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Abstract

Background: It is significant to identificate complex biological mechanisms of various diseases in biomedical
research. Recently, the growing generation of tremendous amount of data in genomics, epigenomics, metagenomics,
proteomics, metabolomics, nutriomics, etc., has resulted in the rise of systematic biological means of exploring
complex diseases. However, the disparity between the production of the multiple data and our capability of analyzing
data has been broaden gradually. Furthermore, we observe that networks can represent many of the
above-mentioned data, and founded on the vector representations learned by network embedding methods, entities
which are in close proximity but at present do not actually possess direct links are very likely to be related, therefore
they are promising candidate subjects for biological investigation.

Results: We incorporate six public biological databases to construct a heterogeneous biological network containing
three categories of entities (i.e., genes, diseases, miRNAs) and multiple types of edges (i.e., the known relationships). To
tackle the inherent heterogeneity, we develop a heterogeneous network embedding model for mapping the network
into a low dimensional vector space in which the relationships between entities are preserved well. And in order to
assess the effectiveness of our method, we conduct gene-disease as well as miRNA-disease associations predictions,
results of which show the superiority of our novel method over several state-of-the-arts. Furthermore, many
associations predicted by our method are verified in the latest real-world dataset.

Conclusions: We propose a novel heterogeneous network embedding method which can adequately take
advantage of the abundant contextual information and structures of heterogeneous network. Moreover, we illustrate
the performance of the proposed method on directing studies in biology, which can assist in identifying new
hypotheses in biological investigation.
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Background
Correctly predicting new disease associations with other
biological entities(e.g. genes, miRNAs) has long been an
important goal in biomedical research. With the emer-
gence of large-scale disease-related association datasets
in biology, scientists can leverage statistical and machine
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learning methods to assist in achieving this goal. Singh-
Blom et al. [1] propose a supervised machine learning
method that uses a biased support vector machine where
the features are derived from walks in a heterogeneous
gene-trait network to predict gene-disease associations.
Chen et al. [2] introduce random walk with restart method
to prioritize the candidate disease for miRNAs. Zeng et
al. assess the correlation between nodes by the HeteSim
score [3] for the purpose of predicting disease-gene asso-
ciations [4] and disease-miRNA associations [5]. However,
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these methods only extract simple features from datasets
and there still exist many challenges as discussed below.

Recent technological advances have enabled researchers
to produce and investigate an enormous quantity of data
to illustrate the underlying biological mechanisms of com-
plicated diseases [6] better. Consequently, many large
databases have been developed to preserve and orga-
nize the accumulated data, which were generated and
conserved by extensive collaboration. For instance, the
DisGeNET database [7] collects a comprehensive cata-
logue of genes and variants involved in human diseases
from various expert-curated repositories [1, 4, 8, 9], and
the miRNet database [10] integrates data from eleven
disease-miRNA databases [5, 11]. In addition, almost all
of these datasets supply perceived and/or inferred knowl-
edge about relations between diseases and other biological
entities. For instance, the MISIM database [12] preserves a
miRNA similarity network; the Human Reference Protein
Database (HPRD) [13] keeps a network of protein-protein
interaction; the MimMiner [14] offers a similarity network
of diseases. Capturing the complicated biological relation-
ships among data requires a systematic method to ponder
these multifaceted data simultaneously, involving genes
[15], proteins [16], miRNAs [17], drugs [18], side-effects
[19] and so on. It may shed light not only on under-
standing the mechanisms in complex diseases, but also
on identifying new biological hypotheses to direct future
explorations and researches. Although several big consor-
tia such as ENCODE and GTEx have made remarkable
progress, we discover a growing disparity between our
capabilities of producing data and the capabilities of inte-
grating, investigating, and explaining data. The majority of
recent researches typically concentrate on data produced
in the environment managed by themselves or by their
colleagues, in order to make sure that data is produced in
homogeneous conditions thus can be compared directly.
Accordingly, data produced from previous researches and
the inferred knowledge preserved in available reposito-
ries are still widely underutilized. And it is unpractical to
fully utilize such enormous amount of data to conduct
biological experiments due to high expenses. Moreover,
heterogeneity of data types, experimental environments
and experimental technologies is a primary challenge.
Consequently, we design a network-based analytic model
to tackle these challenges.

We are motivated by the discovery that networks in
which nodes indicate entities such as proteins, diseases
and edges indicate relationships between these entities
can represent a majority of the above-mentioned data.
Because there exist various types of entities, the rela-
tionships may be likewise of various types (e.g. protein-
protein interaction, disease-miRNA association). Besides,
nodes and edges may have auxiliary attributes such as
node features and link weights which further describe

the characteristics of the entities and relations. For the
sake of making full use of the knowledge carried by the
constructed network, we apply the network embedding
method [20, 21] which has successfully presented its effect
in exploring and discovering relationships between per-
sons within social networks. Network embedding maps
the network data into a continuous low-dimensional fea-
ture space which preserves the vertex content, side infor-
mation and topological structure, especially existent rela-
tionships. Every entity (e.g., protein, disease) is embeded
to a low-dimensional vector and mapped to a point in the
vector space. And if the relationship between two entities
is stronger, they are closer in the vector space. Figure 1a
demonstrates a sub-network which contains one disease
(i.e., prostate cancer), two miRNAs (i.e., hsa-mir-223, hsa-
mir-21) and two genes (i.e., ZNF804A, ATM), as well as
their existent links to other diseases, miRNAs, and genes.
Figure 1b displays a projection of a tiny region around
prostate cancer in the two-dimensional embedding space
where genes and miRNAs which are actually connected
to prostate cancer are distributed in the proximity of this
disease. The four red dashed edges denote the top two
miRNAs and two genes which don’t possess direct links
but have great possibility of connecting to prostate cancer
in the prediction of our model.

Representation learning for the aforementioned het-
erogeneous networks confronts some challenges. Nodes
in a network may represent entities of vastly different
characteristics. And edges may represent disparate rela-
tionships, and each of which may be of various weight or
other attribute. Conventional network embedding meth-
ods [20–22] are focused on homogeneous networks and
based on skip-gram [23] model to learn the topologi-
cal structures and other latent attributes of networks.
Recently, deep neural networks have been introduced into
homogeneous network embedding, [24–26] utilize graph
convolution networks (GCNs) which generalize the oper-
ation of convolution [27] from traditional data (images
or grids) to graph data and learn the connectivity struc-
tures from the adjacency matrices of graphs. There are
also several existing works on heterogeneous network
embedding [28–31]. Translation-based models [28, 29]
learn representations of entities (nodes) and relationships
(links) in knowledge graphs which can be regarded as
heterogeneous networks, but these models only preserve
the local structure by interpreting relations as transla-
tions and ignore the link weights in the network. Another
kind of methods [30, 31], which decompose a heteroge-
neous network to a set of subgraphs and then perform
embedding individually, ignore the different semantics of
relationships in each subgraph and only capture the aggre-
gated information of relationships by combining embed-
ding of each subgraph. Moreover, [32, 33] consider the
distinctive characteristics of relations (or entities) in the
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Fig. 1 An illustrative example of heterogeneous biological network embedding. The left figure demonstrates one disease, two miRNAs, two genes,
and their known links which are denoted by solid edges. The right figure presents their projection to the two-dimensional space of a small region
around the disease by employing network embedding. The four red dashed links denote the top predicted links utilizing our model. a Sub-network
Relation Visualization. b Network Embedding Visualization

heterogeneous network, but [32] only projects different
kinds of nodes (i.e., image and text) into the same vec-
tor space by neural networks which ignores the seman-
tic information interpreting contextual properties in the
heterogeneous network, and [33] distinguishes heteroge-
neous relations into two categories by structure-related
measures and utilizes two different embedding models
for each but there exist relations which can not be well
distinguished by the structure-related measures in vari-
ous heterogeneous networks. Although [34, 35] introduce
meta path [35] to capture the rich semantic information in
heterogeneous network, they don’t present how to select
proper meta path in different networks especially in the
biological network.

Another challenge is the scalability of the network
embedding method. Heterogeneous networks provide a
large amount of information about node relations. How-
ever, it is non-trivial to capture a large number of het-
erogeneous relationships. And it is impossible to list all
neighbor nodes under different relations when the net-
work scales up. Therefore, we need a scalable method to
capture such rich relations efficiently.

To overcome the aforementioned challenges, in this
paper, we propose HeteWalk, which is based on meta path
[35] controlled random walk for representations learn-
ing in heterogeneous networks. Besides, we consider the
edge weights during the representation learning and pro-
vide a random walk-based measure to assist in selecting
meta path. We utilize the meta paths to capture abundant
semantic information involved in the heterogeneous net-
work. And the random walk procedure, which has shown

the scalability in exploring large-scale networks [20], is
controlled by not only the meta paths but also link weights
on our network. In the embedding vector space, entities
which are close to each other but at present do not pos-
sess direct links(edges) are probably connected and thus
are significant subjects in future biological study.

In order to demonstrate the effectiveness of our method,
we construct a heterogeneous network of diseases, genes
and miRNAs using data from six real-world datasets and
conduct two disease-related prediction tasks including
disease-gene association prediction and disease-miRNA
association prediction. Then we compare the proposed
method with several advanced disease association predic-
tion methods as well as some typical network embedding
methods. The experimental results show the superior-
ity of our proposed method. Moreover, we perceive that
embracing additional datasets to train our method will
promote the accuracy of the predicted results at all time.
Furthermore, substantial associations we predict are veri-
fied by the latest miRNet dataset [10], which demonstrates
our method can effectively provide guidance to discover
new disease-related associations in biological studies.

Methods
Network construction
The accumulated biological data has been preserved and
organized in massive databases, nevertheless, only a frac-
tion of data generated from previous studies has been
utilized. And the heterogeneity in data types, experimen-
tal technologies as well as experimental settings remains
a vital challenge. We demonstrate the construction of a



Xiong et al. BMC Medical Genomics 2019, 12(Suppl 10):186 Page 4 of 17

weighted heterogeneous network by integrating data from
various databases in this section.

Datasets description
We utilize real-world data in six public sources to inter-
pret the definition and effectiveness of the proposed
method. These biological datasets offer the association
networks and similarity networks between three types
of entities which are diseases, miRNAs and genes. The
detailed description of these biological networks are as
follows:

• Gene (proteins) interaction network: We obtain
39,240 protein-protein interactions (PPI) from the
Human Protein Reference Database (HPRD) [13]
which was manually extracted from biological
literature. For the pair of proteins with direct
connections, their corresponding protein-coding
genes are linked through an unweighted edge in the
HPRD network and we set the weight as 1.0.

• miRNA similarity network: We acquire the
similarities of miRNA functions from the MISIM
databank [12], which provides the functional
similarity of 271 miRNAs in pairs. The similarity
score for each link which is calculated by the MISIM
method ranges from 0 to 1.

• Disease phenotype similarity network: The
similarities of human disease are extracted from the
MimMiner [14], which utilizes a text-mining method
for the classification of human diseases from the
Online Mendelian Inheritance in Man (OMIM)
database [36]. All links are associated with their own
similarity scores ranging from 0 to 1 calculated by the
MimMiner system.

• Gene-Disease association network: We extract this
network from DisGeNET database [7], which
incorporates gene-disease associations of humans
from various professional databases. 19,714 entries
whose disease phenotypes can be related to OMIM
terms are used. Every association possess a score
ranging from 0 to 1 in accordance with confidence,
which is called DisGeNET score [7] with taking into
account the number of sources supporting the
association and the reliability of each of them.

• Gene-miRNA interaction network: The gene-miRNA
interactions are provided by the miRTarBase
database [37], which is gathered through manual
survey of literature relevant to miRNAs’ functional
studies. Reporter assay, western blot, microarray or
next-generation sequencing experiments verify the
collected interactions experimentally. At the step of
network construction, We set the weights of 7269
interactions supported by strong experimental
evidences (reporter assay or western blot) as 1, and
set the weights of 13,990 interactions supported by
weak experimental evidences (microarray or
pSILAC) as 0.3. And the experimental evidence is
justified by many crosslinking and
immunoprecipitation sequencing (CLIP-seq) datasets
which were generated by 21 independent studies [37].

• miRNA-Disease association network: Two datasets
are combined to build this network. One dataset
provides 242 miRNA-disease associations offered by
Chen et al. [11]. The other is derived from the miRNet
dataset [10], which contains substantial confirmed
associations of miRNA-disease incorporated from
HMDD [38], miR2Disease [39], and Phenomir [40],
from which we extract the records whose disease
names are able to connect with their OMIM ids then
we obtain 666 disease-miRNA associations. And 878
miRNA-disease associations which totally includes
267 miRNAs and 59 diseases are acquired after
deleting duplicated records. Because the associations
have been validated at a high level of confidence, we
determine all the weights as 1.0.

Weighted heterogeneous network construction
We build a weighted heterogeneous network by join-
ing the six above-mentioned networks entirely through
shared nodes. And in these networks, genes are denoted
by their gene symbols in HPRD [13], miRNAs are
denoted through their names while disease phenotypes
are denoted through their respective OMIM ids [36].
We summarize each sub-network of the constructed het-
erogeneous network in Table 1. The Fig. 2 presents the
network schema, which comprises three types of nodes,
in which rhombuses denote genes, circles denote miR-
NAs while squares denote diseases. The solid black lines

Table 1 Description of each sub-network of the constructed heterogeneous network

Network Number of links Weight Source

Gene (proteins) interaction network G - G 39,240 1 HPRD [13]

microRNA similarity network M - M 56,289 0 to 1 MISIM [12]

Disease phenotype similarity network D - D 3,162,016 0 to 1 MimMiner [14]

Gene-Disease association network G - D 19,714 0 to 1 DisGeNET [7]

Gene-miRNA interaction network G - M 21,259 0.3 or 1 miRTarBase [37]

miRNA-Disease association network M - D 878 1 Chen et al. [11] and miR2Disease [10]
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Fig. 2 Network schema of constructed heterogeneous network. The
solid black lines denote the links observed from the real-world
network, and the red dashed lines denote the links we want to predict

indicate the existing connections in the aforementioned
network, and the red dashed lines indicate the links to be
predicted, involving disease-gene associations as well as
disease-miRNA associations.

The constructed heterogeneous network includes var-
ious types of entities as well as relationships(links) with
different weights. But it is not appropriate to compare the
weights of links in different types directly since they come
from distinct datasets. For instance, if the link weight of
prostate cancer(disease) and hsa-mir-21(miRNA) is lower
than that of prostate cancer and ATM (gene), it may not
suggest that hsa-mir-21 holds weaker association with
prostate cancer than ATM. Consequently, in terms of a
heterogeneous network, we need to map the network into
a vector space where similarities and interactions between
entities of different types can be numerically measured
and predicted.

HeteWalk
HeteWalk is a network embedding method which can gen-
erate a low dimensional representation vector for every
entity in the heterogeneous network, which captures the
structural and semantic information, especially the exis-
tent relationships. A critical inspiration for our method is
that diseases (or genes, miRNAs) which are in close prox-
imity to each other in the network have higher potential
to be associated. For instance, a miRNA which plays an
important part in a disease may be possible to play a sim-
ilar part in a similar disease. This intuition equips us to
make unknown disease-related link predictions founded
upon the existent edges.

Network embedding
Lately, several network embedding methods [20, 21] have
presented competitive performance in various tasks such
as node classification, link prediction and clustering. For
the purpose of learning effective node representations for
a network, we would like to maximize the probability
of a node occurring given that its connected nodes (i.e.,
those with direct links) have occurred [20, 22]. Given a
node vi and the set of connected nodes N(vi), we want to
maximize the conditional probability of observing N(vi)

for the node vi. The probability of observing each node
is assumed to be independent of another, we want to
maximize the following objective function:

∏

vi∈V
Pr(N(vi)|vi) =

∏

vi∈V

∏

vj∈N(vi)

Pr(vj|vi) (1)

We define the conditional probability as follows:

Pr(vj|vi) = e �xi· �xj
∑

k∈V e �xi· �xk
, (2)

where V is the set of whole nodes in the network. �xi is the
embedding vector for node vi while �xj is the embedding
vector for node vj. The whole vectors of nodes are latent
d-dimensional vectors via learning based on the objective
function.

The majority of existent network embedding meth-
ods focus on homogeneous networks where the types
of whole nodes and edges are identical. In the setting
of our constructed network, a disease node is possible
to link to other diseases, genes or miRNAs, which are
not in a single type. In order to fully capture the abun-
dant contextual information and semantic properties of
a node in such a complicated network, we would better
to go further than direct-linked nodes. For instance, if a
gene and a disease are related via a path involving sev-
eral links such as Gene similar with−−−−−−→ Gene associated with−−−−−−−−→
Disease or Gene associated with−−−−−−−−→ miRNA similar with−−−−−−→
miRNA associated with−−−−−−−−→ Disease, they may be related as well.
Next, we present how to take advantage of such paths in
the heterogeneous network embedding.

Meta path-controlled random walk
A meta path P is a path which describes a composite rela-
tion between two objects, and we use the form of A1 →
A2 → · · · → Am to denote a meta path, where Ai denotes
a type of nodes (e.g., disease, gene) [35]. We can use dif-
ferent meta-paths to classify multiple relationships which
two nodes may possess in a heterogeneous network. For
instance, the meta-path Gene assoc−−−→ Disease represents a
direct gene-disease connection; the meta path Gene assoc−−−→
miRNA assoc−−−→ Disease presents a relationship that a gene
and a disease are connected to a common miRNA; and the
meta path Gene sim−−→ Gene assoc−−−→ Disease represents that a
gene is similar to another gene which is associated with a
disease. It’s obvious that semantics underneath these meta
paths are different.

Meta-path is a powerful approach to describe indirect
relationships among specific types of nodes. The quantity
of different meta-paths increases exponentially with the
amount of types in entity and relation and also the length
of meta paths, supplying fruitful semantic information
interpreting contextual characteristics of the network.
Furthermore, in order to consider the link weights at the
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same time, we apply a meta path-controlled random walk
to search the associated entities for each meta path. A
meta path indicates what type of neighbor node should
be visited at each step, then the link weights determine
the probability to be chosen for each node with the deter-
mined type. We will demonstrate how to construct and
select meta-paths in “Meta-path selection” and “Experi-
mental settings” sections. Starting at node vi with type Ak
, given a meta path P = A1 → A2 → · · · → Am, the
random walk procedure will only visit a connected node
in type Ak+1 on the next step. If there are several nodes
in type Ak+1, we randomly choose a node with a proba-
bility proportional to the weight of link. If the link weight
is higher, the node is more likely to be selected. For each
node vi with type Ak , we define its transition probability
to another node vj as:

Pr(vj|vi;P)=

⎧
⎪⎨

⎪⎩

wij∑
φ(vk )=Ak+1

wik
(vi, vj) ∈ E, φ(vj) = Ak+1

0 (vi, vj) ∈ E, φ(vj) �= Ak+1
0 (vi, vj) /∈ E

(3)

where E denotes the edge set of the network, φ(vi) denotes
the node type while wij indicates the link weight for vi
and vj. The random walk procedure will create a node
sequence starting from each node guided by a meta path.
For the purpose of producing adequate node sequences,
we repeat the random walk procedure which starts from
every node.
Meta-path selection
Though a variety of meta paths can be defined by com-
bining different node types, too many meta paths are
redundant and may lead to low-efficiency. Besides, some
meta paths may carry misleading information, which can
be interference to the tasks [41]. So it’s significant to
select proper meta path(s). Here we propose a random
walk-based measure to assist in selecting meta path.

During a random walk, we want to visit as many nodes
as possible to capture more characteristics of the network.
Given a candidate set of meta-paths, for each meta path,
the random walk procedure controlled by the meta path
is repeated m times for each node, then we count the
amount of nodes whose visited times are no larger than
m and we call these nodes as isolated walking nodes. For
a meta path P , the random walks is repeated m times for
every node in the network, then the random walk-based
measure is the defined as the count of isolated walking
nodes:

C(P ; m) =
∑

vi∈V
I(ti ≤ m), (4)

where I is the indicator function. V is the set of whole
nodes in the network and ti is the visited times of node vi
by random walks. The value of random walk-based mea-

sure for the meta path is smaller, random walks controlled
by the meta path will visit more nodes and capture more
attributes of the network thus this meta path is better to
be selected.

Negative sampling
After obtaining a set of node sequences, our next step
is to learn the vector representations for each node. As
illustrated in Eq. (1), we aim at maximizing the probabil-
ity of each node occurring given its linked nodes. That
is, for nodes occurring in the identical node sequence,
their node representations will be updated to maximize
Eq. (1). There exist a massive amount of node pairs in
all node sequences, thus it is very costly to compute Eq.
(1) . Enlightened by the optimization in word embedding
methods, we employ negative sampling [23] to approxi-
mate:

log Pr(vj|vi)= log σ( �xi· �xj)+
K∑

n=1
Evn∼NEG(vj) log σ(−�xi · �xn),

(5)

where σ(x) = 1
1+e−x is the sigmoid function, and NEG(vj)

is the distribution to sample a negative node vn. Besides,
K is the number of negative samples.

We randomly choose K negative node pairs (vi, vN )

in which vN �= vj and φ(vN ) = φ(vj) for each node
pair (vi, vj) occurring in the same node sequence. We
train the model via maximizing the score of positive
sample (vi, vj) while minimizing the scores of all nega-
tive samples (vi, vN ). For instance, given a node sequence
(Disease1, Disease2, Gene1) created by the meta path
Disease sim−−→ Disease assoc−−−→ Gene, we obtain 3 posi-
tive node pairs (Disease1, Disease2), (Disease1, Gene1) and
(Disease2, Gene1). Take (Disease1, Gene1) as an instance,
subsequently, K nodes of gene type are randomly selected,
which are symbolized by GeneN1 , · · · , GeneNK , where
GeneNi �= Gene1. The positive sample (Disease1, Gene1)
and K negative samples (Disease1, GeneNi) are fed into
the model at the same time and we use Stochastic Gra-
dient Descent (SGD) [42] to update their corresponding
representation vectors based on Eq. (5).

Disease associations prediction
All types of nodes (diseases, genes and miRNAs) in our
heterogeneous network are mapped to the common vec-
tor space after network embedding. Then the cosine
distance between node vectors are used to assess their
relationships. As to the prediction of disease-related asso-
ciations, if a disease and a gene/miRNA without direct
link in the network but are in proximity to each other in
the projected vector space, it is very likely for them to
be associated so they are promising to study in biological
investigation.
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Results and discussion
Comparison to baselines
We compared our method HeteWalk with several state-
of-the-art baselines so as to measure its performance.
We partitioned these baseline methods into two groups.
One group consist of CATAPULT [1], HSMP and HSSVM
[4, 5], which are conventional statistical and machine
learning methods without network embedding and spe-
cially designed to identify a particular type of associations
(i.e., disease-miRNA or disease-gene). These methods
were operated on our constructed heterogeneous net-
work. CATAPULT utilizes features extracted from paths
with different lengths based on a biased support vector
machine. And HSMP and HSSVM evaluate the relevance
between nodes utilizing the HeteSim score [3], which
judges the accessibility between two nodes along a given
path. HSMP joins HeteSim scores in multiple paths to a
constant which inhibits the long paths’ contributions, and
HSSVM integrates HeteSim scores utilizing a supervised
machine learning method.

Methods in the other group are representative network
embedding methods including DeepWalk [20], LINE [21],
DGI [26], TransE [28] and AspEm [31]. DeepWalk is a
typical homogeneous network embedding method, which
uses a vanilla random walk procedure and learns repre-
sentations of vertices by treating walks as sentences. LINE,
which also ignores the heterogeneous information, pre-
serves both first-order and second-order proximities and
is suitable for arbitrary large-scale information networks
such as our constructed network. DGI is the latest homo-
geneous network embedding method using established
graph convolutional network (GCN) [24] architectures
as far as we know. TransE, which models relationships
as translations in the embedding space of entities, is a
typical knowledge graph embedding method where the
knowledge graph can be regarded as a heterogeneous net-
work. AspEm learns embedding by aspects, with each
aspect representing one underlying semantic facet of the
heterogeneous network.

HeteWalk applies meta path-controlled random walks
for heterogeneous network embedding. We utilize the
embeded vectors of nodes for prediction of entities (e.g.,
genes, miRNAs) which have great chances to be associ-
ated with diseases.

Experimental settings
We experimentally evaluated the effectiveness of pre-
dicting two types of association including gene-disease
association and miRNA-disease association. The vector
dimension is set to 128, the number of walks per node
and per meta path to 10, while the size of negative sam-
ples is set to 5 following the common practice in network
embedding [21, 31]. In addition, we set the margin to
be 1 and the dissimilarity measure to be L2 for TransE

based on the best validation performance. Besides, we uti-
lized one-hot representation of each node as node features
and a weighted adjacency matrix extracted from our con-
structed network in DGI as input. And for AspEm, since
nodes may appear different times in the selected set of
representative aspects (e.g., one node may occur in two
aspects, while another may occur in only one), and the
dimension of the vector learned from each aspect was
the same, we filled zeros for those vectors whose dimen-
sions were below 128. We demonstrated in “Parameter
analysis” section that the performance is insensitive to the
settings on the vector dimension and the number of walks.

In the progress of constructing meta path, all non-
redundant meta paths related to target entity types were
extracted separately in the first step. After that, redun-
dant meta paths were formed by combining two or
more. Since long meta paths are useless to capture the
link structure [35],only short meta paths with restricted
length were extracted. Then we obtained the candidate
set of meta paths. Moreover, we selected meta path from
the candidates by utilizing the random walk-based mea-
sure in which the number of random walks is 10, the
same with original experimental set. The meta paths we
extracted and their corresponding values of the measure
are shown in Table 2. We can see that the measure of
meta path “GGD” is smallest with the value 8658 in gene-
disease association prediction, which is the same with the
selected meta path according to our experience (best test
results by cross validation on each meta-path). But for
miRNA-disease association prediction, the smallest mea-
sure value belongs to the meta path “MGGD”, different
from our experience, in which the performance of meta
path “MMDD” was best (“G” denotes gene, “M” denotes
miRNA and “D” denotes disease). This is mainly because
the number of miRNA-Disease interaction edges is far
less than other types of edges in the network as we can
observe from Table 1. Additionally, the measure value of
“MMDD” is smallest among meta paths with only two
node types (i.e. miRNA and disease). We can select the
meta path not only by experience, but also use the ran-
dom walk-based measure, which can be regarded as the
a auxiliary approach to reduce the time cost on experi-
ments. We utilized the meta-path “GGD” for gene-disease
association prediction and “MMDD” for miRNA-disease
association prediction in subsequent experiments. CATA-
PULT, HSMP, HSSVM, and our HeteWalk used the same
meta paths.

Effectiveness measurement
In each experiment, we randomly partitioned the known
disease associations into 10 sets with same size, and
we utilized a subset for training while the left for test-
ing. As regards testing, in each experiment, the known
associations were regarded as positive samples, randomly
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Table 2 Meta paths and their random walk-based measures between gene-disease and miRNA-disease

With 2 types of nodes Measure With 3 types of nodes Measure

gene-disease Gene
sim−→ Gene

assoc−−→ Disease
sim−→ Disease 9364 Gene

assoc−−→ miRNA
assoc−−→Disease 16103

Gene
sim−→ Gene

assoc−−→Disease 8658 Gene
sim−→ Gene

assoc−−→ miRNA
assoc−−→Disease 10465

Gene
assoc−−→ Disease

sim−→Disease 14422 Gene
assoc−−→ miRNA

sim−→ miRNA
assoc−−→Disease 16084

Gene
assoc−−→ Disease

assoc−−→ Gene
assoc−−→Disease 10184 Gene

assoc−−→ miRNA
assoc−−→ Disease

sim−→Disease 16460

miRNA-disease miRNA
sim−→ miRNA

assoc−−→ Disease
sim−→Disease 19381 miRNA

assoc−−→ Gene
assoc−−→Disease 14820

miRNA
sim−→ miRNA

assoc−−→Disease 21323 miRNA
assoc−−→ Gene

sim−→ Gene
assoc−−→Disease 10011

miRNA
assoc−−→ Disease

sim−→Disease 19540 miRNA
sim−→ miRNA

assoc−−→ Gene
assoc−−→Disease 15481

miRNA
assoc−−→ Disease

assoc−−→ miRNA
assoc−−→Disease 21335 miRNA

assoc−−→ Gene
assoc−−→ Disease

sim−→Disease 14626

selecting the same amount of node pairs which have the
same node types and no associations as negative samples,
the cosine distance between the embedding vectors of the
node pair in each sample was the predicted value. The
proportion of training set varied from 50% to 90%. We
repeated the experiments 10 times and reported the aver-
age Area under Receiver Operating Characteristic curve
(AUROC) score for each training ratio. We demonstrate
the results in Table 3 (gene-disease association prediction)
and Table 4 (miRNA-disease association prediction).

It is obvious that our method outperforms other meth-
ods in both disease association prediction tasks under
entire training ratios except for the gene-disease asso-
ciation prediction with 50% training data in which the
AUROC score of HeteWalk is 0.638, slightly inferior to the
best score which is 0.639 achieved by AspEm. With more
training data, the advantage of our method becomes more
significant. In practice, the training ratio is almost always
much bigger than 50%. For the miRNA-disease associ-
ation prediction task, HeteWalk achieves a significantly
excellent AUROC score 0.969 in 90% training ratio. How-
ever, the best score on the gene-disease prediction task
is 0.798, because there exist relatively larger amount of
candidate gene-disease associations.

HeteWalk demonstrates the superiority over hetero-
geneous network-based baselines, involving CATAPULT,

Table 3 AUROC Score on Gene-Disease Association Prediction

Method/Training ratio 50% 60% 70% 80% 90%

CATAPULT 0.611 0.619 0.622 0.659 0.685

HSMP 0.621 0.625 0.679 0.708 0.747

HSSVM 0.609 0.653 0.693 0.734 0.779

DeepWalk 0.454 0.461 0.481 0.433 0.477

LINE(1st+2nd) 0.638 0.655 0.647 0.667 0.661

DGI 0.523 0.527 0.549 0.561 0.534

TransE 0.488 0.496 0.492 0.488 0.496

AspEm 0.639 0.667 0.659 0.657 0.681

HeteWalk 0.638 0.674 0.723 0.759 0.798

The best performance is in bold

HSMP, HSSVM, TransE,and AspEm. CATAPULT, HSMP,
and HSSVM use the same set of meta paths with Hete-
Walk, but only simple features on accessibility between
two nodes along path are extracted by them. By con-
trast, HeteWalk preserves existent relationships through
maximizing the conditional probability of each node pair
occurring given other pairs in a node sequence which is
created based on the meta path. Though TransE consid-
ers the heterogeneity in node (entity) and edge (relation)
types, it only preserves the local structures in the network
represented by observed links and ignores link weights
while our HeteWalk preserves global structures by meta
path-controlled random walks in addition to the local
structures and the selected nodes on random walk are
determined by both link weight and meta path. AspEm
learns embedding vectors from each aspect (selected sub-
graph) and then gets the final embedding for each node by
concatenating the learned vectors from all aspects involv-
ing that node, so a problem occurs that not all embedding
vectors are in the same vector space and some important
information learned from the network may be lost after
projecting all representation vectors to the same vector
space.

The main reason why DeepWalk, LINE, DGI show poor
performance is that they are specially designed for homo-
geneous networks. For DeepWalk, when selecting the next

Table 4 AUROC Score on miRNA-Disease Association Prediction

Method/Training ratio 50% 60% 70% 80% 90%

CATAPULT 0.811 0.833 0.843 0.867 0.877

HSMP 0.833 0.864 0.878 0.899 0.869

HSSVM 0.841 0.877 0.902 0.922 0.932

DeepWalk 0.498 0.511 0.534 0.611 0.677

LINE(1st+2nd) 0.780 0.795 0.829 0.813 0.804

DGI 0.501 0.483 0.496 0.516 0.512

TransE 0.473 0.477 0.481 0.469 0.464

AspEm 0.765 0.819 0.761 0.849 0.819

HeteWalk 0.937 0.951 0.953 0.946 0.969

The best performance is in bold
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node to visit during a random walk, it ignores the differ-
ences between various types of relationships and treats
all types of nodes equally. LINE, which preserves both
local and global structures by first-order and second-order
proximity, also ignores node and link types. DGI uti-
lizes the weighted adjacency matrix as structure features
which does not distinguish between different node and
link types. As a result, it may be unlikely for the embed-
ding methods mentioned above to successfully conserve
the relationships between specific entities.

Advantage of heterogeneity
We investigated the capability for each method to deal
with heterogeneity and presented the advantage to incor-
porate various data sources. We constructed another two
heterogeneous networks which only consist of two types
of nodes. We solely joined G-G, G-D and D-D networks
described in Table 1 for the gene-disease association pre-
diction task. And only D-D, M-M, and D-M networks are
used in the miRNA-disease association prediction task.

We conducted 3-fold cross validation in the experiment,
that is the known disease associations are divided into
three parts with same size, and two parts are used to train
and another to test each time. We compare the average
score on two tasks for each method in Fig. 3. Conspic-
uous improvement is observed via combining networks
to construct a bigger and more complex one, particu-
larly in the miRNA-disease association prediction tasks.
This may own to sparse relations between miRNAs and
diseases, thus it is fairly unreliable to make predictions
based on these relations alone. The gene-related data pro-
vide some information about indirect relations between
miRNAs and diseases, which is possibly obtained via the
meta paths. It demonstrates that potential knowledge of

complicated diseases can be dug through integrating mul-
tifaceted data, which promote our prediction results to a
greater extent. Alhough we have presented the effective-
ness of HeteWalk on six databases, HeteWalk is actually
able to incorporate any amount of data which could be
represented by a network. The amount of types of node
and link are not limited.

Parameter analysis
We explored the sensitivity of parameters in HeteWalk
following the same setting as the 3-fold cross validation
above-mentioned. We present the performance with var-
ious vector dimensions and various number of walks for
each node in Fig. 4. We can find that the optimal perfor-
mance is attained around 128 dimensions from Fig. 4a.
Besides, we can observe the AUROC result remains
almost steady when the amount of walks per node exceed
10 from Fig. 4b. Therefore, we set the vector dimensions
as 128 and walks for each node as 10 in the experiment
due to the performance and computational cost.

Top-ranked predicted associations for specified diseases
The top-ranked gene/miRNA candidates for eight disease
phenotypes predicted by HeteWalk are listed detailedly in
Table 5, so as to investigate which may play a dominant
part in a particular disease.

These candidates are ranked depending on their cosine
distances to each selected disease. For the purpose of
concision, the existent associations are not displayed here.

We discover that the existent associations are not always
ranked high on the list, though the diseases possess many
directly related genes and miRNAs in our real-world
datasets. For instance, there exist 33 known genes associ-
ated with insulin resistance (125853) in the datasets, but

Fig. 3 Performance on different networks. The left figure illustrates the AUROC score of miRNA-disease association predicted by two comparable
methods and our method, in which the blue bar denotes the results on a sub-network only containing data in miRNA and disease types and the
orange one is on the whole heterogeneous network. The right figure illustrates the score of gene-disease association prediction, in which the blue
bar denotes the results on a sub-network only containing data in gene and disease types and the orange one is on the whole network. a
miRNA-disease association prediction. b Gene-disease association prediction
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Fig. 4 Parameter sensitivity. The green broken-line denotes the results on gene-disease association prediction, while the red broken-line denotes
the results on miRNA-disease association prediction. a AUROC for different embedding dimensions. b AUROC for different number of walks

only 5 of them are within the top-10 genes for this disease.
This results from their relatively low link weights in our
constructed network, which denotes a weak relation to
insulin resistance. And in our method, several meta paths
can extract the complex relationship with insulin resis-
tance for genes without direct links, so these genes may
distribute closer to the disease in the embedding space
than some actually connected genes. Besides, there also
exist many unknown associations with genes or miRNAs
predicted for other diseases, which may assist biologists in
identifying new disease relations.

Validation and comparison of the top-ranked
miRNA-disease associations prediction
To validate our approach, we manually checked the
miRNA-disease associations predicted by our algorithm
based on the miRNet dataset [10], which contains a mas-
sive collection of verified miRNA-disease associations
from miR2Disease [39], HMMD [38] and Phenomir [40].
As each disease is represented by a disease name instead
of its OMIM id, we only combined part of the records
(666 of 19,342) to construct the heterogeneous network,
the left of which were utilized to validate the top-ranked
miRNA-disease associations predicted by our HeteWalk.

In the experiment, all datasets in Table 1 was utilized
to generate the heterogeneous network and our method
was applied to learn the representation vector for each
node. Table 6 reports the top 10 diseases predicted to have
associations with each of the four miRNAs (i.e., hsa-mir-
21, hsa-let-7a-1, hsa-mir-125b-1 and hsa-mir-155), which
possess the largest amount of verified records in the miR-
Net dataset. Among these predictions, we identified 8,
7, 6, and 7 confirmed associations for hsa-mir-21, hsa-
let-7a-1, hsa-mir-125b-1 and hsa-mir-155, respectively,
demonstrating the effectiveness of our methods.

The first column in Table 6 presents the rank of the
corresponding predicted disease among all associated dis-
eases, and their disease name as well as OMIM id are
in column two. The last column indicates whether the
predicted associations is verified in miRNet and, if so,
the verification source is given. There are 7, 11, 4, and
6 known disease associations in the training set for hsa-
mir-21, hsa-let-7a-1, hsa-mir-125b-1, and hsa-mir-155,
respectively. We can find that some of the known asso-
ciations which actually exist were not ranked highly. The
reasons are two-fold. First, some of these associations pos-
sess relatively low weights, suggesting a weak relationship
with the disease. Second, while some diseases and miR-
NAs do not currently possess direct links in the training
data, they are well related to each other by several meta
paths in the heterogeneous network. These diseases are
therefore considered more associated to the miRNAs than
those that are directly connected but with low link weights
and are more likely to be predicted by HeteWalk.

The top 10 disease phenotypes for these four miR-
NAs predicted by alternative baselines (i.e., CATAPULT,
HSMP and HSSVM) are listed in Tables 7, 8 and 9, with
records verified by miRNet indicated in bold. We omit the
known associations in these tables too and the first col-
umn indicates their original rankings. We compare them
with the results predicted by HeteWalk.

There exist considerable overlap in the predictions from
CATAPULT (Table 7) among these four miRNAs. Male
germ cell tumor (273300) occurs within the top three
predicted candidate diseases for whole four miRNAs.
Nonmedullary Thyroid cancer 1(188550) and Enterocol-
itis (226150) also occur in all four lists. This is because
CATAPULT is biased towards nodes with larger degrees
and therefore may neglect important connections that are
special to a single miRNA.



Xiong et al. BMC Medical Genomics 2019, 12(Suppl 10):186 Page 11 of 17

Table 5 Top 10 unknown disease-related associations predicted by HeteWalk

Gene miRNA Gene miRNA

Leukemia OMIM: 601626 Alzheimer disease OMIM: 104300

2 TNF 3 hsa-mir-21 2 GRN 1 hsa-mir-223

4 APOE 4 hsa-mir-17 8 CHMP2B 2 hsa-mir-659

5 ATM 7 hsa-mir-146a 10 TNF 3 hsa-let-7c

6 PRRX1 8 hsa-mir-510 12 CEBPA 4 hsa-mir-21

7 CD81 10 hsa-mir-20b 13 ATM 5 hsa-mir-15a

8 USP8 11 hsa-mir-331 15 PPARG 6 hsa-mir-16-1

9 PPARG 12 hsa-mir-155 16 BCR 7 hsa-mir-17

10 IL1B 13 hsa-mir-143 17 ABL1 8 hsa-mir-155

11 SH2B1 14 hsa-mir-539 18 USP8 9 hsa-mir-510

12 IL6 15 hsa-mir-192 19 HNF1B 11 hsa-let-7a-1

Insulin resistance OMIM: 125853 Prostate cancer OMIM: 176807

1 BCR 1 hsa-mir-659 1 ATM 1 hsa-mir-223

2 ABL1 2 hsa-mir-21 2 ZNF804A 2 hsa-mir-21

4 ARID3B 3 hsa-mir-223 3 BEND2 4 hsa-mir-144

8 MAST1 4 hsa-let-7c 4 TBP 5 hsa-mir-331

9 CEBPA 5 hsa-mir-16-1 5 PLTP 6 hsa-mir-17

11 CDH8 6 hsa-mir-15a 6 ELP5 8 hsa-mir-510

12 ZNF609 7 hsa-mir-17 7 KLHL35 10 hsa-mir-143

13 TBP 8 hsa-mir-155 8 ENTPD6 11 hsa-mir-20b

14 IL1RAPL1 9 hsa-mir-146a 9 RBP2 12 hsa-mir-425

15 ENTPD6 10 hsa-mir-510 10 U2AF2 14 hsa-let-7a-1

Schizophrenia OMIM: 181500 Breast cancer OMIM: 114480

1 CEBPA 1 hsa-mir-21 1 PHKG1 2 hsa-let-7c

2 TNF 2 hsa-let-7c 2 FGF4 3 hsa-mir-223

3 EVPL 3 hsa-mir-223 3 CEBPA 4 hsa-mir-16-1

4 PPARG 4 hsa-mir-16-1 4 EVPL 7 hsa-mir-15a

5 AKT2 5 hsa-mir-15a 5 HAVCR1 10 hsa-mir-539

6 HAVCR1 6 hsa-mir-146a 6 BCR 12 hsa-mir-20b

7 PHKG1 7 hsa-mir-155 7 TBP 13 hsa-mir-484

8 APOE 8 hsa-mir-510 8 PPARG 14 hsa-mir-192

9 ENPP1 9 hsa-mir-17 9 CDH1 15 hsa-mir-93

10 FGF4 10 hsa-mir-20b 10 AKT2 16 hsa-mir-614

Gastric cancer OMIM: 137215 Colorectal cancer OMIM: 114500

1 FTO 2 hsa-mir-146a 1 ESRRB 1 hsa-mir-146a

2 NTRK1 3 hsa-mir-155 2 COL3A1 2 hsa-mir-16-1

3 PCSK1 5 hsa-mir-539 3 GNA11 4 hsa-mir-155

4 MSH6 6 hsa-mir-484 4 GDF1 5 hsa-mir-20b

5 RAI1 7 hsa-let-7c 5 ZMPSTE24 6 hsa-mir-93

6 DICER1 8 hsa-mir-192 6 COL4A5 7 hsa-mir-192

7 DHH 9 hsa-mir-614 7 KIF11 8 hsa-mir-539

8 MC3R 10 hsa-mir-21 8 CLCN2 10 hsa-mir-181b-1

9 NOG 11 hsa-mir-181b-1 10 REST 11 hsa-mir-510

10 GDF1 12 hsa-mir-34b 11 SCN3B 12 hsa-mir-203a

For each disease, the top-ranked genes are in the left column while the top-ranked miRNAs are in the right. The numbers denote their original ranking before known
associations are removed in the results
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Table 6 Top 10 diseases associated to the given miRNAs predicted by HeteWalk

Rank Disease Verified

hsa-mir-21

3 188550 Nonmedullary Thyroid cancer 1 miR2Disease

5 608232 Chronic myeloid leukemia PhenomiR

6 266600 Inflammatory bowel disease 1 HMDD

8 607464 Thyroid carcinoma

9 273300 Male germ cell tumor

10 151430 B-cell lymphoma 2 PhenomiR

11 155601 Cutaneous malignant melanoma PhenomiR

12 145500 Hypertension HMDD

13 256700 Neuroblastoma HMDD

14 176807 Prostate cancer PhenomiR, HMDD, miR2Disease

hsa-let-7a-1

2 155255 Medulloblastoma PhenomiR

4 176807 Prostate cancer PhenomiR, HMDD, miR2Disease

6 256700 Neuroblastoma PhenomiR

7 608232 Chronic myeloid leukemia PhenomiR

9 151430 B-cell lymphoma 2 PhenomiR

10 150699 Uterine leiomyoma

12 600634 Pituitary adenoma miR2Disease

15 236000 Hodgkin lymphoma PhenomiR, HMDD, miR2Disease

16 607464 Thyroid carcinoma

18 226150 Enterocolitis

hsa-mir-125b-1

1 137800 Glioma susceptibility 1 miR2Disease

2 266600 Inflammatory bowel disease 1

4 188550 Nonmedullary Thyroid cancer 1 HMDD

5 273300 Male germ cell tumor

6 608232 Chronic myeloid leukemia PhenomiR

7 155601 Cutaneous malignant melanoma HMDD

9 145500 Hypertension

10 181500 Schizophrenia

11 151430 B-cell lymphoma 2 PhenomiR

13 260350 Pancreatic cancer PhenomiR, HMDD, miR2Disease

hsa-mir-155

2 188550 Nonmedullary Thyroid cancer 1 HMDD

3 273300 Male germ cell tumor

4 137800 Glioma susceptibility 1 HMDD

6 155601 Cutaneous malignant melanoma HMDD

7 608232 Chronic myeloid leukemia PhenomiR

8 256700 Neuroblastoma

10 601626 Acute myeloid leukemia PhenomiR, HMDD

12 226150 Enterocolitis

13 114500 Colorectal cancer PhenomiR, HMDD

15 176807 Prostate cancer PhenomiR

The first column shows the rankings of the predictions among all diseases, the second presents their diseases names and OMIM ids, and the third indicates whether the
predicted associations are verified
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There exist lower degree of overlap in the top-ranked
predictions returned by HSMP (Table 8) and HSSVM
(Table 9) in contrast to CATAPULT. In these two tables
associations verified by miRNet are in bold, from which
we can discover the number of confirmed associations
are 5, 5, 5, 4 and 5, 6, 1, 5 respectively, fewer than that
predicted by HeteWalk, which are 8, 7, 6, 7.

Conclusion
In this paper, we propose a heterogeneous network
embedding method to predict disease associations accu-
rately. We construct a heterogeneous network from vari-
ous biological databases and obtain a representation vec-
tor for each entity in the network based on meta path
[35] controlled random walk in our method. Moreover, we
innovatively consider the edge weights during the repre-
sentation learning and provide a random walk-based mea-
sure to assist in selecting meta path. The learned network
embedding well captures the semantic characteristics and
topological structures of the network to achieve accurate
prediction of disease-related associations. Experimental
results on real-world datasets shows the superiority of our
method by multiple evaluations.

As for future work, we plan to combine more hetero-
geneous network data to improve the performance of
association prediction and also generalize our HeteWalk
for different genres of heterogeneous networks.
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