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Abstract

Background: Cleft lip (CL) is one of the most common congenital birth defects with complex etiology. While
genome-wide association studies (GWAS) have made significant advances in our understanding of mutations and
their related genes with potential involvement in the etiology of CL, it remains unknown how these genes are
functionally regulated and interact with each other in lip development. Currently, identifying the disease-causing
genes in human CL is urgently needed. So far, the causative CL genes have been largely undiscovered, making it
challenging to design experiments to validate the functional influence of the mutations identified from large
genomic studies such as CL GWAS.

Results: Transcription factors (TFs) and microRNAs (miRNAs) are two important regulators in cellular system. In this
study, we aimed to investigate the genetic interactions among TFs, miRNAs and the CL genes curated from the
previous studies. We constructed miRNA-TF co-regulatory networks, from which the critical regulators as putative
drivers in CL were examined. Based on the constructed networks, we identified ten critical hub genes with prior
evidence in CL. Furthermore, the analysis of partitioned regulatory modules highlighted a number of biological
processes involved in the pathology of CL, including a novel pathway “Signaling pathway regulating pluripotency
of stem cells”. Our subnetwork analysis pinpointed two candidate miRNAs, hsa-mir-27b and hsa-mir-497, activating
the Wnt pathway that was associated with CL. Our results were supported by an independent gene expression
dataset in CL.

Conclusions: This study represents the first regulatory network analysis of CL genes. Our work presents a global
view of the CL regulatory network and a novel approach on investigating critical miRNAs, TFs and genes via
combinatory regulatory networks in craniofacial development. The top genes and miRNAs will be important
candidates for future experimental validation of their functions in CL.
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Background
Cleft lip (CL) is one of the most common congenital birth
defects in humans, affecting approximately 1/700 live births
[1]. Specifically, CL is characterized by unilateral or bilateral
clefts in the upper lip resulting from failure of the growth
and/or fusion of the nasal and maxillary processes during
craniofacial development. CL is a multifactorial disorder,
caused by a combination of genetics and environmental
factors and influences feeding, speech, appearance, and
more [2]. To dissect and explain complex characteristics of
CL, a deep understanding of its fundamental genetics is
crucial. During the recent decade, numerous genetic studies
(e.g. genome-wide association studies (GWAS), copy num-
ber variation, mRNA and miRNA expression profiling,
chromatin modifier-associated region identification assay,
enhancer reporter gene assay and methylation) have been
performed, which substantially contributed to the discovery
of human CL genes and their potential functions [3–7].
Previous studies have suggested that mutations and varia-
tions in the IRF6, p63, and TGFA genes were etiologic in
CL [1, 8, 9]. Some studies indicate that p63 protein activates
IRF6 transcription through binding its enhancer [10, 11].
p63 and IRF6 cooperate within a feedback regulatory loop
in order to determine the fate of epithelial cells in prolifera-
tion vs. differentiation during palate development [12]. Dis-
ruption of this loop by mutations in either IRF6 or p63
might increase the susceptibility to CL. Although these re-
sults are still limited to unveil a systematic view of the bio-
logical process of CL, it provides us a clue that analysis of
gene regulation relationships would be powerful for iden-
tification of critical genes or regulatory motifs that drive
CL. This is also consistent with that craniofacial develop-
ment is often involved in many biological processes and
cascades, which can be detected at the molecular levels
(e.g., gene expression, enhancer, transcription factor, and
post-transcriptional regulation).
MicroRNAs (miRNAs) and transcription factors (TFs)

are key regulators of gene expression. miRNAs are small
non-coding RNAs (composing about 21~22 nucleotides)
that regulate gene expression at the post-transcriptional
level. In animals, a mature miRNA typically binds to the 3′
untranslated regions (3’UTRs) of the target mRNAs, and
consequently leads to degradation and translational repres-
sion of the mRNAs [13]. Previous studies have revealed that
overexpression of miR-140 could result in CL in zebrafish
[14], and that a single nucleotide polymorphism (SNP) lo-
cated in pre-miR-140 was found to be associated with cleft
palate (CP) in humans [15]. Recently, hundreds of miRNAs
are reported to have aberrant expression in CL [16]; how-
ever, researchers have yet to find out which miRNAs play
prominent roles in the pathological process of CL or the in-
terrelated targets of these miRNAs.
Gene transcription is typically regulated by TFs in cel-

lular systems. TFs control the rate of transcription from

DNA to mRNAs by binding to the transcription factor
binding sites (TFBS) in the promoter regions of the tar-
get genes [17]. miRNAs and TFs can be co-regulated or
regulated with each other by several scenarios: miRNAs’
expression may be regulated by TFs [18], TFs and miR-
NAs may mutually regulate one another to represent
feedback loops (FBLs), or alternatively, both TFs and
miRNAs may simultaneously regulate their joint target
genes and form feed-forward loops (FFLs). Network ana-
lysis, including motifs such as FBLs and FFLs, is an ef-
fective way to explore the fundamental global
topological structures of molecular networks [19]. For
example, miRNA-TF co-regulation is one of the simplest
but important FFL types. So far, miRNA-TF
co-regulation network analyses have helped investigators
identify important regulatory motifs and understand cel-
lular regulatory mechanisms in several diseases [19]. In
gene regulatory networks, typical FFL motifs are com-
posed of three nodes: miRNA, TF, and their jointly regu-
lated target gene. Recently, FFL-based mixed regulatory
networks have served as promising tools to elucidate
complex diseases, such as schizophrenia [20], glioblast-
oma multiforme [21], ovarian cancer [22], non-small cell
lung cancer [23], colorectal cancer [19], and osteosar-
coma [24].
In this study, we employed a regulatory network-based

approach for systematically investigating gene regulation
patterns in CL. Using the CL candidate genes that we
systematically collected and curated, we first examined
four types of regulatory pairs: miRNA-gene, miRNA-TF,
TF-gene and TF-miRNA. Based on these interaction
pairs, we obtained three types of FFLs and named them
motifs A, B, and C. Then, we used these motifs to con-
struct four networks (motif A network, motif B network,
motif C network, and combined network of motifs A, B,
and C). We further evaluated the functional features of
genes in these networks using the pathway enrichment
analysis based on the Gene Ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes database
(KEGG) pathway annotations. We further used an inde-
pendent gene expression data set (GEO accession num-
ber: GSE7759) to verify the findings from the combined
network. This dataset could verify 64.8% of TF-gene
edges. We extracted ten hub genes and identified three
modules from the combined network for functional en-
richment analysis. Notably, by investigating the network
modules, we found the signaling pathway that regulate
pluripotency of stem cells was significantly involved in
CL; such finding has not been reported before. Our net-
work analysis also highlighted a CL subnetwork that is
related to Wnt pathway, and pinpointed five miRNAs,
hsa-mir-374b, hsa-mir-381, hsa-mir-374, hsa-mir-27b
and hsa-mir-497, involved in it. Through a gene expres-
sion and network topological analysis, we identified two
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of these miRNAs, hsa-mir-27b and hsa-mir-497, were
essential for the activation of the Wnt pathway. Previous
studies reported that both of these miRNAs were in-
volved in the etiology of CL. Thus, our
miRNA-TF-mediated regulatory network analysis was
consistent with previous studies, suggesting the efficacy
of the approach. Taken together, our integrated
miRNA-TF mediated regulatory networks are useful for
detecting genes, regulators and networks, which pro-
vides insights into the regulation of CL. Future experi-
mental studies of these top candidates and regulations
will help advance our knowledge in CL biology and the
CL etiology.

Results
Integrative framework for identification of critical disease-
causing genes based on networks
Figure 1 elaborates our combinatory framework to con-
struct comprehensive miRNA–TF co-regulatory net-
works and sort out critical genes and modules in CL.
These networks were composed of FFL regulations
among three main components: miRNAs, TFs and
genes. In this study, we used the genes and miRNAs that
we searched from several literature databases followed
by careful, manual curation for human CL (Additional
file 1). Specifically, through an extensive exploration of
three major biomedical databases, Medline ® (National
Library of Medicine), NCBI’s PubMed, and Embase ®
(Excerpta Medica Database, Elsevier), we compiled a list
of 162 genes with linkage or mutations reported in hu-
man individuals with CL, and regarded them as candi-
date genes for human CL (Fig. 1a). We also identified 16
miRNAs that targeted these 162 genes from four
miRNA-target interaction databases: miRanda, PITA,
TargetScan and miRTarBase [25–28] (Additional file 1).
In these networks, there are four types of regulatory in-
teractions: TF regulation of gene expression (TF-gene),
TF regulation of miRNA expression (TF-miRNA),
miRNA regulation of gene expression (miRNA-gene)
and miRNA regulation of TF expression (miRNA-TF).
(Fig. 1b). To incorporate these regulations into
miRNA-TF co-regulatory networks, we included only
the miRNA- and TF-mediated FFLs (Fig. 1c and d). We
combined different types of FFLs into networks and then
performed functional analysis. To evaluate whether the
computational analysis-driven interplays between regula-
tors and their targets were consistent with the previous
studies, we introduced a network edge validation strat-
egy using an independent expression profiling data set
(GEO accession number: GSE7759). We pinpointed im-
portant hub nodes (TFs, miRNAs, and genes) from a
combined network and performed Gene Ontology (GO)
gene set enrichment analysis of their targets (Fig. 1e).
The GO enrichment results were consistent with

previous studies and these hubs could be ideal candi-
dates for further biological experiments. We extracted
three network modules from the combined network and
found the enrichment of genes involved in “the signaling
pathway regulating pluripotency of stem cells” (Fig. 1f ).
Genes related to the Wnt pathway, a well-known path-
way in the etiology of CL, were extracted and used to
construct a network, in which we identified candidate
diseasing-causing miRNAs (Fig. 1g). For the gene list de-
rived from our procedures, we further performed GO
and KEGG pathway enrichment analysis (Fig. 1h).

Highly confident regulatory relationships among miRNAs,
TFs and genes
Table 1 summarizes four types of potential regulatory re-
lationships (TF-gene, TF-miRNA, miRNA-gene, and
miRNA-TF) and measurement methods we used in this
study.
Prediction of miRNA targets has often a high false

positive rate. To reduce such noises, we used the
miRNA–target interactions in humans that were pre-
dicted by at least two of the four datasets: TargetScan,
miRanda, PITA and miRTarBase [25–28] using stringent
criteria. We obtained 77 miRNA-gene pairs and 21
miRNA-TF pairs. To obtain the regulatory relationships
for each TF with its genes or miRNAs, we investigated
TFs and their binding motifs in the TRANSFAC Profes-
sional database and predicted TF-gene and TF-miRNA
interactions by using the Match™ program [29]. To
minimize false positive results, we selected only the
regulatory relationships conserved well among human,
rat, and mouse [20, 23]. These data processes resulted in
671 TF-gene pairs and 76 TF-miRNA pairs (Table 1;
Additional file 2).

CL-specific miRNA-TF mediated regulatory networks with
64.8% TF-gene edges being verified
Our networks were established based on the transcrip-
tional regulation of TFs (e.g. TF-gene, TF-miRNA)
tightly coupled with the post-transcriptional regulation
of miRNAs (e.g. miRNA-gene, miRNA-TF). These two
types of gene regulators tend to form 3-node FFLs (each
FFL has a TF, a miRNA and a joint target gene). In this
study, we only considered three types of 3-node FFL mo-
tifs in CL. We named them motifs A, B, and C (Table 2).
Based on the four types of regulatory relationships ob-
tained above, a total of 128 FFLs belonged to these three
types of FFL motifs (Table 2; Additional file 3).
In motif A, the TF regulates its targeted

protein-coding gene (non-TF gene) and miRNA at the
transcriptional level, and the miRNA regulates its tar-
geted protein-coding gene (non-TF) at the
post-transcriptional level. In motif B, the TF regulates its
targeted protein-coding gene (non-TF gene) at the
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Fig. 1 Schematic flowchart for constructing and analyzing the comprehensive miRNA–TF co-regulatory networks in cleft lip (CL). (a) CL-related
genes were collected and manually curated from main biomedical databases including Medline, PubMed and Embase. The miRNAs targeting
these genes were identified from four miRNA-target interaction databases: miRanda, PITA, TargetScan and miRTarBase. (b) Four types of
regulation relationships: TF-gene, TF-miRNA, miRNA-TF and miRNA-gene. (c) Three regulatory motifs measured by feed forward loop (FFL). (d)
Construction of the miRNA–TF co-regulatory network. The combined network of all FFLs consisted of 8 miRNAs, 15 TFs, 26 genes and 163 edges.
(e) Identification of critical genes (TFs, miRNAs and genes) and analysis of their potential functions. (f) Identification of network modules and
analysis of their potential functions. (g) Extracting miRNA–TF co-regulatory subnetworks based on a specific pathway (Wnt pathway). (h) GO and
pathway enrichment analysis. Blue ellipse: gene; orange rectangle: miRNA; green triangle: TF; blue line: miRNA-TF; orange line: miRNA-gene; green
line: TF-miRNA; gray line: TF-gene

Table 1 Summary of the integrated regulatory relationships among miRNAs, TFs and genes

Relationship Number of pairs Number of miRNAs Number of genes Number of TFs Methoda

miRNA-gene 77 9 37 / A

miRNA-TF 21 8 / 12 A

TF-gene 671 / 126 27 B

TF-miRNA 76 17 / 22 B

Total 845 18 127 27
aIn the Method column, (A) regulation relationships were supported by at least two of these databases: TargetScan, miRanda, PITA and miRTarBase; (B) TRANSFAC
Match™ method was used for identification of TF-target relationship
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transcriptional level, and the miRNA regulates both TF
and protein-coding gene (non-TF gene) at the
post-transcriptional level. In motif C, the regulators (TF
and miRNA) mutually regulate each other, while the TF
regulates the targeted protein-coding gene (non-TF
gene) at the transcriptional level, and the miRNA regu-
lates the targeted protein-coding gene (non-TF gene) at
the post-transcriptional level. We constructed motif A,
B, and C co-regulatory networks by merging these motif
A, B, and C FFLs, respectively (Fig. 2a, b, and c). In
addition, we merged all these motif FFLs to construct a
combined regulatory network (Fig. 2d). The combined
network consisted of 8 miRNAs, 15 TFs, 26 genes and
163 edges (Additional file 4).
To examine whether the regulatory relationships be-

tween TFs and targeted genes were reproducible, we
used an independent gene expression data set (GEO ac-
cession number: GSE7759). To determine if an edge (the
link between two nodes in the network) could be veri-
fied, we required that the co-expression relationship be-
tween TF and gene should be observed in the validation
data set, and we used the Pearson correlation coefficient
|r| > 0.3 to nominate the co-expression. Furthermore,
the Pearson correlation P-values were required to be less
than 0.05 with its false discovery rate (FDR) being less
than 0.1. The detailed network edge validation approach
was described in the Materials and methods section.
Among the 88 TF-gene edges, 57 (64.8%) edges were
verified by the independent data set (Additional file 5).
Next, we investigated enrichment of GO and KEGG

pathway annotations in these TFs and genes from each
motif network. Our results were insightful into CL bio-
logical functions (Fig. 3; Additional file 6). There were
17, 9, 1 important GO terms and 13, 6, 0 key KEGG
pathways in motif A, B, and C networks, respectively.
Among them, “negative regulation of canonical Wnt sig-
naling pathway (GO:0090090)”, “palate development
(GO:0060021)”, “signaling pathways regulating pluripo-
tency of stem cell (hsa04550)”, “Hippo signaling pathway
(hsa04390)”, “Wnt signaling pathway (hsa04310)” have
been previously reported in CL [30–35]. Interestingly, as
CL occurs with cleft palate at approximately 50% of all
craniofacial cleft cases, “palate development
(GO:0060021)” was observed across all the three motif
networks (Additional file 6).

Prominent hub genes in regulatory networks
Based on maximal clique centrality (MCC), a novel
topological analysis method introduced in [36], we pin-
pointed hub nodes in the combined network using the
cytoHubba plugin (version 0.1) for Cytoscape (version
3.6) [36]. We obtained ten hub nodes, including three
miRNAs, five TFs and one protein-coding gene (non-TF
gene) (Fig. 4a).
For each hub TF and each miRNA, we first extracted

its targets and then performed GO analysis for them
using the DAVID software (version 6.8) [37]. We ob-
served a set of four hub TFs and three hub miRNAs
whose targets were significantly enriched in 11 GO
terms that are closely related to CL-specific biological
processes (hypergeometric test P < 0.05, followed by the
Benjamini-Hochberg procedure for multiple testing cor-
rection [38]) (Fig. 4b; Additional file 7). The results from
functional enrichment of target genes implied that these
hub regulators might have essential roles in CL develop-
ment. Targets of four TFs (DLX1, EN2, HOXB3, and
MAFB) were enriched in the process of positive regula-
tion of cell division that is an important biological
process in the lip development. Prior to completion of
formation of the upper lips, the lateral nasal process has
a climax of cell division that leave upper lips susceptible
to teratogenic insults, and any perturbation in growth at
this critical moment can result in malfunction of the
closure mechanism [2, 39]. Furthermore, targets of three
TFs (DLX1, EN2, and HOXB3) were significantly associ-
ated with the following biological processes: wound heal-
ing and positive regulation of transcription from RNA
polymerase II promoter. These biological processes have
previously reported to be associated with CL [40–42].

Network modules revealed novel pathways involved in CL
The Markov clustering (MCL) algorithm [43] is a highly
efficient and reliable network clustering algorithm based
on simulating random walks within an interaction net-
work. We used MCL in order to divide regulatory net-
work into gene interaction modules. With the inflation
value set to 2.0, MCL detected three modules from the
combined network (Fig. 5a). Each module was composed
of a set of miRNAs, TFs, and genes that were topologic-
ally adjacent. These modules were taken for further
functional analysis.

Table 2 Summary of 3-node feed forward loops (FFLs)

Number of nodes Number of pairs

Motif #FFLs TFs miRNAs Genes miRNA-gene miRNA-TF TF-gene TF-miRNA

A 71 12 7 26 39 / 68 17

B 50 7 6 16 30 13 31 /

C 7 2 2 6 7 2 7 2

Total 128 16 12 28 69 13 99 19

Li et al. BMC Medical Genomics 2019, 12(Suppl 1):16 Page 123 of 189



We aimed to reveal critical regulations that might con-
trol the etiology of CL. Pathway analysis has been dem-
onstrated as a helpful method to investigate the
biological mechanisms implicated in the pathogenesis
[44]. We explored enriched pathways in these regulatory
modules. Modules 1 and 3 were enriched in several
pathways (FDR < 0.05, hypergeometric test followed by
Benjamini-Hochberg multiple testing correction), while
module 2 was not enriched in any pathways (Additional
file 8; Fig. 5a and b). This suggests that through identifi-
cation of modules we can narrow down candidate genes
and thus help us find critical regulations. Interestingly,
both modules 1 and 3 were enriched in the signaling
pathway regulating the pluripotency of stem cells. Al-
though this pathway has not been reported to be

involved in CL yet, we could find some evidence in this
pathway. SOX2 is known as one of the core genes in
pluripotency and one of the transcriptional factors cru-
cial for the reprogramming of mature cells into pluripo-
tent stem cells [45, 46]. SOX2 is highly correlated with
FOXE1 [47], whose congenital mutations cause cleft pal-
ate and hypothyroidism [48].

Identification of potential disease-causing miRNAs in Wnt
pathway in CL
Several studies have demonstrated that Wnt pathway is
involved in non-syndromic CL [30, 49, 50]. For example,
mutations in the WNT3 gene dominate autosomal reces-
sive tetra-amelia with CL [1, 32]. A single SNP (dbSNP
ID: rs7205289) located in pre-miR-140 contributed to

A B

C D

Fig. 2 Feed-forward loop (FFL) based regulatory networks. Three types of motifs (motif A, B and C) were used to construct (a) Motif A network,
(b) Motif B network, (c) Motif C network, and (d) Combined network (using all three motif types)
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Fig. 3 Enrichment of GO and KEGG pathways in TFs and genes in each motif network. (a) GO analysis of TFs and genes in motif A network. (b)
GO analysis of TFs and genes in motif B network. (c) GO analysis of TFs and genes in motif C network. (d) KEGG pathway enrichment analysis of
TFs and genes in motif A network. (e) KEGG pathway enrichment analysis of TFs and genes in motif B network. FDR: false discovery rate
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the susceptibility of non-syndromic cleft palate (NSCP)
by influencing the processing of miR-140 [51]. These
findings have motivated us to further analyze miRNAs
in the Wnt pathway as candidate causative regulators
for CL.
Based on the KEGG pathway database [52], our

miRNA-TF co-regulatory networks could recruit four
genes in the Wnt pathway: three WNT family genes
(WNT3A, WNT5A, and WNT5B) and the DVL2 gene.
We extracted two subnetworks from the miRNA-TF
co-regulatory combined network by merging all the mo-
tifs that included at least one of these four genes. These
subnetworks included 36 edges, five miRNAs, ten TFs
and four genes (Fig. 6a and b). The subnetworks showed
some interesting results. For example, WNT3A and
WNT5A that appeared in these subnetworks were
well-known involved in regulating upper lip fusion and
mid-face development and were therefore especially
strong candidates for an etiological role in CL [53, 54].
Furthermore, mutations in MSX1 were associated with
tooth agenesis and orofacial clefting in human [55].
Subnetwork 2 was composed of the core Wnt pathway

gene WNT3A and five regulators (two miRNAs: hsa--
mir-27b and hsa-mir-497; and three TF genes: SMAD1,
SMAD2, and E2F1). Among these five regulators, we
identified two miRNAs (hsa-mir-27b and hsa-mir-497)
as promising CL critical hub nodes. The direction of the
network edges demonstrated that WNT3A expression
could be regulated by two miRNAs at the

post-transcriptional level and regulated by SMAD1 at
the transcriptional level (Fig. 6b). Of note,
SMAD1-DVL2 and SMAD1-WNT3A were strongly vali-
dated by the independent validation data set (Fig. 6c).
WNT3A expression could occur through up- or
down-regulation of miRNAs that target WNT3A.
Previous studies have shown that hsa-mir-27b is up-

regulated in the CL region compared to normal tissues
[16, 56]. Another previous study has confirmed the
downregulation of hsa-mir-497 in fibroblasts from indi-
viduals with non-syndromic isolated cleft palate [57]. In
the independent validation data set, SMAD1 and
WNT3A were downregulated and upregulated compared
to normal tissues, respectively. Although there has been
no report on hsa-mir-27b as a CL-causing miRNA, our
analysis could lead to the following putative regulation
pathways (Fig. 6c): hsa-mir-27b inhibits SMAD1 expres-
sion and then SMAD1 inhibits WNT3A expression. Col-
lectively, hsa-mir-27b and hsa-mir-497 may be candidate
CL miRNAs involved in the etiology of CL via the Wnt
pathway.

Discussion
During the past decade, association studies (e.g. GWAS)
and candidate gene studies have identified a good num-
ber of genes or loci related to CL. The identification of
candidate CL genes has traditionally been based on de-
velopmental analyses and gene expression [1]. However,
with very scarce human samples available for CL gene

A B

Fig. 4 Hub nodes in the combined network and GO enrichment analysis of their targets. (a) Hub nodes in the combined network. Hub nodes
are indicated with a color scheme from highly essential (red) to essential (yellow). (b) Enriched GO terms of the targeted genes of the hub
miRNAs and TFs in (a)
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expression assay, such studies have mostly been per-
formed in model animals, particularly in mice and zebra-
fish. The assumption is that the function and phenotypic
changes related to the CL genes and mutagenesis in ani-
mals can be similarly reflected in humans. With this sce-
nario, the mutations that are associated with CL in
human studies (e.g. GWAS) may be better understood
through manipulation in animals or measured in early
craniofacial development. Since lip development involves
dynamic changes and regulation, gene regulation net-
work based on FFLs would be a promising approach to
explore the molecular regulation among those previously
identified as CL candidate genes. In principle, gene regu-
lation network assumes that many of the disease-causing
genes are prone to collaboratively take effect at the net-
work level or biological pathway rather than at an indi-
vidual gene level [58].

In this study, we constructed TF and miRNA
co-regulatory networks using our curated CL genes in
human, aiming to find insightful regulatory motifs and
networks that are related to the etiology of CL. Our
framework started with the curated genes and miRNAs
in human CL; this effort of candidate gene selection and
curation has not been done in the dental biology field
yet. We inferred confident regulatory relationships
among the TFs, miRNAs and genes using a whole set of
computational tools and algorithms. Based on these rela-
tionships, we focused on 3-node FFL motifs to build up
CL-specific regulatory networks. This TF-miRNA-gene
3-node FFL is a power way to examine the gene regula-
tion at both the transcription and post-transcriptional
levels. However, one critical issue in such a computa-
tional approach is how to best control the false positives
during the establishment of the regulatory interaction

A

B

C

Fig. 5 Network modules and their functional analysis. (a) Network modules identified from the combined network. (b) KEGG pathway analysis of
TFs and genes in module 1. (c) KEGG pathway analysis of TFs and genes in module 3
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relationships. To reduce the rate of false-positive out-
comes, we took the following steps. First, we selected
the most recognized software, algorithms and annotated
databases to predict the regulation pairs between
TF-gene, TF-miRNA, miRNA-gene, and miRNA-TF.
Second, we applied stringent parameters to choose
miRNA-target and TF-target relationships (see Materials
and methods). Third, we required the predicted pairs
from more than one databases or tools. Thus, the results
seemed reliable, as we verified by using an independent
dataset. Overall, our framework can be applied to other
complex diseases to detect regulatory relationships, im-
portant genes, critical molecular modules, and
disease-causing regulators.
Among the results, the three hub miRNAs (hsa--

mir-27b, hsa-mir-374a, and hsa-mir-497) and four hub
TF genes (DLX1, EN2, HOXB3, and MAFB) were identi-
fied with relatively higher number of targets. The target
genes of these regulators were involved in the
CL-related biological processes. Therefore, these hub
nodes may be vital candidates for further functional val-
idation. In addition, through the analysis of network
modules, we found the enrichment of genes involved in
“the signaling pathway regulating pluripotency of stem
cells”. Although no previous studies have revealed this
important pathway in CL yet, there was indirect evi-
dence to support the underlying association between this
pathway and CL.
Another important contribution of this study is the

CL-specific miRNA-TF regulatory network. To our
knowledge, there is no such a regulatory network ana-
lysis in the dental biology field. To identify potential
disease-causing regulators, we segmented the combined
regulatory network and separated it into relatively small
but functionally crucial subnetworks for specific path-
ways that have been previously reported in CL. We then

used independent gene expression data sets and per-
formed network topology analyses in order to identify
critical miRNAs in these small subnetworks. Specifically,
we took Wnt pathway as a case and found two critical
miRNAs (Fig. 6c). Among them, hsa-mir-27b has already
been reported in independent studies to be up-regulated
in CL [16, 56]. Another study has shown that hsa--
mir-497 was down-regulated in CL [56]. The prior evi-
dence that supports our network results demonstrated
the effectiveness of our regulatory approach. The obser-
vation in Fig. 6 may reflect a more complicated regula-
tion scheme in cellular system, and such scenario will
not be detected by a typical canonical pathway or signal-
ing pathway approach. Different from traditional path-
way analysis, which usually focuses on protein-coding
genes, our approach integrates miRNAs, TFs and genes
into special regulatory pathways. Such pathways might
be useful for explanation of mechanism of diseases.
There are four limitations in our study. First, to iden-

tify regulatory relationships among TFs, miRNAs and
genes, we used stringent criteria in order to reduce false
positives. This strategy might exclude some true positive
regulations. Second, we did not determine the repression
or activation relationship in each interaction pair (e.g.
TF activates or represses a gene). Third, these networks
do not bear scale-free topology in a typical biological
network because the pairs of regulation used for net-
work construction are more likely related. Fourth, to our
best knowledge, there were no published samples which
had matched miRNA and mRNA expression available
for construction of large-scale regulatory networks. The
FaceBase project [59] has generated both mRNA and
miRNA expression data in mice, but has not included
both miRNA and mRNA from the same tissue or sample
yet. Such data will likely be available in the near future
since genome technologies are under rapid advancement,

A B C

Fig. 6 miRNAs might act as the CL regulators through Wnt pathway. (a) Subnetwork 1. (b) Subnetwork 2. (c) Schematic model of hsa-mir-27b
regulation in Wnt pathway. An upregulated hsa-mir-27b suppresses SMAD1 expression, which accordingly leads to an upregulation of WNT3A due
to low level of SMAD1. ↑ represents up-regulation and ↓ represents down-regulation

Li et al. BMC Medical Genomics 2019, 12(Suppl 1):16 Page 128 of 189



and we will expand our analysis when such data are
released.

Conclusions
In this study, we have first identified TF-gene and
miRNA-gene using our manually curated CL genes and
other regulation databases. Then, we constructed com-
prehensive miRNA-TF mediated co-regulatory networks
specific for human CL. Within these networks, we iden-
tified critical hub miRNAs, TFs and genes, which might
take important roles in regulation process of CL. In
addition, we found several novel pathways possibly asso-
ciated with etiology of CL when we compared the results
of functional analysis of different network modules. We
also demonstrated that the CL-specific regulatory net-
works had critical disease-causing miRNAs. Moreover,
we constructed a subnetwork containing human
CL-related genes involved in Wnt pathway. Through
network topological and functional analyses of Wnt
pathway subnetwork, two critical miRNAs have been
identified with the support from previous studies. This
study not only unveils novel miRNAs for further experi-
mental design but also provides further insight into
regulatory mechanisms of human CL. To our know-
ledge, this is the first TF-miRNA mediated regulatory
network in dental disease.

Methods
Human CL genes and related miRNAs
Genes involved in the pathology of CL were collected
from three databases: Medline (Ovid), PubMed (NLM),
and Embase (Ovid). After manual curation (every related
paper was manually read), we obtained a list of 162
genes with mutations or association reported in individ-
uals with CL, and considered them as candidate genes
for human CL. Our bioinformatics analysis suggested
that 16 miRNAs might be post-transcriptional regulators
of CL genes. (Details in another study in house; Add-
itional file 1).

TF-mediated gene/miRNA regulation
The promoter sequences (− 1000/+ 200 bp of the tran-
scription start site (TSS)) of human protein-coding
genes and precursor miRNAs were obtained from the
UCSC Table Browser (https://genome.ucsc.edu) [60] as
described by Sun et al. [21]. The search of the TF bind-
ing sites was conducted using the Match™ program [61],
which was available in the TRANSFAC ® Professional
version (release 2016.1) [29]. A high-quality TRANSFAC
® matrix library and pre-calculated cutoffs were used to
minimize false positive matches. To constrain the search,
TFs containing a matrix score of > 0.95 and a core score
of 1.00 were selected.

miRNA-mediated gene/TF regulation
The candidate targeted genes of miRNAs were analyzed
using bioinformatics analysis with multiple target predic-
tion algorithms, including TargetScan (version 7.1), mi-
Randa (August 2010 Release), PITA (version 6) and
miRTarBase (Release 7.0) [25–28]. To obtain reliable
miRNA-target pairs, a predicted miRNA-target pair for
further analysis was supported by at least two of these
public canonical miRNA-target databases.

Validation of TF-gene regulation relationships
The mouse model is well-established to facilitate studies
of the mechanism of human craniofacial development
[62]. This is because mouse and human have strikingly
similar craniofacial development and well conserved mo-
lecular mechanism [62–64]. To validate the TF-gene
regulatory interactions in the combined network, an in-
dependent mouse gene expression data set was obtained
from the Gene Expression Omnibus (GEO) [65]: acces-
sion number GSE7759 [66]. GSE7759 contains 35 sam-
ples from the developing maxillary processes that
eventually form the upper lip. Their gene levels were
measured using Affymetrix Mouse Genome 430 2.0
Array (Affymetrix, USA). Microarray data set was nor-
malized with Robust Multi-Chip Averaging (RMA) [67].
TF-gene pairs with the Pearson correlation coefficient
(PCC) being > 0.3 or < − 0.3 and P-value less than 0.05
(FDR less than 0.1) were selected (Additional file 5).

Network and subnetwork generation, analyses, and
functional evaluation
In this work, we constructed three major networks. The
first network was the CL-specific miRNA-TF mediated
gene regulatory network, which was generated by con-
verging all 3-node motifs (Fig. 2d). To determine the
hubs in this network, cytoHubba, a java plugin for
Cytoscape software, was employed. CytoHubba provides
eleven topological analysis methods. We used Maximal
Clique Centrality (MCC), since MCC has a better per-
formance on the precision of predicting essential com-
ponents from network among the eleven methods.
The second one consisted of three modules generated by

the MCL (Markov Clustering) algorithm [43] (Fig. 5a). The
MCL algorithm is designed specifically for clustering of
simple or weighted graphs. The MCL algorithm finds clus-
ter structure in graphs by a mathematical bootstrapping
procedure. The results of MCL depend on the choice of an
inflation parameter (I). We applied MCL to the networks
constructed with default parameters (inflation parameter =
2.0) to identify the functional clusters. Clusters with less
than three nodes were removed as less biological meaning.
The third one was the subnetwork for Wnt pathway

(Fig. 6a and b). By reviewing the KEGG database (http://
www.genome.jp/kegg/), we found WNT3A, WNT5A,
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WNT5B and DVL2 were involved in Wnt pathway. We
extracted all the motifs which contained at least one of
these four genes to construct a subnetwork, and then in-
ferred the potential function of miRNAs in Wnt
pathway.
WebGestalt [68] was used to examine the KEGG path-

ways that were enriched with a gene list. The significance
level of pathways was set to FDR (Benjamini-Hochberg)
less than 0.05. The DAVID Functional Annotation Tool
was used to identify enriched Gene Ontology (GO) anno-
tations [37].
Statistical analyses were conducted using R 3.3.1 (the R

Foundation for Statistical Computing; https://www.r-pro-
ject.org/). The networks were visualized using the Cytos-
cape software version 3.6 (http://cytoscape.org/) [69].
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