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Abstract

Backgrounds: Recent large-scale genetic studies often involve clustered phenotypes such as repeated
measurements. Compared to a series of univariate analyses of single phenotypes, an analysis of clustered
phenotypes can be useful for substantially increasing statistical power to detect more genetic associations.
Moreover, for the analysis of rare variants, incorporation of biological information can boost weak effects of the rare
variants.

Results: Through simulation studies, we showed that the proposed method outperforms other method currently
available for pathway-level analysis of clustered phenotypes. Moreover, a real data analysis using a large-scale whole
exome sequencing dataset of 995 samples with metabolic syndrome-related phenotypes successfully identified the
glyoxylate and dicarboxylate metabolism pathway that could not be identified by the univariate analyses of single
phenotypes and other existing method.

Conclusion: In this paper, we introduced a novel pathway-level association test by combining hierarchical
structured components analysis and penalized generalized estimating equations. The proposed method analyzes all
pathways in a single unified model while considering their correlations. C/C++ implementation of PHARAOH-GEE is
publicly available at http://statgen.snu.ac.kr/software/pharaoh-gee/.
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Backgrounds
The history of Genome-Wide Association Studies
(GWAS) now has reached two decades, and those
GWAS have identified almost 60,000 unique associations
of over 3000 traits [1]. However, despite the steeply in-
creasing GWAS discoveries, those discoveries explain
only a small portion of expected phenotypic variations
[2, 3], a phenomenon known as “missing heritability” [2].
Some of the possible explanation for such phenomenon

include gene-gene interaction, pleiotropic effect, and
rare variants [3].
For the analysis of rare variants, the low statistical

power caused by the sparseness of rare variants is one of
the major issues. The use of biological information such
as genes or pathways has been proven to escalate the
statistical power and improve the biological interpret-
ation, for identifying statistically significant genes and
pathways associated with complex traits such as
high-density lipoprotein levels, obesity, schizophrenia,
and multiple cancers [4–8]. Taking the advantages of the
pathway-level analysis, we have developed statistical
methods PHARAOH that investigates pathway-level as-
sociations [9] and PHARAOH-multi that extends
PHARAOH to the analysis of multiple continuous phe-
notypes [10]. Our PHARAOH method has two exclusive
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features. First, it employs the hierarchy of biological
process by constructing a hierarchical structural model of
the rare variants, genes, pathways, and phenotype(s). Sec-
ond, it considers all pathways within a single unified
model with statistical regularization, hence effectively con-
trolling the correlations between genes and pathways.
Another approach to improving the statistical power is a

simultaneous analysis of clustered phenotypes. For ex-
ample, the analysis of repeatedly measured phenotypes
outperforms the analysis of cross-sectionally observed
phenotypes, since the information on the temporal differ-
ences within a subject improves the power [11]. Many re-
cent GWAS have analyzed the repeatedly measured
phenotypes and discovered many novel associations, such
as fasting glucose, body mass index, and lung function
[12–14]. In the repeated measures analysis, a consider-
ation of the correlations between the repeated measure-
ments is crucial. Neglecting the nature of clustered
phenotypes may result in loss of statistical power [15].
The Generalized Estimating Equations (GEE) approach

is one of the most commonly used methods for the ana-
lysis of clustered and correlated phenotypes [15]. The
major advantages of GEE include that it can handle a
wide class of phenotypes such as binary, count, and con-
tinuous traits from an exponential family distribution
and that its estimator is consistent regardless of the spe-
cification of the working correlation structure. In these
respects, the GEE approach has been contributed to the
discovery of genetic components from various studies
including association studies of lung cancer [16], oph-
thalmological measurements [16, 17], and gene-drug
interaction analysis [18]. For the analysis of expression
datasets, various extensions of GEE have been proposed
such as the repeated microarray experiment and penal-
ized GEE for microRNA dataset [17, 18]. For gene-level
tests, several GEE methods have been developed, includ-
ing Longitudinal Genetic Random Field (LGRF) and
GEE-KM [19, 20].
However, unlike the gene-level analyses, to the best of

our knowledge, only one method based on GEE has
employed the pathway-level analysis of the correlated phe-
notypes [21] with the R package GEEaSPU. Note that
GEEaSPU employs the adaptive Sum of Powered score
(aSPU) and adapts the GEE framework to enable
pathway-level analysis of genetic variants [21]. However,
the GEEaSPU method cannot handle the correlations be-
tween the pathways, which can result in the biased results.
In order to address this problem, we propose a novel

pathway-level association test for clustered and correlated
phenotypes such as repeated measurements, Pathway-based
approach using HierArchical component of collapsed RAre
variants Of High-throughput sequencing data using General-
ized Estimating Equations (PHARAOH-GEE). While the
existing GEE based pathway-level method GEEaSPU

implements the individual “pathway-wise” test assuming all
tests are independent, the proposed PHARAOH-GEE
method implements a “global test” that considers the correl-
ation among the pathways into account by putting all path-
ways simultaneously into a single model. Moreover,
PHARAOH-GEE can handle various types of phenotypes
(e.g., binary), and it also retains the advantages of PHAR-
AOH, such as the hierarchical model that mimics the natural
biological processes. By providing PHARAOH-GEE program
using a powerful and fast C/C++ based framework WISARD
[22], it supports various genetic data formats and provides af-
fordable performance.

Results
We used a workstation system consists of two Intel Xeon
E5–2640 CPUs and 256GiB of RAM. Due to the limitation
of the compared method, the R version 3.4.0 and R pack-
age ‘GEEaSPU’ were used with default settings.

Simulation study
For our simulation study, we generated 300 replicates from
the simulated data pool. Each replicate consisted of 10
pathways in which the first pathway was causal and the
other nine were non-causal (i.e., no effect). For each repli-
cate, the proposed PHARAOH-GEE method was applied
to the 10 pathways simultaneously, whereas GEEaSPU was
applied to each pathway individually. Here we assumed that
the first pathway is causal and the others are non-causal.
For the causal pathway, we considered three different par-
ameter settings: four gene-level effects (w= 0.1, 0.2, 0.5 and
1.0), three pathway-level effects (β =0.15, 0.2 and 0.25), two
correlations of phenotypes (ρ =0.25 and 0.5). For all test re-
sults, we applied the BH step-up procedure to control the
False Discovery Rate (FDR) at 5% level [23]. Details on
simulation procedure can be found on Methods section.
First, we evaluated the type 1 errors of PHARAOH-GEE

and GEEaSPU. For the given parameter settings for the
causal pathway, we evaluated the type 1 errors using 9
non-causal pathways with significance level α = 0.01. As
shown in Fig. 1, all methods controlled the type 1 error
rates appropriately, regardless of the parameter values.
Second, we evaluated statistical power of the methods

where power was computed as a proportion of the
causal pathway being statistically significant at the FDR
< 0.05 over 300 replicates. In addition to three parameter
settings for the causal pathway, we consider two cases
when the numbers of significant genes within the causal
pathway are only one (H1 = 1) and two (H1 = 2) out of
ten simulated genes, respectively. As shown in Fig. 2,
PHARAOH-GEE outperforms GEEaSPU in all simula-
tion scenarios.
In the power analysis, there were two additional interest-

ing findings. First, when the proportion of significant genes
in the causal pathway became smaller, the proposed method
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tended to outperform GEEaSPU. Second, PHARAOH-GEE
showed less reduction of statistical power than GEEaSPU
when the phenotypic correlation ρ increased. In real
practical situation where only a fraction of genes is likely re-
lated to phenotypes and that the correlations among clus-
tered phenotypes are high, these findings suggest that
PHARAOH-GEE would be more powerful for detecting
true biological signals than GEEaSPU.

Analysis of whole exome sequencing (WES) dataset using
clustered phenotypes
To demonstrate the usefulness of PHARAOH-GEE, we
analyzed a large-scale sequencing dataset with six phe-
notypes related to the metabolic syndrome: systolic
blood pressure (SBP), diastolic blood pressure (DBP), tri-
glycerides (TG), fasting glucose (FASTGLU), waist cir-
cumference (WAIST), and high-density lipoprotein
(HDL). Before the analysis, we binarized these pheno-
types according to the metabolic syndrome criteria of
International Diabetes Federation (IDF) consensus worldwide
definition of the metabolic syndrome (https://www.idf.org).
Metabolic syndrome is diagnosed as the presence of three or
more of the following criteria: (1) WAIST ≥90 cm in males
and ≥ 80 cm in females; (2) elevated TG ≥ 150mg/dL or tak-
ing medication; (3) HDL-cholesterol < 40mg/dL in males
and < 50mg/dL in females or taking lipid-lowering agents;

(4) systolic blood pressure ≥ 130mmHg or diastolic blood
pressure ≥ 85mmHg or taking antihypertensive medica-
tions; and (5) elevated FASTGLU ≥100mg/dL or oral
hypoglycemic agents use. From these six metabolic syn-
drome related phenotypes, we derived five clustered bin-
ary traits. Especially, we combined two blood pressure
phenotypes (SBP & DBP) into a single phenotype, named
BP, by setting 1 if either SBP or DBP satisfied the diagnosis
criteria of metabolic syndrome and 0 otherwise. All other
phenotypes were binarized if the diagnosis criteria of
metabolic syndrome was satisfied and 0 otherwise.
We applied PHARAOH for the univariate analysis of

each binary phenotype and applied PHARAOH-GEE
and GEEaSPU for the multivariate analysis of the five
binary phenotypes. We conducted the multiple testing
adjustment to both univariate and multivariate analyses
by using the BH step-up procedure [23]. The unstruc-
tured covariance structure of the phenotypes was
assumed for both PHARAOH-GEE and GEEaSPU. Fig-
ure 3 presents quantile-quantile (Q-Q) plots showing
that PHARAOH and PHARAOH-GEE led to no sub-
stantial deflation or inflation of p-values.
Table 1 exhibits the pathways with the five smallest

q-values identified by PHARAOH-GEE, as well as their
q-values under PHAROH and GEEaSPU. PHARAOH-GEE
was able to identify one KEGG pathway, the glyoxylate and

Fig. 1 Results of type 1 error simulation. Rows represent the proportions of significant genes within the causal pathway (10 and 20%), and
columns represent different phenotypic correlation (0.25 and 0.5). For each plot, type 1 errors of PHARAOH-GEE are shown with varying gene-
level effects (0.1, 0.2, 0.5 and 1.0) and pathway-level effects (0.15, 0.2 and 0.25), and type 1 errors of GEEaSPU are shown with orange bars
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dicarboxylate metabolism, at the q-value threshold of 0.1.
None of these pathways turned out to be statistically signifi-
cant in the univariate analyses of PHARAOH, always result-
ing in larger q-values than those from PHARAOH-GEE.
Although the same glyoxylate and dicarboxylate pathway
had the lowest p-value by GEEaSPU, it failed to pass the
q-value threshold of 0.1, after the multiple testing adjust-
ment. Thus, our real data analyses showed the relatively su-
perior performance of PHARAOH-GEE.

Among the five pathways identified by PHARAOH-GEE,
a recent study suggests a strong relationship between the
metabolic syndrome and two pathways (glyoxylate and
dicarboxylate, and fatty acid metabolisms), through their
role in abdominal obesity [24]. In addition, the glycosphin-
golipid biosynthesis and MAPK signaling pathways are re-
ported to be related to the metabolic syndrome via insulin
resistance that plays a critical role in manifestation of the
metabolic syndrome [25, 26].

Fig. 2 Result of power analysis. Columns and rows represent different phenotypic correlations (0.25 and 0.5) and proportions of significant genes
within the causal pathway (10 and 20%). For each plot, estimated statistical powers from 300 simulation datasets are shown with combinations of
gene-level effects (0.1, 0.2, 0.5 and 1) and pathway-level effects (0.15, 0.2 and 0.25)

Fig. 3 Q-Q plots of the real data analyses. a Q-Q plot of the univariate analyses using KEGG pathway database and b Biocarta pathway database.
c Q-Q plot of the analysis of the five phenotypes using PHARAOH-GEE
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Conclusion
An analysis of the clustered phenotypes provides more infor-
mation than the cross-sectional studies. Recent large cohort
studies keep producing repeatedly measured phenotypes. We
introduced a novel statistical method for the pathway ana-
lysis of the large-scale genetic dataset with clustered pheno-
types. While our previous PHARAOH-multi method
can handle only continuous phenotypes, the proposed
PHARAOH-GEE can handle various phenotypes such
as clustered binary and count phenotypes under the
various correlation structures. Through the compari-
son study using the simulated datasets, we demon-
strated that the proposed PHARAOH-GEE method
outperforms an existing pathway method. Further-
more, our application to the large-scale WES dataset
successfully identified one pathway that has not been
discovered in the analyses of individual phenotype
with the multiple testing adjustments.

Discussion
Compared to GEEaSPU the only currently available
method for pathway-level test of clustered phenotypes,
the proposed method has many advantages. First,
PHARAOH-GEE effectively controls the complex corre-
lations among the pathways by constructing a unified
hierarchical, doubly-penalized statistical model. Second,
it successfully reflects the nature of biological process
from GSCA framework and takes clustered phenotypes
into account from GEE framework. In conclusion, we
hope that PHARAOH-GEE can serve as a main tool for
the pathway-level analysis of clustered phenotypes in
genetic studies.
Currently, we have a number of considerations for our

future research. Although we considered many possible
combinations of parameters in the simulation setting, a
further extensive simulation study is required for more
comprehensive comparison with existing pathway-based
methods. In addition, we will perform a replication study
using other independent datasets with the metabolic
syndrome phenotypes. Finally, we will employ other pen-
alization methods such as lasso and elastic-net.

Methods
PHARAOH-GEE method
Technically, the proposed method is an extension of
the doubly-regularized Generalized Structured Com-
ponent Analysis into the GEE framework [27] that
imposes ridge penalties [28] on both gene-pathway
and pathway-phenotype relationships. From the previ-
ous studies, we successfully demonstrated that those
two ridge penalties effectively control the correlations
between genes and pathways [9, 10]. PHARAOH-GEE
aims to identify associations between Q clustered
phenotypes and K pathways, each of which is linked
to Tk genes (k = 1, ⋯, K). An example of the
PHARAOH-GEE model is depicted in Fig. 4.
Let yiq be the value of the q

th phenotype measured on the
ith individual (i = 1, …, N; q = 1, …, Q) and ~yi ¼
½yi1;⋯; yiQ�0 be a Q × 1 vector of the clustered phenotypes
of the ith individual. Similar to the previous description of
the PHARAOH model [9], we assume that yiq follows an
exponential family distribution with a mean μiq. Let Σi be
the Q ×Q covariance matrix of ~yi. Then,

cov ~yið Þ ¼ Σi Q�Qð Þ ¼ A1=2
i Ri αð ÞA1=2

i ; ð1Þ

where Ri(α) is a so-called “working correlation
matrix”, α is a parameter vector that fully character-
izes Ri(α), and A1=2

i ¼ diag½ varðμijÞ� , i.e., a Q ×Q
diagonal matrix with the marginal variance of re-
sponses. Liang and Zeger [29] suggested various
choices for Ri(α), e.g., the independence covariance
structure, Ri(α) = IQ, where IQ is the identity matrix of
order Q.
Let ~x0i ¼ ½1;⋯; 1; xi11;⋯; xi1T 1 ;⋯; xiK1;⋯; xiKTK � be a

(T + 1) × 1 vector consisting of all gene-level collapsed
variables for the ith individual across K pathways, where
T = ΣK

k¼1Tk . The gene-level collapsed variables are gen-
erated as the weighted sums of rare variants. Let X be
an N × (T + 1) matrix of the gene-level collapsed vari-
ables for N observations, as expressed in (2).

Table 1 Top five pathways from PHARAOH-GEE. The q-values after the multiple testing adjustment are presented in each cell, with
their corresponding p-values within the brackets. The results of univariate PHARAOH are also provided on the right side of the table

Pathway PHARAOH-GEE GEEaSPU Univariate PHARAOH

HDL TG FASTGLU WAIST BP

Glyoxylate and dicarboxylate metabolism 0.0929 (0.00063) 0.16 (0.00099) 0.987 (0.902) 0.721 (0.021) 0.772 (0.023) 0.91 (0.842) 0.916 (0.202)

Glycosphingolipid biosynthesis ganglio series 0.159 (0.0038) 0.979 (0.804) 0.987 (0.79) 0.805 (0.658) 0.855 (0.137) 0.805 (0.359) 0.695 (0.067)

MAPK signaling pathway 0.159 (0.00404) 0.468 (0.126) 0.987 (0.327) 0.721 (0.234) 0.855 (0.072) 0.953 (0.901) 0.997 (0.45)

Valine-leucine and isoleucine biosynthesis 0.159 (0.0043) 0.979 (0.797) 0.987 (0.242) 0.871 (0.779) 0.999 (0.801) 0.91 (0.813) 0.695 (0.067)

Fatty acid metabolism 0.436 (0.0173) 0.977 (0.459) 0.987 (0.834) 0.721 (0.143) 0.999 (0.893) 0.903 (0.647) 0.997 (0.909)
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XN� Tþ1ð Þ ¼
1 x111 x112 ⋯ x1KTK

1 x211 x212 ⋯ x2KTK

⋮ ⋮ ⋮ ⋱ ⋮
1 xN11 xN12 ⋯ xNKTK

2
664

3
775

¼
~x01
~x02
⋮
~x0N

2
664

3
775: ð2Þ

As in the previous methods [9], we standardize X to
satisfy the conventional scaling constraint diag(X′X) =
NI. Each element of X, xikt, denotes a gene-level sum-
mary of the ith sample for the tth gene (t = 1, ⋯, Tk) in
the kth pathway and is generated by the weighted sum of
rare variants that is same as the previous work [9, 10].
Let W denote a (T + 1) × (K + 1) matrix consisting of
component weights wtk, which are assigned to xikt. This
matrix can be generally expressed as

W ðTþ1Þ�ðKþ1Þ ¼

1 0 0 ⋯ 0

0 w11 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 w1T 1 0 ⋯ 0

0 0 w21 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 w2T 2 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ wK1

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ wKTK

2
666666666666666666666664

3
777777777777777777777775

: ð3Þ

Let ηiq and g(·) denote the ith linear predictors of the
qth phenotype and a link function, respectively. We de-
fine the proposed PHARAOH-GEE model as

g μiq
� �

¼ ηiq ¼ β0q þ
XK
k¼1

XTk

t¼1

xiktwtk

 !
βkq

¼ β0q þ
XK
k¼1

f ikβkq ¼ ~f i~βq; ð4Þ

where f ik ¼
PTk

t¼1xiktwtk is the component score of the

ith individual for the kth pathway ~f i ¼ ½1; f i1;⋯; f iK � ,
and ~βq ¼ ½β0q β1q⋯βKq� is a vector of coefficients linking

K pathways to the qth phenotype. We can statistically
examine the joint effects of the kth pathway on Q pheno-
types by testing the null hypothesis H0: βk1 = ... = βkQ = 0.
Moreover, it is possible to evaluate the effect of one gene
on a single phenotype mediated by its corresponding
pathway.

Parameter estimation
For simplicity, we describe the propose method, assum-
ing that the phenotype ~yi is continuous. It is technically
straightforward to extend the method to other pheno-
types from exponential distributions. In parameter esti-
mation, we add two L2 penalty terms to control for
potential adverse influences of high correlations between
genes and/or pathways. Specifically, to estimate the pa-
rameters W and B, we seek to minimize the following
penalized estimating equations.

ϕα;B;W ¼
XN
i¼1

Ui þ λPtr B0Bð Þ þ λGtr W 0Wð Þ; ð5Þ

where U is the estimating equation for the parameters,
B is a matrix consisting of all regression coefficients ~βq ,
tr(·) denotes the trace of matrix, and λG and λP denote
ridge parameters on the L2 penalty terms for the weights

Fig. 4 An example of the PHARAOH-GEE model
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and regression coefficients, respectively. A more detail
on the estimating equation and solving process can be
found on elsewhere [9].
To minimize ϕα, B, W, we use an iterative algorithm

that repeats the following steps until no substantial
changes in parameter estimates occur.
Step 1: We update B for fixed W and Ri(α). Let b =

vec(B) denote a vector formed by stacking all columns
of B one below another. This is equivalent to minimizing
the following estimating equations

ϕ1 ¼
XN
i¼1

U bð Þ þ λPb
0b

¼
XN
i¼1

f 0i � I
� �

Σ−1
i yi− f 0i � I

� �
b

� �þ λPb
0b

¼
XN
i¼1

QiΣ
−1
i yi−Qibð Þ þ λPb

0b; ð6Þ

where Qi ¼ f 0i � I and ⊗ denotes Kronecker product.

Then, b can be estimated by b̂ ¼
ðPN

i¼1 Q
0
iΣ

−1
i Qi þ λPIÞ−1ð

PN
i¼1 Q

0
iΣ

−1
i yiÞ , and B̂ is recon-

structed from b̂.
Step 2: We update W for fixed B and Ri(α). Let w =

vec(W). Similar to step 1, it is equivalent to minimizing

ϕ2 ¼
XN
i¼1

U wð Þ þ λGw0w

¼
XN
i¼1

~x0i � B0� �0
Σ−1
i yi− ~x0i � B0� �

w
� �þ λGw

0w

¼
XN
i¼1

M0
iΣ

−1
i yi−Miw�ð Þ þ λGw0

�w�; ð7Þ

where Mi ¼ ~x0i � B0; w* is the vector formed by eliminating
all zero elements of w, and Mi is the matrix formed by re-
moving the columns of ~x0i � B0 corresponding to the zero el-
ements of w. Then, w∗ can be estimated by

ŵ� ¼ ðPN
i¼1 M

0
iΣ

−1
i Mi þ λGIÞ−1ð

PN
i¼1 M

0
iΣ

−1
i ziÞ: Then, the

estimatedW is reconstructed from ŵ�.
Step 3: We update Ri(α) from the updated B and W

using Pearson residuals with the variance function of the
distribution ν,

rij ¼ yij−μ̂ij
� �

=ν1=2 μ̂ij
� �

: ð8Þ

where μ̂ij ¼ β0q þ
PK

k¼1 f ik β̂kq: Finally, the dispersion
parameter φ is estimated consistently by

φ̂ ¼ NQ− K þ
XK
k¼1

Tk

 ! !−1XN
i¼1

XQ
j¼1

r̂2ij: ð9Þ

We apply k-fold cross-validation (CV) to estimate the
values of λG and λP, which compares the quasi-deviance

values [30] of a two-dimensional grid of candidate values
of λG and λP.

Significance testing and multiple correction
Resampling methods can be used to test the statistical
significance of the estimated effects of all pathways on a
given set of clustered phenotypes. In the proposed
method, we utilize a permutation test to obtain p-values. By
permuting the phenotypes, the method first generates the
empirical null distributions of both pathways and gene co-
efficients. By computing the quantile of the estimated path-
way and gene coefficients from the non-permuted dataset
with the corresponding null distribution, we can obtain an
empirical p-value for any specific pathway and gene.
In our study, we want to test the joint effects of path-

ways on clustered phenotypes. In our previous study, we
introduced two approaches to test βk1, ..., βkQ simultan-
eously and suggested the Wald-type statistics [10]. Simi-
larly, we construct a single statistic that combines all Q
coefficients. Here, we define a Wald-type statistic T as.

T ¼ ~β
0
k cov−1 ~βk

� �
~βk : ð10Þ

Under penalized GEE, the estimated covariance covðb~βkÞ
can be obtained in two ways. One way is to calculate it dir-
ectly, as introduced by Wang et al. [31] as follows.

cov b~β� � ¼ Hb~β þ nEb~β
� �−1

Mb~β Hb~β þ nEb~β
� �−1

; ð11Þ

where Hb~β ¼PN
i¼1 ~x

0
iA

1=2
i R−1

i ðαÞA1=2
i ~xi , Eb~β ¼ trðB0BÞ , and

Mb~β ¼PN
i¼1 ~x

0
iA

1=2
i R−1

i ðαÞeb~βe0b~βR−1
i ðαÞA1=2

i ~xi with eb~β ¼ A1=2
i

ð~yi−~μiÞ. The other indirect way is to calculate it as the sam-

ple covariance of ~βk from permutations. We use this indirect
way to reduce computational burden.
For the calculated p-values, we implemented two types

of multiple testing procedure as we discussed earlier [10].
In short, we applied two approaches: Westfall & Young
permutation procedure [32] that effectively considers the
correlation of p-values, and the Benjamini-Hochberg (BH)
step-up procedure [23] that computes q-values by False
Discovery Rate (FDR) adjustment.

Simulation study
We conducted a simple simulation study to investigate
the performance of PHARAOH-GEE and to compare
the proposed method with the existing methods. We
first simulated a large pool of rare genetic variants using
SimRare [33]. All simulation settings were unchanged
except for the 1Kbp of gene length. From the pool, one
thousands of replicates were generated, each of those
consists of 1000 individuals and 10 pathways. Finally,
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the phenotypes were simulated from the below model
that assumes only the first pathway is causal:

g μiq
� �

¼ ηiq ¼ β1q~f i1 ¼ β1q
XH1

t¼1

w1txi1t

¼ β1q
XH1

t¼1

w1t

XM1t

j¼1

γ1tjgi1tj

 !
; ð12Þ

where H1 and M1t denote the number of causal genes in
the causal pathway and the number of causal rare vari-
ants in the tth causal gene, respectively. Note that M1t

was the number of rare variants in the simulated gene var-
ies and was used as an input variable in our simulation
study. We set γ1tj to |log10MAFtj|, which represents the ef-
fect of the jth genetic variant of the tth gene. For the sim-
plicity, we generated the phenotypes from the simulated
linear predictor ηiq, by using it as a binarization threshold
from the randomly generated variables from the multivari-
ate normal distribution MVN(0, Σ). For each replicate, all
rare variants were collapsed into genes.

Exome sequencing dataset with clustered phenotypes
In order to illustrate PHARAOH-GEE for investigating as-
sociations between multiple pathways and the clustered
phenotypes, we analyzed a large-scale WES dataset from a
Korean population cohort. Our WES dataset consists of
next-generation sequencing data of 1087 individuals’ ge-
nomes, using the Illumina HiSeq2000 platform (Illumina,
Inc., San Diego, CA), as a part of the T2D-GENES consor-
tium [34]. All individuals of the dataset were originated
from a large Korean cohort named the Korean Association
REsource (KARE) study [35]. For our analysis, we selected
six phenotypes related to the metabolic disease: SBP, DBP,
TG, FASTGLU, WAIST and HDL. In our analysis, we con-
sidered 995 individuals with complete phenotypes of inter-
est. We then applied two pathway databases Biocarta and
KEGG from Molecular Signatures Database [36], which is a
curated collection of multiple pathway databases.
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