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Abstract

Background: Epigenetic age acceleration, a measure of biological aging based on DNA methylation, is associated
with cardiovascular mortality. However, little is known about its relationship with hypertensive target organ damage
to the heart, kidneys, brain, and peripheral arteries.

Methods: We investigated associations between intrinsic (IEAA) or extrinsic (EEAA) epigenetic age acceleration, blood
pressure, and six types of organ damage in a primarily hypertensive cohort of 1390 African Americans from the Genetic
Epidemiology Network of Arteriopathy (GENOA) study. DNA methylation from peripheral blood leukocytes was collected
at baseline (1996–2000), and measures of target organ damage were assessed in a follow-up visit (2000–2004). Linear
regression with generalized estimating equations was used to test for associations between epigenetic age acceleration
and target organ damage, as well as effect modification of epigenetic age by blood pressure or sex. Sequential
Oligogenic Linkage Analysis Routines (SOLAR) was used to test for evidence of shared genetic and/or environmental
effects between epigenetic age acceleration and organ damage pairs that were significantly associated.

Results: After adjustment for sex, chronological age, and time between methylation and organ damage
measures, higher IEAA was associated with higher urine albumin to creatinine ratio (UACR, p = 0.004), relative
wall thickness (RWT, p = 0.022), and left ventricular mass index (LVMI, p = 0.007), and with lower ankle-brachial
index (ABI, p = 0.014). EEAA was associated with higher LVMI (p = 0.005). Target organ damage associations for
all but IEAA with LVMI remained significant after further adjustment for blood pressure and antihypertensive
use (p < 0.05). Further adjustment for diabetes attenuated the IEAA associations with UACR and RWT, and
adjustment for smoking attenuated the IEAA association with ABI. No effect modification by age or sex was
observed.

Conclusions: Measures of epigenetic age acceleration may help to better characterize the functional
mechanisms underlying organ damage from cellular aging and/or hypertension. These measures may act as
subclinical biomarkers for damage to the kidney, heart, and peripheral vasculature; however more research is
needed to determine whether these relationships remain independent of lifestyle factors and comorbidities.
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Background
Nearly one third of American adults have hyperten-
sion [1], and African Americans are affected dispro-
portionately (43% of men and 46% of women) [2].
Over time, hypertension can lead to damage in target
organs, including the heart, brain, kidneys, and periph-
eral vasculature [3]. Recently, genome-wide associ-
ation studies have begun to identify genetic risk
factors for the development of specific types of hyper-
tensive target organ damage [4–7], and large-scale
epigenome-wide studies for epigenetic risk factors are
underway. However, additional biomarkers are needed
to better characterize and predict the type, severity,
and progression of target organ damage across indi-
viduals in this era of precision medicine. A deeper un-
derstanding of etiology and enhanced risk prediction
may also help to alleviate hypertension-related health
disparities.
Inter-individual differences in target organ damage may

be a consequence of biological, or physiological, aging due
to genetic and/or environmental factors such as inflamma-
tion, oxidative stress, or other cellular mechanisms [8]. As
described by Karasik et al., biological age is a measure of
the functional status of an individual relative to others with
the same chronological age group [9]. Biological aging
can be estimated using a variety of biomarkers such as
functional performance metrics (e.g., measures of frailty),
blood biochemistry (e.g., inflammatory markers), telomere
length, and, more recently, epigenetics. Measures of bio-
logical aging, such as telomere shortening, have been
shown to be associated with subclinical measures of func-
tion or morphology in the heart [8, 10], kidneys [11], and
peripheral vasculature [10]. Epigenetic mechanisms, includ-
ing DNA methylation, histone acetylation, and microRNA,
play a key role in the regulation of gene expression, which
is known to change with age [12]. Recently, several
methods have been developed that use DNA methylation,
cytosine-5 methylation of CpG dinucelotides, to estimate
epigenetic age acceleration, the difference between bio-
logical and chronological age [13, 14].
Epigenetic age acceleration is significantly associated

with a variety of age-related conditions including all-
cause mortality [15], cancer incidence and mortality
[16], cardiovascular mortality [17], Alzheimer’s disease
[18], Parkinson’s Disease [19], Huntington’s Disease [20],
and menopause [21]. It is also associated with tissue
aging [22] and cellular senescence [13, 23]. In this study,

we evaluate two widely utilized measures of age acceler-
ation, intrinsic epigenetic age acceleration (IEAA) and
extrinsic epigenetic age acceleration (EEAA). IEAA cap-
tures cellular age acceleration independently of blood
cell proportions, which are known to change with age.
EEAA incorporates intrinsic measures as well as blood
cell proportions. To date, only a few studies have investi-
gated the association between epigenetic age acceleration
and measures of target organ damage [24, 25]. It is now
imperative to replicate these findings in independent
populations, to examine additional measures, and to in-
vestigate whether the effects of age acceleration on tar-
get organ damage are modified by other factors.
Chronic inflammation and changes in the adaptive and

innate immune response are key features of hyperten-
sion and consequent target organ damage. Peripheral
blood leukocytes, which interact with peripheral tissues
via excretion of cytokines and other cellular signals, are
clearly implicated in target organ damage, although add-
itional research is needed to precisely define the role of
specific immune cell populations [26]. Since leukocytes
provide a regulatory mechanism of inflammation due to
hypertension across organ systems, peripheral blood leu-
kocytes are an ideal cell type for exploring the relation-
ship between hypertension and epigenetic biomarkers of
age. In this study, we evaluated whether epigenetic age
acceleration is associated with target organ damage to
the heart, brain, kidneys, and peripheral vasculature of
1390 African Americans. For measures of target organ
damage that were associated with epigenetic age acceler-
ation, we also evaluated whether the effects were modi-
fied by systolic blood pressure (SBP), diastolic blood
pressure (DBP), or sex. Finally, we used pedigree-based
biometric methods to estimate heritability of the epigen-
etic age acceleration and target organ damage measures,
and to assess whether associations between age acceler-
ation and organ damage were due primarily to shared
genetic or environmental influences.

Methods
Study sample
The Genetic Epidemiology Network of Arteriopathy
(GENOA) study consists of hypertensive sibships that were
recruited for linkage and association studies in order to iden-
tify genes that influence blood pressure and its target organ
damage [27]. In the initial phase of GENOA (Phase I: 1996–
2001), all members of sibships containing ≥2 individuals with
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essential hypertension clinically diagnosed before age 60 were
invited to participate, including both hypertensive and
normotensive siblings. A total of 1583 non-Hispanic whites
from Rochester, MN, and 1854 African Americans from
Jackson, MS, were enrolled. In the second phase of GENOA
(Phase II: 2000–2004), 1239 non-Hispanic white and 1482
African American participants were successfully re-recruited
to measure potential target organ damage due to hyperten-
sion. DNA methylation was measured using blood samples
collected at Phase I for 1416 African Americans. After re-
moving outliers (>4SD from the mean) and those with miss-
ing covariates, 1390 participants from 618 sibships also had
measures of target organ damage collected at Phase II and/
or in an ancillary study of brain MRI conducted shortly after
Phase II.

Methylation measures
Genomic DNA from 1416 participants was extracted
from peripheral blood leukocytes, bisulfite converted,
and then measured for DNA methylation on Illumina
Infinium HumanMethylation BeadChips (N = 316 from
450 K and N = 1100 from EPIC) using stored blood
samples collected at Phase I. IDAT files were imported
using the Minfi R package [28], and the shinyMethyl R
package [29] was used to exclude sex mismatches and
outliers. Probes with detection p-value < 10− 16 were
considered to be successfully detected [30], and samples
and probes with detection rate < 10% were removed.
Samples with incomplete bisulfite conversion identified
using the QCinfo function in the ENmix R package [31]
were removed. The proportions of each white blood
cell type within the blood sample were estimated using
Houseman’s method [32].

Epigenetic age acceleration
Methylation beta values were used to estimate the DNA
methylation age prior to normalization, separately for
the 450 K and EPIC data, using the Horvath epigenetic
age calculator (https://dnamage.genetics.ucla.edu) [13].
This calculator estimates a cumulative epigenetic aging
index that predicts DNA methylation age (DNAm age).
The residual from regressing DNAm age on chrono-
logical age provides a measure of epigenetic age acceler-
ation. Horvath, et al. (2013) [13] and Hannum et al.
(2013) [14] have developed independent methods that
use different sets of CpG sites to estimate DNAm age,
herein referred to as Horvath DNAm age and Hannum
DNAm age. Intrinsic epigenetic age acceleration (IEAA)
is the residual from a multivariable regression of Hor-
vath DNAm age, estimated using 353 CpGs specified in
Horvath, et al. (2013) [13], on chronological age and
blood cell count estimates. This metric is independent of
age-related changes in blood cell composition that are
characteristic of immune system aging. It captures cell-

intrinsic properties of aging with preservation across dif-
fering cell types and organs that likely indicates a funda-
mental aging process [33, 34].
To calculate extrinsic epigenetic age acceleration (EEAA),

71 CpGs specified in Hannum, et al. (2013) [14] are used to
calculate Hannum DNAm age, which is then combined
with three blood cell components (naïve cytotoxic T cells,
exhausted cytotoxic T cells, and plasmablasts) to form an
aggregate measure (enhanced Hannum DNAm age). EEAA
is the residual from a regression of enhanced Hannum
DNAm age onto chorological age. This measure captures
both intrinsic epigenetic age as well as the weighted average
of age-related characteristic changes in blood cell compos-
ition such as decreases in naive CD8+ T cells and increases
in memory or exhausted CD8+ T cells [19]. Whereas IEAA
is designed to be independent of blood cell counts, EEAA
incorporates them, and is thus a measure of immune sys-
tem aging.
We note that the EPIC array does not include all of

the CpG sites that were originally used to construct the
Horvath DNAm age (EPIC is missing 19 sites) and Han-
num DNAm age (EPIC is missing 6 sites). Previous stud-
ies have demonstrated that this does not substantively
compromise the performance of the DNAm age predic-
tors [35]. Further, epigenetic age acceleration measure-
ments such as EEAA and IEAA, which reflect the
relative differences among the measured population, are
especially robust to this difference in calculation.
Using the small number of samples (n = 102) that had

methylation measured on both the 450 K and EPIC ar-
rays, we confirmed that both epigenetic age and epigen-
etic age acceleration calculated from the two different
array types showed relatively strong correlation (r = 0.88
for Horvath DNAm age, r = 0.95 for Hannum DNAm
age, r = 0.70 for IEAA, r = 0.84 for EEAA, all p < 0.05).
Thus, we combined data from participants with 450 K
and EPIC measures of epigenetic age acceleration into a
single analysis sample. For those measured on both ar-
rays, we used the age acceleration measures calculated
from the EPIC array.

Clinical assessments and covariate definitions
Height was measured by stadiometer, and weight by elec-
tronic balance. Body mass index (BMI) was calculated as
weight in kilograms divided by the square of height in me-
ters. Resting systolic blood pressure (SBP) and diastolic
blood pressure (DBP) were measured by a random zero
sphygmomanometer and a cuff appropriate for arm size.
The second and third of three readings, taken after the
participant sat for at least 5 min, were averaged for ana-
lysis. Participants were characterized as current, former,
or never smokers. Hypertension was defined as SBP ≥ 140
mmHg, DBP ≥ 90mmHg, or self-reported physician-
diagnosed hypertension and current antihypertensive
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medication use. Diabetes was defined as fasting serum glu-
cose concentration ≥ 126mg/dl or self-reported physician-
diagnosed diabetes and current anti-diabetes medication
use (insulin or hypoglycemic agents).

Kidney function
Blood was drawn after an overnight fast of at least 8 h,
and urine was collected on the morning of the study
visit. Serum creatinine, urine creatine, and urine albu-
min were assessed with enzymatic assays on a Hitachi
911 Chemistry Analyzer (Roche Diagnostics, Indian-
apolis, IN). Estimated glomerular filtration rate (eGFR)
was calculated using serum creatinine [36]. Microalbu-
minuria was defined as urinary albumin-to-creatinine
ratio (UACR) ≥ 30 mg/g but < 300 mg/g, and macroal-
buminuria was defined as UACR ≥300 mg/g [37].

Ankle-brachial index (ABI)
ABI was measured from participants in the supine pos-
ition following a 5-min rest [38]. Appropriately sized BP
cuffs were placed on each arm and ankle, and a Doppler
ultrasound instrument was used to detect pulse. The cuff
was inflated to 10 mmHg above SBP and deflated at 2
mmHg/s. The first reappearance of the pulse was taken
as SBP. To calculate ABI, the SBP at each site (posterior
tibial and dorsalis pedis) bilaterally was divided by the
higher of the two brachial SBPs (one on each side of the
body). The lowest of the four ratios was designated as
the ABI.

Echocardiography
Relative wall thickness (RWT) and left ventricular mass
index (LVMI) were estimated as previously described
[39]. Briefly, doppler, two-dimensional (2D), and M-
mode (2D-guided) echocardiograms were performed fol-
lowing a standardized protocol [40]. Measurements were
made at the echocardiography reading center using a
computerized review station equipped with a digitizing
tablet and monitor overlay used for calibration and
quantification (Digisonics, Inc., Houston, Texas). Left
ventricular linear dimensions were measured by M-
mode or 2D echocardiography according to American
Society of Echocardiography recommendations [41, 42].
Left ventricular mass (LVM) was calculated using end-
diastolic dimensions by an anatomically validated for-
mula, and RWT was calculated as twice the posterior
wall thickness divided by the left ventricular internal di-
mension [43]. Left ventricular mass index was then cal-
culated by dividing LVM by height in meters raised to
the 2.7th power.

White matter hyperintensity
White matter hyperintensity (WMH) was measured at
a separate study visit approximately 1 year after the

Phase II examination. Brain magnetic resonance im-
aging (MRI) was performed using Signa 1.5 T MRI
scanners (GE Medical Systems, Waukesha, WI, USA),
and images were processed at Mayo Clinic [44]. Total
brain and WMH volume in the corona-radiata and
periventricular zone was determined from axial fluid-
attenuated inversion recovery (FLAIR) images [45].
Brain scans with cortical infarctions were excluded
from the analyses because of the distortion of the
WMH volume estimates that would be introduced in
the automated segmentation algorithm. For additional
details, see Smith et al. [46].

Statistical analysis
Target organ damage measures that were not normally
distributed, UACR and WMH, were natural log trans-
formed as ln(x) and ln(x + 1), respectively.

Regression modeling
Regression modeling was conducted using SAS software,
Version 9.4 (Cary, NC). Generalized estimating equa-
tions (GEE) accounting for family structure were used to
test the association between age acceleration (IEAA or
EEAA) and blood pressure or target organ damage.
Model 1 adjustment variables included age, sex, and the
time between DNA methylation and target organ dam-
age measurement. Model 2 also included SBP, DBP, and
antihypertensive medication use. Model 3 further in-
cluded BMI, diabetes, and smoking status. Analyses for
echocardiographic measures also included microalbumi-
nuria (300 mg/g > UACR ≥30 mg/g) and macroalbumi-
nuria (UACR ≥300 mg/g) in Model 3 [47]. Furthermore,
all models with WMH also included total intracranial
volume (TIV). Age and other adjustment variables were
concurrent with target organ damage measurement. If
the association between epigenetic age acceleration and
target organ damage lost significance in Model 3, we
also evaluated which of the adjustment variables (BMI,
diabetes, or smoking) was responsible for this attenu-
ation by testing the addition of each variable separately
to Model 2. For target organ damage measures that were
significantly associated with age acceleration (p < 0.05),
we examined the interaction between age acceleration
and sex, SBP, or DBP using the same covariates as de-
scribed previously. Since we tested six related target
organ damage traits with a prior hypothesis for each of
them, we were interested in significant results at both a
nominal p-value (p < 0.05) as well as a Bonferroni cor-
rected p-value (0.0083). We note that the Bonferroni ap-
proach is conservative in this setting, since the measures
of target organ damage as well as the measures of epi-
genetic age acceleration are not independent.
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Sensitivity analyses
Given that the full sample included individuals with epi-
genetic age acceleration estimated from either the EPIC
or the 450 K array, we evaluated whether adding array
type as a covariate and/or limiting our sample to only
those individuals with EPIC data (N = 1074) substan-
tively influenced our major findings. Next, since educa-
tional attainment or other markers of socioeconomic
status may influence both the epigenome and the devel-
opment of target organ damage, we evaluated the impact
of adjusting for educational attainment (< high school,
high school, college or above) in Models 1–3. Finally,
since subclinical measures of damage to target organ
systems may be due to hypertension as well as other
age-related processes, we first conducted analyses in the
full sample regardless of hypertension status. As a sensi-
tivity analysis, we also evaluated whether the relation-
ships between epigenetic age acceleration and target
organ damage measures remained consistent in the sub-
sample of participants with hypertension (N = 1127).

Heritability and genetic correlation
Capitalizing on the sibship structure of GENOA, Se-
quential Oligogenic Linkage Analysis Routines (SOLAR)
v6.6.2 [48] was used to estimate the heritability of each
measure of epigenetic age acceleration or target organ
damage measure, adjusting for each set of covariates in
Models 1–3 described above. For linear regression
models that showed a significant (p < 0.05) association
between a measure of target organ damage and epigen-
etic age acceleration, we investigated whether the associ-
ation was due primarily to shared genetic or
environmental influences. SOLAR was used to estimate
the proportion of phenotypic correlation (ρP) due to
shared genetic influences (genetic correlation, ρG) or en-
vironmental influences (environmental correlation, ρE)
between the two traits, using the same covariates as re-
gression Models 1–3.

Results
Descriptive characteristics of the study participants are
shown in Table 1. The average age at Phase I was 58.0
(±10.1) years, and the majority of the sample was female
(71.1%). The average amount of time between methyla-
tion measurement (Phase I) and target organ damage
measurement (Phase II) was 5.1 years, except for WMH
(6.3 years). DNA methylation age was 55.0 (±9.9) years
at Phase I. Additional file 1: Figure S1 shows scatterplots
of epigenetic age and epigenetic age acceleration mea-
sures between the 450 K and EPIC arrays from 102 du-
plicated samples. Histograms of IEAA and EEAA are
provided in Additional file 1: Figure S2.
Neither IEAA nor EEAA was associated with SBP or

DBP in linear regression analysis, except that higher EEAA

was associated with increased SBP in Model 2 (p = 0.015,
Additional file 1: Table S1). Table 2 presents results from
the association between IEAA or EEAA and each of the six
target organ damage measures, separately. Higher IEAA
was associated with higher UACR in Models 1 (p = 0.004)
and 2 (p = 0.036); however, the association was attenuated

Table 1 Descriptive characteristics of GENOA African Americans

Characteristic Non-Missing N Mean (SD) or %

Age at Phase I (years) 1390 58.0 (10.1)

DNAm age at Phase I (years) 1390 55.0 (9.9)

IEAA 1389 0.1 (4.8)

EEAA 1390 0.2 (5.8)

Time between Phases I and II 1390 5.1 (1.3)

Sex 1390

Male 28.9%

Female 71.1%

Smoking 1390

Never 60.2%

Former 27.6%

Current 12.2%

BMI (kg/m2) 1390 31.7 (6.7)

Systolic BP (mmHg) 1390 138.5 (20.8)

Diastolic BP (mmHg) 1390 79.5 (10.9)

Antihypertensive use 1390

No 29.2%

Yes 70.8%

Diabetes 1390

No 69.7%

Yes 30.3%

Albuminuria (mg/g) 1390

Normal 81.7%

Microa 14.3%

Macrob 4.0%

eGFR (mL/min/1.73m2) 1390 88.9 (21.0)

UACR (mg/g) 1390 68.4 (352.9)

RWT 1352 0.3 (0.1)

LVMI (g/m2.7) 1346 39.3 (10.4)

ABI 1359 1.0 (0.1)

WMH (cm3)c 758 10.6 (11.6)

TIV (cm3)c 766 1373.9 (135.8)

Abbreviations: IEAA Intrinsic epigenetic age acceleration, EEAA Extrinsic
epigenetic age acceleration, BMI Body mass index, BP Blood pressure, TIV Total
intracranial volume, eGFR Estimated glomerular filtration rate, UACR Urinary
albumin to creatinine ratio, LVMI Left ventricular mass index, RWT Relative wall
thickness, ABI Ankle-brachial index, WMH White matter hyperintensity, TIV
Total intracranial volume
aMicroalbuminuria is defined as 30mg/g ≤ UACR < 300mg/g
bMacroalbuminuria is defined as UACR ≥300 mg/g
cWMH and TIV were measured an average of 6.3 years after Phase I
All measures were taken at Phase II unless otherwise noted
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after additional adjustment for smoking, diabetes, and BMI
(Model 3, p = 0.246). In Model 1, a 1-year increase in IEAA
was associated with 0.023 units increase in logUACR, corre-
sponding to a 0.70mg/g increase for a person with UACR
of 30mg/g (the threshold for microalbuminuria) and a
6.98mg/g increase for a person with UACR of 300mg/g
(the threshold for macroalbuminuria). IEAA was not asso-
ciated with eGFR.
Higher IEAA was significantly associated with higher

RWT in Models 1 and 2 (p = 0.022 and 0.041, respect-
ively) and LVMI in Model 1 (p = 0.007). The association
was only marginally significant in Model 3 for RWT
(p = 0.089) and in Model 2 for LVMI (p = 0.054), and
was fully attenuated in Model 3 for LVMI (p = 0.260). In
Model 1, a 1-year increase in IEAA was associated with
a 0.0006 unit increase in RWT and a 0.163 g/m2.7 in-
crease in LVMI. Higher IEAA was also associated with
lower ABI in Models 1 and 2 (p = 0.014 and 0.028, re-
spectively), but was only marginally significant in Model
3 (p = 0.057). In Model 1, a 1-year increase in IEAA was
associated with 0.002 units decrease in ABI. IEAA was
not associated with WMH. EEAA was associated with
LVMI in Models 1 (p = 0.005), 2 (p = 0.009), and 3 (p =
0.029), but not with other measures of organ damage. A
1-year increase in EEAA was associated with a 0.163 g/
m2.7 increase in LVMI. Among the five associations we
observed for Model 1, three (UACR and IEAA, LVMI

and IEAA, LVMI and EEAA) remained significant after
Bonferroni correction for multiple testing. For organ
damage measures that were significantly associated with
age acceleration (p < 0.05), we examined the interaction
between age acceleration and sex, SBP, or DBP; however,
none of the interactions were significant (all p > 0.05).
To investigate which variables were leading to the

attenuation of the IEAA association with UACR,
RWT, and ABI in Model 3, we examined the change
in the beta coefficient for IEAA when adding each of
the Model 3 adjustment variables separately to Model
2 (Additional file 1: Table S2). For UACR and RWT,
adding diabetes to the model resulted in the largest
percentage change of the IEAA beta coefficient (45.5
and 12.4%, respectively), resulting in attenuation of
the association (p < 0.05). For ABI, smoking changed
the beta coefficient the most (15.9%) and resulted in
attenuation (p < 0.05).
As a sensitivity analysis, we evaluated the effect of adding

array type as a covariate or excluding individuals whose epi-
genetic age estimates were calculated from the 450K array
(Additional file 1: Table S3). Adding array type as a covariate
did not have any impact on effect estimates or p-values for
any of the associations in Model 1. When we conducted ana-
lysis with the smaller sample measured on the EPIC array
only (N= 1074), there are no substantive changes except that
some previously significant signals are slightly attenuated

Table 2 Regression results for the association between epigenetic age acceleration and target organ damage measures among
GENOA African Americans

Target organ
damage

Epigenetic
age
acceleration

Model 1 Model 2 Model 3

β P β P β P

eGFR (n = 1389) IEAA −0.082 0.444 −0.042 0.694 −0.035 0.745

EEAA 0.119 0.180 0.095 0.284 0.089 0.320

UACRa (n = 1390) IEAA 0.023 0.004 0.017 0.036 8.9E−3 0.246

EEAA 0.010 0.187 7.2E-3 0.287 1.5E-3 0.826

RWT (n = 1352) IEAA 6.2E−4 0.022 5.4E-4 0.041 4.5E-4 0.089

EEAA -3.4E-5 0.886 -4.8E-5 0.836 −1.2E-4 0.598

LVMI (n = 1346) IEAA 0.163 0.007 0.110 0.054 0.062 0.260

EEAA 0.131 0.005 0.119 0.009 0.093 0.029

ABI (n = 1359) IEAA −2.1E-3 0.014 −1.9E-3 0.028 −1.6E-3 0.057

EEAA −1.2E-3 0.075 −1.0E-3 0.117 −8.4E−4 0.196

WMHa (n = 758) IEAA -4.2e-3 0.333 −5.4e-3 0.213 −7.8e-3 0.075

EEAA 6.8e-3 0.068 7.0e-3 0.053 5.7e-3 0.109

Abbreviations: IEAA Intrinsic epigenetic age acceleration, EEAA Extrinsic epigenetic age acceleration, eGFR Estimated glomerular filtration rate, UACR Urinary
albumin to creatinine ratio, RWT Relative wall thickness, LVMI Left ventricular mass index, ABI Ankle-brachial index, WMH White matter hyperintensity
Model 1: Target organ damage = epigenetic age acceleration + chronological age + sex + time between methylation and target organ damage measure
Model 2: Target organ damage =Model 1 covariates + SBP + DBP + antihypertensive medication
Model 3: Target organ damage =Model 2 covariates + smoking + diabetes + BMI
Model 3 for RWT and LVM also includes microalbuminuria and macroalbuminuria
All models for WMH also include total intracranial volume (TIV)
aVariables were natural log transformed prior to analysis
Bold values correspond to beta values and p-values, where p < 0.05
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(UACR and IEAA, p= 0.059; LVMI and IEAA, p= 0.062,
ABI and IEAA, p= 0.107), which may be due to the smaller
sample size. Also, the association between WMH and EEAA
attained significance (p= 0.04) when it had previously been
marginally significant (p= 0.068). Therefore, we conclude
that combining two array types did not substantively influ-
ence the results. Adding educational attainment as a covari-
ate also did not substantively impact the findings, except for
the slight attenuation of the relationship between ABI and
IEAA in Model 2 (p= 0.056, Additional file 1: Table S4).
We also evaluated the same linear regression models

in the subset of GENOA participants with hypertension
(n = 1127; Additional file 1: Table S5). Regression results
were substantively consistent for the relationship be-
tween IEAA and UACR, LVMI, and ABI. EEAA
remained associated with LVMI in Models 1 and 2 (p =
0.017 and p = 0.035), but the association was only mar-
ginally significant in Model 3 (p = 0.083). In contrast to
the full sample, no relationship was observed between
IEAA and RWT for any of the models in the subsample
with hypertension. However, the association between
EEAA and WMH was significant in the hypertensive
sample in Models 1 and 2 (p = 0.040 and p = 0.041, re-
spectively) and marginal in Model 3 (p = 0.071), whereas
the associations had been only marginal in the full sam-
ple (p = 0.068, 0.053, and 0.109 for Models 1, 2, and 3).
All of the measures of epigenetic age acceleration and

target organ damage evaluated had significant heritabil-
ity (h2, all p < 0.01, Additional file 1: Table S6). In Model
1, h2 for IEAA was 0.480 and for EEAA was 0.607, and
these estimates did not change substantially when add-
itional covariates were added in Models 2 and 3. Of the

target organ damage traits, LVMI had the highest h2

(0.577) and RWT had the lowest (0.276) in Model 1, and
these heritabilities also remained relatively stable when
additional covariates were added in Models 2 and 3. For
the pairs of epigenetic age acceleration and target organ
damage traits that were significantly associated in linear
regression (p < 0.05), we also evaluated whether there
was significant evidence of genetic or environmental cor-
relation. No estimates of genetic correlation were signifi-
cant (all ρG < 0.1 and p > 0.1), and only two of the pairs
had at least marginally significant evidence of environ-
mental correlation (ρE = 0.176 for IEAA and UACR in
Model 1, p < 0.05; ρE = 0.229 for EEAA and LVMI in
Model 1, 0.05 < p < 0.01; Table 3).

Discussion
Epigenetic age acceleration has shown robust associa-
tions with a variety of biological aging traits, but has not
been extensively evaluated for association with organ
damage associated with aging and hypertension. This
study explored the association between intrinsic (IEAA)
and extrinsic (EEAA) measures of age acceleration mea-
sured by DNA methylation and target organ damage in
African Americans, a population disproportionately af-
fected by hypertension. We found that IEAA was associ-
ated with measures of damage in the kidney (UACR),
heart (RWT), and peripheral arterial disease (ABI), even
after accounting for blood pressure and antihypertensive
use. In addition, EEAA was associated with damage to
the heart (LVM), and was also associated with white
matter damage in the brain (WMH) for those with clin-
ical hypertension. However, the associations between

Table 3 Phenotypic, genetic, and environmental correlations between epigenetic age acceleration and target organ damage
measures among GENOA African Americans

Target organ damage Epigenetic age accleration Model h2 TOD h2 EAA ρP ρG ρE
UACRa IEAA 1 0.383*** 0.484*** 0.067* −0.075 0.176*

2 0.376*** 0.510*** 0.056* 0.066 0.050

RWT IEAA 1 0.265*** 0.483*** 0.060* 0.001 0.097

2 0.246*** 0.510*** 0.056* 0.086 0.042

LVMI IEAA 1 0.563*** 0.480*** 0.064* −0.032 0.168

EEAA 1 0.566*** 0.604*** 0.062* −0.056 0.229†

2 0.506*** 0.601*** 0.066* −0.005 0.155

3 0.440*** 0.604*** 0.056* −0.022 0.144

ABI IEAA 1 0.354*** 0.483*** −0.074** −0.004 − 0.125

2 0.355*** 0.510*** −0.067* −0.037 − 0.092

Abbreviations: IEAA Intrinsic epigenetic age acceleration, EEAA Extrinsic epigenetic age acceleration, UACR Urinary albumin to creatinine ratio, RWT Relative wall
thickness, LVMI Left ventricular mass index, ABI Ankle-brachial index, h2 Heritability estimate, ρP Phenotypic correlation, ρG Genetic correlation,
ρE = environmental correlation
Model 1 covariates: chronological age + sex + time between methylation and target organ damage measure
Model 2 covariates: Model 1 covariates + SBP + DBP + antihypertensive medication
Model 3 covariates: Model 2 covariates + smoking + diabetes + BMI + albuminuria
aVariables were natural log transformed prior to analysis
†p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
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RWT and IEAA as well as ABI and IEAA were not sig-
nificant after Bonferroni correction for multiple testing
(Model 1); thus these results should be interpreted with
caution. Neither IEAA nor EEAA was associated with
eGFR, the most commonly-used biomarker of kidney
function. Further, the majority of our findings were at-
tenuated after adjusting for BMI, diabetes, and smoking,
indicating that the associations between epigenetic age
and target organ damage should be considered suggest-
ive. This indicates that age acceleration may have
physiological consequences, or be acting as an important
subclinical biomarker for physiological processes, that
influence organs vulnerable to the consequences of
hypertension. However, further research is needed to de-
termine whether these relationships remain independent
of lifestyle factors and comorbidities.
For the significant associations between age acceler-

ation and target organ damage, the effect directions were
as expected. Higher IEAA, indicating a more advanced
cellular aging process than expected based on chrono-
logical age, was associated with more damage to the kid-
ney, heart, and the peripheral arteries. Adjusting for
blood pressure and anti-hypertensive medications did
not attenuate the significance of these associations, ex-
cept for with LVMI, indicating that the relationship be-
tween IEAA and the organ damage measures was not
mediated by differences in blood pressure. In fact, nei-
ther IEAA nor EEAA was strongly associated with either
SBP or DBP, and relationships between IEAA and most
organ damage measures remained consistent in analyses
that included only those with hypertension. Thus, inter-
individual differences in vulnerability to target organ
damage as a result of aging and hypertension may be a
consequence of cellular physiological aging processes
that are relatively independent of hypertension severity
as well as immune system aging (as measured by EEAA).
On these points, our study is consistent with prior litera-
ture in two ways. First, that there has been little to no
association observed between hypertension or blood
pressure and IEAA or EEAA after controlling for BMI
and lifestyle factors [17, 49]. Second, like our study, pre-
vious studies have demonstrated relationships between
hypertension-related endpoints such as WMH [24] and
cardiovascular mortality [50] after controlling for blood
pressure level.
For target organ damage traits in the kidney (UACR)

and heart (RWT), the relationship with IEAA was atten-
uated after adjusting for diabetes, although it remained
marginally significant (p < 0.1) for RWT. The two pri-
mary etiologies for chronic kidney disease (CKD) are
diabetic nephropathy and hypertension [51], and kidney
damage due to diabetic nephropathy is often first de-
tected clinically through increased albuminuria (higher
UACR) prior to declines in eGFR [52]. Likewise, diabetes

is also an independent risk factor for higher LVMI and
RWT in African Americans [53], so it is possible that
the relationship between these traits and IEAA was due
entirely to the relationship between diabetes and IEAA.
Some previous studies have found that epigenetic age
acceleration was not associated with glucose and/or dia-
betes status after adjusting for BMI and lifestyle risk fac-
tors, and was only weakly associated with other diabetes
risk factors such as triglycerides [17, 49]. A recent longi-
tudinal study, however, observed the association between
epigenetic age acceleration and fasting glucose [54].
More studies are needed to elucidate the complicated
interplay among epigenetic age acceleration, diabetes,
and related target organ damage to the kidney and heart.
For ABI, a 1-year change in age acceleration (IEAA)

was associated with 0.002 unit decrease. Peripheral ar-
terial disease is defined as having an ABI outside the
range of 1.0–1.4 [55], with values below 1.0 indicating
narrowing of arteries in certain areas of the body due
to calcification [56]. The relationship between IEAA
and ABI was attenuated after adjusting for smoking,
which is a very strong risk factor for ABI. Even though
self-reported smoking was not found to be associated
with epigenetic age acceleration in previous literature
[49, 57–59], many smoking-associated CpG sites were
associated with methylation age acceleration [59, 60].
It has been hypothesized that biological indicators of
smoking may represent susceptibility to more general-
ized environmental factors, including alcohol con-
sumption and lifestyle factors, which may be partially
responsible for the apparent mediating effect of smok-
ing on the relationship between IEAA and ABI ob-
served in this study. For both UACR and ABI, age
acceleration increased variation explained by only ap-
proximately 1–2% in all models evaluated.
Few studies have evaluated the relationship between

epigenetic age acceleration and target organ damage.
However, two studies did find significant relationships
between universal epigenetic age acceleration estimated
using Horvath DNAm age acceleration and white matter
abnormalities [24, 25]. In 713 African Americans aged
51 to 73, increased epigenetic age acceleration was asso-
ciated with increased WMH burden, as measured by
MRI, with an age acceleration increase of 1 year associ-
ated with a ~ 1 grade (0.007 on the log scale) increase of
WMH [24]. In a study of 376 Mexican Americans aged
23–93 years, increased age acceleration was associated
with reduced white matter integrity measured with diffu-
sion tensor imaging [25]. These studies used measures
of universal age acceleration, not IEAA and EEAA as
was used in our study. However, we conducted a post-
hoc analysis and found that universal age acceleration
measures were not associated with WMH in our study
(data not shown). The lack of association in our study
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may be due to reduced variability of the brain measures
or the higher prevalence of hypertension, diabetes, or
other comorbidities in our study population. However,
we did observe an association between EEAA and WMH
in our analysis of hypertensives only.
Although the directions of effect for IEAA and EEAA

were relatively consistent in this study, they had non-
overlapping significant associations with target organ
damage measures. IEAA is independent of the immune
blood cell counts, primarily captures cell-intrinsic
methylation changes, and has been shown to be rela-
tively independent of lifestyle factors [34]. EEAA, how-
ever, captures changes in both blood cell counts as well
as cell-intrinsic methylation changes and has been
shown to be more strongly correlated with lifestyle fac-
tors [34, 49]. A significant association between EEAA
and LVMI may reflect the greater importance of white
blood cell distributional changes that influence this trait
as compared to other target organ damage measures.
White blood cell distributions may be reflective of a var-
iety of influences, including cumulative lifetime exposure
to infection, lifestyle choices (diet, smoking, exercise),
and social stressors (socioeconomic status, discrimin-
ation, chronic burden, neighborhood factors). In this
study, we were only able to adjust for some of the poten-
tially relevant lifestyle, social, and metabolic processes
that may be associated with increased epigenetic aging.
The associations within the GENOA African American

cohort are reflective of a population with a high burden of
metabolic diseases, including hypertension, diabetes, and
obesity. We also note that there was loss to follow-up be-
tween Phases 1 and 2 which was differential by cardiovas-
cular risk. We found that those lost to follow-up were
more likely to be older (average = 1.2 years), male, and a
current smoker (all p < 0.05). They also had higher BMI
(average = 0.58 kg/m2) and lower eGFR (average = 6mL/
min/1.73m2), and were more likely to have hypertension
and diabetes (all p < 0.05). All of this indicates that loss to
follow-up was greater in those with higher risk of cardio-
vascular disease, and thus our study sample may not in-
clude those with the highest risk of developing target
organ damage in this population. Finally, over 2/3 of our
sample consisted of women, so our results may be more
relevant to this population; this is important to recognize
since epigenetic aging rates in blood have been shown to
be higher for men than women [17].
Previous studies have found that EEAA rates are lower

for African Americans than non-Hispanic whites, but that
IEAA rates are similar [17]. This is contrary to what would
be expected given that African Americans experience
higher rates of many age-related chronic diseases. Recently,
a new DNAm age predictor has been developed that better
captures the racial differences in aging that would be ex-
pected based on the disparities in health outcomes across

race/ethnic groups (that is, African Americans have higher
rates of epigenetic aging) [61, 62]. Future studies examining
this new DNAm age predictor are warranted.
The heritability estimates of epigenetic age acceler-

ation vary by age group, ranging from 0.39 to 0.74 in
adults [13, 57, 63]. The estimated heritabilities in this
study were similar (0.48 to 0.60). Although measures of
epigenetic age and target organ damage had high herit-
ability, there was very little evidence for shared genetic
influences for pairs of associated epigenetic and organ
damage measures. The inability to detect shared effects
may be due to the relatively low correlations across pairs
(all significant phenotypic correlations were less than
0.08). This may reflect the inability to adjust for all of
the potentially relevant lifestyle or metabolic factors, or
a true lack of pleiotropy across epigenetic age and target
organ damage traits. In addition, due to the cross-
sectional nature of this study, it is impossible to deter-
mine whether changes in epigenetic aging are causative
or a consequence of hypertension and its subsequent
target organ damage. However, there was an approxi-
mately five-year lag between the time that methylation
data was collected (Phase I) and target organ damage
measures (Phase II), which lends credibility to the casual
nature of epigenetic aging on subsequent target organ
damage. Yet we were not able to account for the dur-
ation of hypertension, which preceded epigenetic mea-
sures for over two thirds of the study population.
Longitudinal studies with measures of epigenetic age at
multiple timepoints may help to disentangle these tem-
poral relationships.
An important limitation in this study was that

blood pressure and target organ damage traits were
measured at only one study visit. Since blood pressure
is known to be highly variable and elevated during
clinical visits, a better approach for accurate blood
pressure measures may be to 24-h ambulatory blood
pressure measures. These are available for only a sub-
set of GENOA participants, however, so the sample
size would have been prohibitory. Some of the mea-
sures of target organ damage, such as urinary albu-
min, are also highly variable and would be more
accurate if measured on multiple days; however,
UACR is a more stable biomarker than urinary albu-
min alone [64]. Finally, we note that antihypertensive
medications have differential effects in adequately pre-
venting or controlling target organ damage. For ex-
ample, renin-angiotensin-aldosterone system-blocking
agents (RAAS inhibitors) may be particularly effective
in reducing damage to the kidneys and heart [64], so
future studies may benefit from systematically evaluat-
ing the relationship between epigenetic age acceler-
ation and target organ damage taking differences in
antihypertensive drug classes into account.
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Conclusions
In conclusion, we have found suggestive evidence of an
association with epigenetic age acceleration and target
organ damage to the kidneys, heart, and peripheral arter-
ies. Specifically, intrinsic measures of epigenetic aging
were associated with urinary albumin-creatinine ratio,
relative wall thickness in the heart, and ankle-brachial
index. Extrinsic measures of epigenetic aging were asso-
ciated with left ventricular mass index. However, most
of these associations were attenuated after adjusting for
blood pressure levels, BMI, diabetes, and smoking. Fur-
ther research is needed to determine whether epigenetic
age acceleration may have potential clinical utility in
helping to quantify risk of target organ damage across
organ systems.
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