addition to immunity
and inflammatory clusters. For example, some other
lung and skin clusters could be labeled as extracellular
matrix (ECM) organization. As expected, the terms and
pathways associated with fibrosis containing ECM
organization, ECM-receptor interaction, and collagen fi-
bril organization were common in lung and skin tissues.
The lung PPI network analysis showed that its terms
and pathways not only could be labeled as the inflamma-
tion, immunity, and ECM organization, but could also
be implicated in cell proliferation and cell death, regula-
tion of bone morphogenetic proteins (BMPs), GPCR sig-
naling, and metabolic processes.
The detection of clusters related to cell proliferation

and cell death as well as regulation of BMPs is compat-
ible with previous studies that have indicated enrich-
ment of the cell cycle, proliferation, and p53 signaling in
SSc [8]. BMPs are growth factors belonging to the trans-
forming growth factor-β (TGF-β) superfamily which play
important roles in cell proliferation, apoptosis, and re-
generation after injury. The serum and tissue levels of
TGF-β, a major pro-fibrotic cytokine in the pathogenesis
of SSc, are elevated in SSc patients [45, 46]. Previous
studies have indicated that the balance between TGF-β
and BMP signaling is essential and is considerably per-
turbed in pulmonary fibrosis [47]. A report indicated

that increased BMPRII degradation, arising from ele-
vated TGF-β activity, led to impaired BMP signaling in
patients with PAH and SSc [48].
The altered expression of G protein-coupled receptors

(GPCRs) and their ligands has been associated with mul-
tiple immune-mediated disorders, like pulmonary arter-
ial hypertension (PAH) and RA [49, 50]. The
pathophysiological mechanisms of SSc, like detrimental
vasoconstriction, pro-inflammatory, proliferative, and
pro-fibrotic effects, are mediated by angiotensin II (Ang
II) and endothelin 1 (ET1) through type I angiotensin II
receptor (AT1R) and endothelin I receptor (ETAR), re-
spectively [51]. High levels of autoantibodies against
GPCRs like AT1R and ETAR contribute to the patho-
genesis of SSc [52].
Recent studies have indicated that there is an associ-

ation between metabolic pathways and immune-
mediated disorders [7, 53, 54]. Metabolic processes re-
garding SSc have not been investigated profoundly.
Blood metabolomics analysis revealed that glycolysis,
gluconeogenesis, energetic pathways, degradation of ke-
tone bodies, and pyruvate metabolism are the most im-
portant networks in SSc [7]. Analysis in the current
study revealed that clusters with several metabolic pro-
cesses and pathways containing synthesis and degrad-
ation of ketone bodies and steroid biosynthesis are
associated with SSc lung tissue. However, no metabolic
pathway or term was enriched in PBMC and skin tissue.

Conclusions
Based on the current results, it seems that common
pathological pathways contribute to the pathogenesis
of SSc in different tissues. However, tissue type may
make it susceptible to the initiation of more compli-
cated pathways. Areas for future exploration may in-
clude determining the role of TNF signaling pathway
in the initiation and progression of SSc, the role of
GPCRs in the pathophysiology of SSc, the metabolo-
mics profiling of SSc in different tissues, and the role
of the metabolic process in SSc pathogenesis. Ultim-
ately, sampling from diverse patients should be con-
ducted tissue by tissue in different stages of the
disease to perform more accurate tissue comparisons
and design effective systemic or targeted therapies for
SSc in the future.

Table 6 shared pathway and its related genes in three investigated tissues

Tissue Cluster Name Shared Pathway Genes

Lung cluster L.1 TNF signaling IL6, CSF2, CCL20, CXCL3, SELE, CXCL2, ICAM1

cluster L.2 TNF signaling JUN, MAP3K8, FOS, JUNB, RELA, IL18R1

PBMC cluster P.2 TNF signaling NFKBIA, JUN, JUNB

Skin cluster S.2 TNF signaling SOCS3, IL6, CCL2, CXCL1
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