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Abstract

Background: Long noncoding RNAs (lncRNAs) are widely involved in the initiation and development of cancer.
Although some computational methods have been proposed to identify cancer-related lncRNAs, there is still a
demanding to improve the prediction accuracy and efficiency. In addition, the quick-update data of cancer, as well
as the discovery of new mechanism, also underlay the possibility of improvement of cancer-related lncRNA prediction
algorithm. In this study, we introduced CRlncRC, a novel Cancer-Related lncRNA Classifier by integrating manifold
features with five machine-learning techniques.

Results: CRlncRC was built on the integration of genomic, expression, epigenetic and network, totally in four categories
of features. Five learning techniques were exploited to develop the effective classification model including Random
Forest (RF), Naïve bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR) and K-Nearest Neighbors (KNN).
Using ten-fold cross-validation, we showed that RF is the best model for classifying cancer-related lncRNAs (AUC = 0.82).
The feature importance analysis indicated that epigenetic and network features play key roles in the classification. In
addition, compared with other existing classifiers, CRlncRC exhibited a better performance both in sensitivity and
specificity. We further applied CRlncRC to lncRNAs from the TANRIC (The Atlas of non-coding RNA in Cancer) dataset,
and identified 121 cancer-related lncRNA candidates. These potential cancer-related lncRNAs showed a certain kind of
cancer-related indications, and many of them could find convincing literature supports.

Conclusions: Our results indicate that CRlncRC is a powerful method for identifying cancer-related lncRNAs. Machine-
learning-based integration of multiple features, especially epigenetic and network features, had a great contribution to
the cancer-related lncRNA prediction. RF outperforms other learning techniques on measurement of model sensitivity
and specificity. In addition, using CRlncRC method, we predicted a set of cancer-related lncRNAs, all of which displayed a
strong relevance to cancer as a valuable conception for the further cancer-related lncRNA function studies.
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Background
Cancers are multi-factor complicated diseases, and primarily
triggered by genetic alteration and gene-regulatory-network
disorder under various environmental irritations [1].
Increasing evidence showed that long non-coding
RNAs (lncRNAs), a class of transcripts with a very low
protein-coding potential and length more than 200 bp,
could widely participate in the occurrence and progres-
sion of multiple cancers, with the capability to perturb
the cellular homeostasis potentially by remodeling
chromatin architecture or regulating the transcriptional
outcomes [2–6]. Recent rapid development of next-
generation sequencing has promoted the detection of
thousands of expression profiles between pairs of can-
cer and regular transcriptomes, revealing that there
were many aberrant lncRNAs emerged in the course of
cancer occurrence and development [7–9]. However,
for the vast majority of them, it is hard to distinguish
which are functioning or what their potential roles in
cancers, due to the low expression level, poor conserva-
tion, uncertain mutation mode, and diverged tissue spe-
cificity. Therefore, it is imperative to develop systematic
and bioinformatics tools for further predicting and ex-
ploring the possible functions of lncRNAs in cancer.
Recently, several methods have been designed to iden-

tify potential cancer-related lncRNAs. For example, Zhao
et al. developed a naïve-Bayesian-based classifier to iden-
tify cancer-related lncRNAs by integrating both genome,
regulome and transcriptome data, and identified 707 po-
tential cancer-related lncRNAs [10]. They also found
that four of six mouse orthologous lncRNAs were sig-
nificantly involved in many cancer-related processes,
based on 147 lncRNA knockdown data in mice. Lanzós
Andrés et al. conceived a tool (ExInAtor) to identify can-
cer driver lncRNA genes with an excess load of somatic
single nucleotide variants (SNVs) and consequently
found 15 high-confidence candidates: 9 novel and 6
known cancer-related lncRNA genes [11]. However, this
kind of studies is still at infancy, and would be bound to
a measure of limitations in the aspects of accuracy and
sensitivity. For example, ExInAtor that aimed at discov-
ering driver lncRNAs in cancer was subjected to the
likelihood of losing the prediction sensitivity, as men-
tioned by themselves. Therefore, different algorithms of
the classification model should be developed reasonably,
and important features should be further explored sys-
tematically, in order to advance the sensitivity and ac-
curacy when we are seeking the cancer-related lncRNAs.
Besides, some cancer-related features of lncRNAs are

necessary for the purpose of distinction. Apparently, the
ordinary differential expression analysis between pairs of
cancerous and normal tissue could not favor the predic-
tion requirements, due to the high false positive rate.
Hence, other features of lncRNAs (like genomic location,

tissue specialty, exon mutation frequency, somatic single
nucleotide variants, co-expression relationships between
lncRNAs and protein-coding genes, etc.) were integrated
into the computational analysis to better discriminate
the cancer-related lncRNAs from the negative ones.
However, mining these features is also a gradually evolu-
tional process. For example, Chen. et al. found broad
H3K4me3a was associated with increased transcription
elongation and enhancer activity of tumor suppressor
genes [12], implying that some epigenetic features could
be added into cancer-related lncRNAs’ identification.
Here, we developed a compounded computational

method, CRlncRC, to predict cancer-related lncRNAs.
CRlncRc was based on five machine learning models, in-
cluding Random Forest (RF), Naïve bayes (NB), Support
Vector Machine (SVM), Logistic Regression (LR) and
K-Nearest Neighbors (KNN). Beyond that, CRlncRC was
built on the integration of four categories of features (i.e.
genomic, expression, epigenetic and network), more
lncRNA’s features were introduced into our analysis to
enhance the prediction sensitivity. We demonstrated
that our integrative method significantly improves the
accuracy of identification of cancer-related lncRNAs, as
compared with some previous methods. RF model out-
performs other learning models on measurements of
model sensitivity and specificity. We also showed that
machine learning-based integration of multiple features
had a great contribution to the cancer-related lncRNA
prediction, wherein epigenetic and genomic features play
key roles in the classification. Next, we used CRlncRC
method to predict a set of cancer-related lncRNAs from
the TANRIC dataset. These novel cancer-related candi-
dates were further evaluated by somatic mutation number
in cancer genome, distance with the cancer-related pro-
teins, differential expression fold change in tumor and
normal tissues, and GO enrichment analysis. The results
indicated that the predicted set have a strong cancer cor-
relation, many of which could find convincing literature
supports. We believed that these fresh cancer-related
lncRNAs would be a valuable starting point for the further
cancer-related lncRNA functional study.

Results and discussion
Overview of CRlncRC
An integrated machine-learning pipeline was designed
and designated as CRlncRC (Cancer-Related lncRNA
Classifier). The pipeline was shown in Fig. 1.
Firstly, in order to increase the precision of predic-

tions, we strictly selected the positive and negative col-
lection for training. The positive dataset consisted of 158
experimentally-validated cancer-related lncRNAs curated
from the scientific literature (Additional file 1); while the
negative was randomly sampled from long intergenic
noncoding RNAs whose 10 kb upstream and downstream
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had no cancer-related SNPs (in total 4553 lncRNAs,
Additional file 2), repeatedly 100 times. For lncRNAs
from each dataset, we constructed four categories of
features including genomic, expression, epigenetic and
network (Additional file 3).
Second, to evaluate the performance of different

machine-learning algorithms, we used five popular algo-
rithms, including Random Forest (RF), Naïve bayes (NB),
Support Vector Machine (SVM), Logistic Regression (LR)
and K-Nearest Neighbors (KNN), to proceed with ten-fold
cross-validation in 100 training datasets. For each test, the
receiver operating characteristic curves (ROCs) were cal-
culated, and the average area under the ROC curve (AUC)
was used to assess the best performance for each algo-
rithm in 100 training sets. For the best performance
model, we further compared it with other existing
cancer-related lncRNA classifiers in terms of performance,
and evaluated the weightiness of four categories of fea-
tures contributing to cancer-related classification.

At last, we managed to use the best performance
model to predict novel cancer-related lncRNAs. Here,
we adopted all lncRNAs from the TANRIC dataset
(Additional file 4), which were completely separate from
our positive and negative datasets, to examine the pre-
diction performance of CRlncRC. For these novel
cancer-related candidates, we utilized genome-wide data
to assess the probability of their associations with cancer,
which include their enrichment of somatic mutations in
cancer genome, distance with the cancer-related pro-
teins, differential expression fold-change between pairs
of tumor and normal tissues, and GO enrichment ana-
lysis. In addition, we also inspected the potent experi-
mental supports from literature.

Cross-validation accuracy
We used ten-fold cross-validation to evaluate the model
accuracy. As shown in Fig. 2a, RF, NB, SVM, LR and
KNN achieved average AUC scores of 0.82, 0.78, 0.79,

Fig. 1 A systematic overview of the CRlncRC. A work frame of CRlncRC (cancer-related lncRNA classifier) for predicting and characterizing novel
cancer-related lncRNA candidates in human
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0.76 and 0.68, respectively. Apparently, there are four
models achieving an average score of AUC more than
0.75 except that of KNN, wherein RF model shows the
best performance. We next checked the resulting accur-
acy of RF classifier when we used only one category of
features. As shown in Fig. 2b, training RF model with
epigenetic, expression, network and genomic features,
our model achieved AUC scores of 0.76, 0.73, 0.76 and
0.73, respectively. So, using RF model, any feature solely
could gain an average AUC score of > 0.7, much less an
extra 6–9% AUC score when combining all the features.
No single category of feature could achieve the top per-
formance as that of united features, which strongly sug-
gests the complementary nature between features and the
advantage of integrative approaches. In addition to AUC
value, more evaluation indicators were used to assess our
results such as precision, recall, accuracy, and AUC confi-
dence interval (Additional file 5). In order to perform a
comprehensive analysis of the effect of features on model’s
performance, we also compared two types of features and
three types of features (Additional file 6).

The contribution of features to identify cancer-related
lncRNAs
To better comprehensively understand the significance
of features to identification of the cancer-related
lncRNAs, we used ExtraTreeClassifier [13] in scikit-learn
package as a measurement for further evaluating the
hierarchies of all features in terms of importance (Fig. 3)
(Additional file 3). Here, we summarized the amount of
four categories of features located in Top10/20/50 fea-
ture importance list (Fig. 3a). In the Top10 features, four
features are pertinent to genomic features, epigenetic
and network features each have three positions. How-
ever, as respects of the Top20 and Top50 features, the
first and the second occupancy among features belong

to epigenetic (9 in Top20 and 18 in Top50) and network
features (7 in Top20 and 14 in Top50), respectively. It sur-
prised us that no expression features emerged in the
Top10 and Top20 features, which only occupy 8 locations
in the Top50 features, indicating that expression features
are still necessary though less important than other types
of features. The fact that lncRNA expression always had a
strong tissue specificity with a relatively low level might
explain the less importance of expression-related features
on cancer-related lncRNAs prediction.
We calculated the cumulative distribution and corre-

sponding Kolmogorov-Smirnov test p-value of all the
features in the positive and negative lncRNA datasets
(Additional file 7). Figure 3b and Fig. 4 showed the top
nine features sorted by importance, and their corre-
sponding cumulative distribution in the positive and
negative datasets. Interestingly, ‘SINE (Short interspersed
nuclear element) numbers in gene body’ was the most
important feature. The cumulative curve also showed
that cancer-related lncRNAs have obviously higher SINE
numbers than cancer-unrelated lncRNAs (Fig. 4a,
p-value = 5.3e-05). LINE (Long interspersed nuclear
element) was another example of the repeats which con-
tributes to the classifier. ‘LINE numbers in gene body’
ranks the No.8 in all of the features. Similar with SINE,
we found that cancer-related lncRNAs have obviously
higher LINE numbers than cancer-unrelated lncRNAs
(Fig. 4h, p-value = 0.00086). We further compared the
length distribution of positive and negative lncRNAs,
and found that these two distributions only have slight
difference (Additional file 8). Our results implied that re-
peat element might be an important functional element
for lncRNAs and widely participant in the cancer-related
process, which is consistent with a lot of published re-
searches. For example, Alu is a subtype of SINE and has
been implicated in several inherited human diseases and

Fig. 2 Prediction performance of ten-fold cross-validation. a Comparison between the performance of five machine learning methods. b Comparison
between the performance of RF corresponding to individual types of features and all features
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in various forms of cancers; and, LINE can activate immune
responses and contribute to disease progression [14, 15], as
well as potentially affect chromatin formation [16].
Apart from the repeat, there are other two genomic-

related features in the top nine features: ‘intron GC con-
tent’ and ‘exon phastCons score’. Compared with
lncRNAs from negative dataset, the introns in cancer-re-
lated lncRNAs have a relatively higher GC content (Fig.
4d, p-value = 0.014). The GC content was related to the
stability of gene and regulation and might have played a
significant role in the evolution [17]. Besides, the com-
posite patterns of GC content between intron and exon
would likely affect gene splicing [18, 19]. These facts
hinted the relationship between ‘intron GC content’ and
cancer-related lncRNA. Moreover, the exon sequences in
cancer-related lncRNAs showed obviously higher con-
servation than negative set, implying that cancer-related
lncRNAs may undergo evolutionary pressure for main-
taining some important functions relevant to normal cell
behavior (Fig. 4g, p-value = 7.5e-05).
In the top nine features, two epigenetic features ranked

at NO.2 and No.6, they are “H3k4me1” and “H3k4me3”
epigenetic modification signals within lncRNA gene body
region in H1hesc cell line, respectively. Both signals in
positive dataset are significantly higher than the negative
set (Fig. 4b, p-value = 1.7e-10; Fig. 4f, p-value = 4.3e-13).
Epigenetic feature H3k4me3 are likely associated with the
expression of cancer-related lncRNAs. High levels of
H3K4me3 are often found near the promoter region, and
commonly associated with the activation of transcription
of nearby genes [20, 21]. A broad H3K4me3 is associated
with increased transcription elongation and enhancer ac-
tivity at tumor-suppressor genes [12]. While H3K4me1 is
usually found in intergenic region with enrichment at en-
hancers [22]. Recent studies have demonstrated that many

enhancer elements can be transcribed into a novel class of
lncRNAs, enhancer RNAs (eRNAs) [23–25]. These
eRNAs could exert cancer-related functions through their
associated enhancers, as in the case of eRNAs from
p53-bound enhancer region that are required for
p53-dependent enhancer activity and gene transcription
[26]. On the other hand, the fact that these two histone
modification related features listed in top 9 features are
associated with H1hesc cell line, instead of Gm12878 and
K562 cell lines, indicated that the effects of histone modi-
fications to cancer-related lncRNAs might have tissue/cell
type-specificity.
Consistent with the other papers, the cancer-related

lncRNAs tend to be more likely interacted with
cancer-related proteins. In the top nine features, network
features ranked the position of No.3, No.5 and No.9. The
lncRNAs in the positive set displayed more strongly
co-expression with ERBB2, CTNNB1 and CDKN2A than
the negative set (Fig. 4c, p-value = 4.6e-10; Fig. 4e, p-value
= 6.6e-08; Fig. 4i, p-value = 4.4e-07). Wherein, ERBB2 was
found associated with Glioma Susceptibility 1 and Lung
Cancer; CTNNB1 is part of a complex of proteins that
constitute adherens junctions, mutations in CTNNB1 are
a cause of colorectal cancer, pilomatrixoma, medulloblas-
toma, and ovarian cancer; while CDKN2A (i.e. p16) is fre-
quently mutated or deleted in a wide variety of tumors
and is known to be an important tumor suppressor gene.

Comparison with other cancer-related lncRNA prediction
algorithms
We used ten-fold cross-validation to compare the pre-
diction performance of our CRlncRC with that of the
other two developed prediction algorithms as mentioned
in Background. Considering that the latter two devel-
oped early and were comprised of relatively small-scale

Fig. 3 Feature importance. a The distribution of four feature categories (genomic, epigenetic, network, and expression) in top 10, top 20, and top
50 features. b The rank of top 9 features (genomic, epigenetic, network, expression features colored in green, blue, yellow, and red, respectively)
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datasets (for example, Zhao et al. collected 70 cancer-re-
lated lncRNAs as positive dataset, while Lanzós Andrés
et al. collected 45 cancer-related lncRNAs as positive
dataset), for fairness, we applied their datasets for
retraining our RF model rather than our own
well-established model.
As shown in Fig. 5a, the AUC score of our method

reached 0.85, much higher than 0.79 reported in Zhao’s
results. In the aspects of the feature choice, we adopted
genomic, network, expression, and epigenetic (totally four
categories of features) in our model, while Zhao et al. se-
lected three features of genome, regulome and transcrip-
tome in their prediction model. This result suggested that
the newly introduced epigenetic features in CRlncRC,
which not include in Zhao’s study, may have a great con-
tribution to the classification between cancer-related
lncRNAs and cancer-unrelated lncRNAs. On the other

hand, compared with the NB model used in Zhao’s
method, CRlncRC employed RF as its learning model after
broad evaluation of five learning techniques, with a dom-
inant consequence of performance enhancements.
A cancer driver gene is defined as one whose mutations

increase net cell growth under the specific micro-environ-
mental conditions that exist in the cell in vivo [27]. While
a cancer-related lncRNA can be defined as it can promote
or inhibits the growth of cancer cells through some mech-
anism [28]. To comprehensively discover the candidates
of cancer driver lncRNAs, Lanzós Andrés et al. developed
ExInAtor and run it on 23 tumor types. We choose
‘BRCA’ that is believed as the best tumor type of predic-
tion in Lanzós Andrés’s work and ‘Superpancancer’ to do
the comparison, two of which respectively represent the
type-specific and the ubiquitous cancer-related lncRNA
gene discovery. As shown in Fig. 5b, our model had an

Fig. 4 Cumulative percentage comparisons (Kolmogorov-Smirnov test) of the top 9 features between the positive and negative lncRNAs. a SINE
number in gene body. b Average H1hescH3K4me1 signal in gene body. c Spearman’s correlation coefficient with ERBB2. d GC content of intron.
e Spearman’s correlation coefficient with CTNNB1. f Average H1hescH3K4me3 signal in gene body. g Conservation level computed using
PhastCons applied to the 20-way whole-genome in the exon. h LINE number in gene body. i Spearman’s correlation coefficient with CDKN2A
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obvious superiority against ExInAtor in both ‘Superpan-
cancer’ (AUC score 0.78 vs. 0.53) and ‘BRCA’ (AUC score
0.88 vs. 0.57). These results suggested that ExInAtor is
probably just perfect for finding cancer driver lncRNAs
when considering of only one feature of genomic somatic
mutation, but do not suit for the prediction of
cancer-related lncRNAs.

Systematic evaluation of predicted novel cancer-related
lncRNAs
We used CRlncRC to predict novel cancer-related lncRNAs
from TANRIC lncRNA dataset (Additional file 4),
which was completely separate from our positive and
negative datasets. The 11,656 unknown lncRNAs were
assessed by use of the best RF model we trained. In total,
121 cancer-related lncRNA candidates were identified
(Additional file 9), including 55 antisense lncRNAs, 57
intergenic lncRNAs and 9 overlapping lncRNAs. For these
novel cancer-related candidates, we further utilized
genome-wide data to systematically evaluate the probabil-
ity of their associations with cancer. For that purpose,
three types of lncRNA set were applied to our analysis,
including cancer-related lncRNAs (positive), cancer-unre-
lated lncRNAs (negative), and predicted novel
cancer-related lncRNAs (predict).
First, we assumed that these potential cancer-related

lncRNAs were likely to have more somatic mutations in
cancer genomes, since many previous studies had demon-
strated that mutation in function genes is a main cause of
cancer induction. To validate the assumption, we made a
comparison of the number of somatic mutations (docu-
mented in COSMIC) between different lncRNA sets and
cancer-related protein set (Fig. 6a). As a result,
cancer-related protein set as the positive control possessed
far more somatic mutations than cancer-unrelated lncRNA

set, which is the negative control (Kolmogorov-Smirnov
test, p-value = 6.10e-33). The somatic mutation numbers in
both positive and predicted cancer-related lncRNA sets are
between cancer-unrelated lncRNAs and cancer-related
proteins, with a significant higher quantities than that of
cancer-unrelated lncRNAs (Kolmogorov-Smirnov test,
p-value 2.35e-07 and 3.25e-06 respectively).
Because a number of lncRNAs exert their function in cis

to influence their neighboring genes, we assumed that
these potential cancer-related lncRNAs likely have a closer
distance with cancer-related proteins by comparison of
cancer-unrelated lncRNAs. Therefore, we calculated the
distance of different lncRNA sets to their closest cancer-
related proteins, and compared it with the random back-
ground (that is the distance between cancer-related pro-
teins and random positions in genome) (Fig. 6b). We
found that the distances between cancer-unrelated
lncRNAs and cancer-related proteins are significantly
larger than that between cancer-related lncRNAs and
cancer-related proteins (Kolmogorov-Smirnov test,
p-value = 0.00041). Similarly, the distance of predicted
cancer-related lncRNAs to cancer-related proteins is far
closer than to cancer-unrelated lncRNAs (Kolmogorov-S-
mirnov test, p-value = 0.00116). Moreover, no significant
difference was detected between background and cancer-
unrelated lncRNAs set, as expected.
Next, we examined whether it is possible that the ex-

pression levels of cancer-related lncRNAs in cancer have
a more marked change as compared with that of
cancer-unrelated lncRNAs (Fig. 6c). By using lncRNA
expression data from TANRIC database, we calculated
the percentage of lncRNA differential expressed between
pairs of cancer and paracancerous tissues (lncRNAs with
absolute log2-fold change greater than 1), to see if there
is a difference among different lncRNA sets. We found

Fig. 5 Compare with other methods. a Comparison between the performance of CRlncRC and Zhao’s method. b Comparison between the
performance of CRlncRC and ExInAtor in BRCA and Superpancancer
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that lncRNAs in positive set had the highest percentage
of differential expressed genes (about 40%), while nega-
tive set only with about 20%. For those predicted
cancer-related lncRNAs, over 28% of them showed dif-
ferential expression. This result further supported our
prediction products have an evident association with
cancer, and also revealed that simple dependence on dif-
ferential expression is far from enough for identification
of cancer-related lncRNAs.
Finally, we investigated the GO (Gene Ontology) annota-

tions of these cancer-related lncRNAs candidates.
LncRNA’s GO annotations were predicted according to the
enriched GO terms of its neighboring proteins in the
co-expression network. The Top10 (sorted by p-value, Fish-
er’s exact test) enriched GO terms were listed in Fig. 6d.
From the list, we can found that the functions of these
cancer-related lncRNA candidates mainly focused on the
following keywords: 1) ‘RNA splicing’, such as ‘mRNA

splicing, via spliceosome’, ‘RNA splicing, via transesterifica-
tion reactions with bulged adenosine as nucleophile’,
and ‘RNA splicing, via transesterification reactions’; 2)
‘morphogenesis’, such as ‘cilium morphogenesis’, ‘cell
projection morphogenesis’, and ‘cell part morphogen-
esis’; 3) ‘immune’, such as ‘immune effector process’ and
‘regulation of immune system process’; 4) ‘mRNA pro-
cessing ‘, such as ‘mRNA processing’ and ‘mRNA meta-
bolic process’. These annotations revealed the potential
action modes of cancer-related lncRNAs, which is con-
sistent with many of the latest studies. For example, Si-
mon et al. discovered that a bifunctional RNA,
encoding both PNUTS mRNA and lncRNA-PNUTS,
could mediate EMT and tumor progression when its
splice switches from coding to noncoding transcript
[29]. Musahl et al. found ncRNA-RB1 could positively
regulate the expression of calreticulin (CALR) and se-
quentially activate anticancer immune responses [30].

Fig. 6 Validation of our novel cancer-related lncRNAs candidates. a Cumulative distribution of mutation number. b Cumulative distribution of the
closest distance to cancer-related proteins. c Bar plot of the percentage of differential expression lncRNAs. d The Top 10 GO BP terms of cancer-
related lncRNA candidates (Fisher’s exact test)
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Case study of the cancer-related lncRNA candidates
Besides utilizing genome-wide data to systematically
evaluate these cancer-related lncRNA candidates, we also
drilled down into some lncRNA cases. To our amazement,
in the Top10 cancer-related lncRNA candidates in our
prediction results, there are six predicted lncRNAs
(NNT-AS1, TP53TG1, LINC01278, LRRC75A-AS1,
MAGI2-AS3, EIF3J-AS1) to be found with literature sup-
ports. For example, lncRNA NNT-AS1 could promote cell
proliferation and invasion through Wnt/β-catenin signal-
ing pathway in cervical cancer [31] and contribute to pro-
liferation and migration of colorectal cancer cells both in
vitro and in vivo [32]. Besides, it can promote hepatocellu-
lar carcinoma and breast cancer progression through tar-
geting miR-363/CDK6 axis [33] and miR-142-3p/ZEB1
axis [34], respectively. Another example is a p53-induced
lncRNA TP53TG1, which is a newly identified tumor-sup-
pressor gene and plays a distinct role in the p53 response
to DNA damage. TP53TG1 hypermethylation in primary
tumors is shown to be associated with poor outcome [35].
According the newest research findings, TP53TG1 partici-
pated in the stress response under glucose deprivation in
glioma [36], and enhanced cisplatin sensitivity of
non-small cell lung cancer cells through regulating
miR-18a/PTEN axis [37].
Besides the lncRNAs mentioned above, another very

interesting lncRNA -- UBR5-AS1 (UBR5 antisense
RNA1) -- came into our view. UBR5-AS1 sits between
two protein-coding genes (UBR5 and P53R2). The 3′
terminal sequence of UBR5 is partial antisense to UBR5,
the latter is an oncogene in many cancers and contrib-
utes to cancer progression, cell proliferation [38, 39].
The 5′ end of UBR5-AS1 is positioned head-to-head (or
divergent) to P53R2, which is believed to play essential
roles in DNA repair, mtDNA synthesis and protection
against oxidative stress, and has a positive correlation
with drug sensitivity and tumor invasiveness [40]. Since
a host of studies had demonstrated that lncRNAs often
exert their function in cis to influence their neighboring
genes, we have good reasons to believe that UBR5-AS1
is very likely to be associated with cancer. However, till
now UBR5-AS1 has not been studied by researchers.
Figure 7a showed UBR5-AS1 and its neighbor region,

with a variety of information about epigenetics, conser-
vation and repeats (as visualized by UCSC genome
browser). We can see that the shared promoter region
between UBR5-AS1 and P53R2 had high H3K4me3 and
H3K27Ac signals, which are normally associated with
active transcription. On the other hand, although
lncRNAs often show less conservation compared with
protein-coding genes, the lncRNA UBR5-AS1 presented
a much strong sequence conservation that is nearly
comparable to the proteins of P53R2 and UBR5 (scoring
by 100 vertebrates Basewise Conservation by PhyloP).

This result suggested that UBR5-AS1 may undergo evolu-
tionary pressure for maintaining some important func-
tions. In addition, in the gene-body region of UBR5-AS1,
a great number of SINE and LTR repeats were found, both
of which had been extensively proved to be associated
with lncRNA’s regulatory function [41]. Next, we identified
up to 20 cancer-related proteins co-expressed with
UBR5-AS1 (Fig. 7b) and predicted the GO annotations of
UBR5-AS1 via GO enrichment analysis (Fig. 7c), by using
the co-expression sub-network centralized on UBR5-AS1.
The Top10 (sorted by p-value, Fisher’s exact test) enriched
GO terms showed that UBR5-AS1 was functionally rele-
vant with ‘RNA splicing’, ‘leukocyte activation’, ‘immune
system process’ and so on. All these findings indicate that
UBR5-AS1 underlines a highly potential cancer-related
lncRNA and is worthy of more intensive study.

Conclusions
Based on the consideration of massive outbreak of cancer
transcriptome data and the need of identification of
cancer-related lncRNAs, as well as the disadvantage of
current prediction model, in this work, we developed a
novel machine-learning-based classifier -- CRlncRC -- for
cancer-related lncRNAs, with integrating multiple features
and optimizing algorithms to enhance its prediction per-
formance. According to our results, CRlncRC has a signifi-
cant preponderance of prediction sensitivity and accuracy
over some previous models. Moreover, by using CRlncRC
method, we predicted a set of cancer-related lncRNAs, all
of which displayed a strong relevance to cancer as indi-
cated by somatic mutation number, distance with genes
encoding cancer-related proteins, differential expression
fold-change between pairs of tumor and normal tissues,
and GO enrichment analysis. Consequently, our predicted
cancer-related lncRNAs could be a valuable conception for
further cancer-related lncRNA function studies.

Methods
Construction of the positive and negative lncRNA sets
We manually reviewed more than 2500 published literature
(Additional file 10), and finally collected 158 cancer-related
lncRNAs as the positive set (Additional file 1). Cancer-re-
lated lncRNAs complied with the following standards: the
selected lncRNAs were either differentially expressed in
cancer (as verified by qRT-PCR), co-occurred with a signifi-
cant pertinence to clinicopathological parameters (e.g.,
tumor differentiation, clinical stage, survival time); or else,
were proven by functional experiments (e.g., colony forma-
tion assay, matrigel invasiveness assay, xenograft mouse
model, and metastasis nude mouse model) to participate in
cancer development.
To create the negative set, we located a large number

of SNPs derived from NHGRI-EBI GWAS Catalog [42]
into the sequences of lncRNAs, and selected only those
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in which no SNP was detected within 10 kb range as
cancer-unrelated lncRNAs. We finally obtained 4553
lncRNAs as the negative set (Additional file 2). Since the
size of the negative set greatly outnumbered the positive
set, for pairwise comparison in the same dimension, 100
sub-negative sets were constructed by random sampling
of 150 entries for 100 times from 4553 cancer-unrelated
lncRNAs.

Construction of the four categories of features
To reflect the differences between cancer-related
lncRNAs and cancer-unrelated lncRNAs, we collected
85 features that could potentially facilitate the recogni-
tion of cancer-related lncRNAs and grouped them into 4
different categories (Additional file 3): Genomic features
(18), Expression features (16), Epigenetic features (27),
and Network features (24).

Genomic features

1) GC content, which is much probable to influence
the stability of gene [4], and gene splicing [18, 19].
According to gene structures, we considered five
types of features, that is GC contents in TSS
(transcription start site) up- and down-stream 1 kb/
5 kb, gene body, exon, and intron.

2) Sequence conservation score. We considered
sequence conservation in both lncRNA’s exon
and intron as well as TSS up- and down-stream
1 kb, according to the phastCons scores pre-
calculated by the UCSC genome database
(https://genome.ucsc.edu).

3) Repeat. Recent research has revealed that repeat
elements can play important roles in transcriptional
and post-transcriptional regulation [43–48]. We ex-
tracted the number of LINEs, LTRs, Satellites and

Fig. 7 Characterization of lncRNA UBR5-AS1. a The gene structure, epigenetic, conservation and repeat features of UBR5-AS1 in UCSC genome
browser. b The co-expression sub-network of UBR5-AS1. c The Top 10 GO BP annotations of UBR5-AS1 (Fisher’s exact test)
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SINEs in either gene body or TSS up-stream
/down-stream 1k as repeat features. The transpos-
able elements were downloaded from UCSC gen-
ome database (genome version GRCh38/hg38,
genome annotation version GENCODE v24).

4) MiRNA host. LncRNAs may host miRNA both
within their exons and introns. We counted the
number of miRNAs (obtained from miRBase,
version 21) residing in the region of each lncRNA
by using BEDTools [49].

5) Micropeptide. Functional micropeptides can be
concealed within lncRNAs [50]. Meanwhile, the
length of these short peptides is likely to affect the
localization of lncRNAs. We obtained the short
peptide sequence of each transcript from the
LncRNAWiki [51] and calculated the average
peptide length.

Expression features
We intend to comprehensively depict the highly tem-
poral and spatial expression specificity of lncRNAs, with
the multi-tissue data as complete as possible. The ex-
pression profiles of 16 different tissue types were down-
loaded from Human Body Map project [52] and
normalized by our in-house scripts with DEseq [53]
method. The 16 different tissue types include adipose,
adrenal gland, brain, breast, colon, heart, kidney,
leukocyte, liver, lung, lymph node, ovary, prostate gland,
skeletal muscle, testis, thyroid gland.

Epigenetics features
The importance of maintaining or reprogramming his-
tone methylation appropriately is illustrated by links to
disease and aging, or possibly transmission of traits
across generations [54]. For example, Wan at al. found
that lncRNAs may be transcriptionally regulated by his-
tone modification in Alzheimer’s Disease [55]. Here, we
obtained nine epigenetics tracks. They are three types of
epigenetic signals (H3k4me1, H3k4me3, and H3k27ac)
in three types of cell lines (Gm12878, K562, and H1hesc)
from UCSC genome database. The average epigenetic
signals were calculated on gene body, TSS up- and
down-stream 1 kb/5 kb, respectively.

Network features
We constructed a gene co-expression network between
protein-coding and lncRNA genes from the above nor-
malized expression profiles. Spearman’s rank correlation
coefficient (SCC, cutoff scc-value = 0.6) was used for cal-
culating the correlation of each gene pair across the
samples. Then we achieved three types of features of
co-expression network:

1) Co-expression with cancer driver genes. The SCC
values with Top20 mutational hotspots cancer
driver genes were used as network features. These
cancer driver genes were downloaded from http://
cancerhotspots.org, including BRAF, CDKN2A,
CTNNB1, EGFR, ERBB2, FBXW7, GNAS, H3F3A,
HRAS, IDH1, KRAS, NRAS, PIK3CA, PTEN,
RAC1, SF3B1, TP53, and U2AF1.

2) Co-expression interactions with cancer-related pro-
teins.We calculated the number of interactions be-
tween lncRNA and cancer-related protein-coding
genes in the co-expression network. The cancer-related
protein-coding gene list is downloaded from Cancer
Gene Census (https://cancer.sanger.ac.uk/census).

3) Total degree in co-expression network. Hub genes
in the gene network usually means functional im-
portant genes. Thus we checked the number of
neighbors in co-expression network of each lncRNA.

We also investigated the miRNA-target interaction
network between miRNA lncRNA. miRNAs are higher
relevant to cancer, with many key effects on various
biological processes, e.g., embryonic development, cell
division, differentiation, and apoptosis, are widely recog-
nized [56, 57]. We downloaded cancer-related miRNA
from HMDD v2.0 [58]. For each lncRNA, we counted
the number of its regulatory cancer-related miRNAs, as
well as that of all the involved miRNAs. We download
the interaction information between miRNA and
lncRNA from starBase [57].

Machine learning algorithms
Scikit-learn [59] is a python package that exposes a wide
variety of machine learning algorithms which enabling
easy comparison of methods. We use five machine learn-
ing algorithms in this package to train and validate our
data. The detail algorithms parameter can be found in
Additional file 11. The python script we performed our
analysis can be found in Github (https://github.com/
xuanblo/CRlncRC).

Coding-lncRNA gene co-expression network construction
A gene co-expression network was constructed between
protein-coding and lncRNA genes from the above nor-
malized expression profiles. We calculated the Spear-
man’s correlation coefficient and its corresponding
P-value (Eq. 1) between the expression profiles of each
gene-pair using the in-house Perl script. Only gene-pair
with an adjusted P-value of 0.01 or less and with a
Spearman’s correlation coefficient no less than 0.6 is
regarded as co-expression in our coding-lncRNA gene
co-expression network.
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Where x or y represents the vector of the ranked ex-
pression value of each gene, Rs is the Spearman’s correl-
ation coefficient between x and y, xi or yi stands for the
rank of each expression value, �x or �y, is the mean value
of these ranks. F(Rs) is the Fisher transformation of Rs,
and n is the sample size i.e. the vector length. The corre-
sponding P-value of each Rs is calculated from Z, which
is a z-score for Rs that approximately follows a standard
normal distribution under the null hypothesis of statis-
tical independence [60, 61].

LncRNA functional annotation
The GO annotation of protein coding-genes was down-
loaded from Gene Ontology Consortium (only biological
process annotations were considered). While, GO annota-
tion of lncRNA was predicted using the GOATOOLS
(version 0.6.4) [62], which determines the GO annotation
of one gene in our network according to the GO annota-
tions of its immediate neighbor genes (P-value < 0.05).
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