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Abstract

Background: Forty-two percent of patients experience disease comorbidity, contributing substantially to mortality
rates and increased healthcare costs. Yet, the possibility of underlying shared mechanisms for diseases remains not
well established, and few studies have confirmed their molecular predictions with clinical datasets.

Methods: In this work, we integrated genome-wide association study (GWAS) associating diseases and single
nucleotide polymorphisms (SNPs) with transcript regulatory activity from expression quantitative trait loci
(eQTL). This allowed novel mechanistic insights for noncoding and intergenic regions. We then analyzed pairs
of SNPs across diseases to identify shared molecular effectors robust to multiple test correction (False
Discovery Rate FDReRNA < 0.05). We hypothesized that disease pairs found to be molecularly convergent would
also be significantly overrepresented among comorbidities in clinical datasets. To assess our hypothesis, we
used clinical claims datasets from the Healthcare Cost and Utilization Project (HCUP) and calculated significant
disease comorbidities (FDRcomorbidity < 0.05). We finally verified if disease pairs resulting molecularly convergent
were also statistically comorbid more than by chance using the Fisher’s Exact Test.

Results: Our approach integrates: (i) 6175 SNPs associated with 238 diseases from ~ 1000 GWAS, (ii) eQTL
associations from 19 tissues, and (iii) claims data for 35 million patients from HCUP. Logistic regression
(controlled for age, gender, and race) identified comorbidities in HCUP, while enrichment analyses identified
cis- and trans-eQTL downstream effectors of GWAS-identified variants. Among ~ 16,000 combinations of
diseases, 398 disease-pairs were prioritized by both convergent eQTL-genetics (RNA overlap enrichment,
FDReRNA < 0.05) and clinical comorbidities (OR > 1.5, FDRcomorbidity < 0.05). Case studies of comorbidities
illustrate specific convergent noncoding regulatory elements. An intergenic architecture of disease
comorbidity was unveiled due to GWAS and eQTL-derived convergent mechanisms between distinct diseases
being overrepresented among observed comorbidities in clinical datasets (OR = 8.6, p-value = 6.4 × 10− 5 FET).

(Continued on next page)

* Correspondence: haiquan@email.arizona.edu; yves@email.arizona.edu
†Haiquan Li and Jung Wei Fan contributed equally to this work.
1Center for Biomedical Informatics and Biostatistics, The University of Arizona,
Tucson, AZ 85721, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Li et al. BMC Medical Genomics 2018, 11(Suppl 6):112
https://doi.org/10.1186/s12920-018-0428-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-018-0428-9&domain=pdf
mailto:haiquan@email.arizona.edu
mailto:yves@email.arizona.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusions: These comorbid diseases with convergent eQTL genetic mechanisms suggest clinical
syndromes. While it took over a decade to confirm the genetic underpinning of the metabolic syndrome,
this study is likely highlighting hundreds of new ones. Further, this knowledge may improve the clinical
management of comorbidities with precision and shed light on novel approaches of drug repositioning or
SNP-guided precision molecular therapy inclusive of intergenic risks.

Keywords: Disease comorbidities, GWAS studies, eQTL, Genetic network, Non-coding variants, RNA, SNP,
Diseases, Complex diseases, Intergenic, Common diseases

Background
Comorbidity, or the co-occurrence of two or more dis-
eases with each other, is a widespread phenomenon with
estimates suggesting that 42% of all patients have at least
one comorbidity [1]. For example, comorbid metabolic
syndrome, presenting at least two diseases from a cluster
of metabolic underlying medical conditions, afflicts 47
million people in the US alone [2]. Comorbidities do not
occur randomly, and the excess observation of specific
disease-disease co-occurrence in clinical records can
imply shared underlying pathophysiological mechanisms
[3]. Another recent study showed that 120 disease-trait
pairs (e.g., acute lymphoblastic leukemia-mean corpus-
cular volume) with shared genetic architecture using cu-
rated gene association studies significantly co-occurred
in electronic health records [4].
Big data science approaches have begun to characterize

biomolecular mechanisms that lead to cross-disease rela-
tionships; however, these have primarily focused on spe-
cific disease-disease hypotheses or required biochemically
well-described disease-protein associations as input (e.g.,
using protein-protein interactions [5, 6]). In addition, very
few studies have validated their predictions of comorbid
syndromes (a group of medical conditions consistently oc-
curring together) by observation in clinical datasets [7].
Specifically, these few computational biology studies have
shown to correlate with clinical comorbidity: (i) the pres-
ence of shared gene expression and flux coupling in
metabolic pathways of disease-causing genes [8], (ii) the
overlap of disease-associated host genes of polymorphisms
and their interacting proteins or functional annota-
tions [9, 10], (iii) the comorbidity of diseases sharing
Mendelian genetics [11], (iv) the overrepresentation of
Mendelian disease genes in differentially expressed genes
of cancers [12], and (v) the genetic or phenotypic network
proximity observed in databases of complex and Mendel-
ian genetics [13]. However, all of these approaches focused
on candidates within the protein-coding genome, with
intergenic regions neglected by design. Yet, intergenic and
noncoding regions of the genome contain the majority of
genetic variants associated with common diseases accord-
ing to genome-wide association studies (GWAS) [7, 14].
Despite this abundance of noncoding genetic signals, the

role of these intergenic polymorphisms in the pathology
of clinical comorbidities remains insufficiently character-
ized [15, 16].
We hypothesize that intergenic variants explain in

part the emergence of comorbidities through their role
in gene regulation. Variants located far from coding
regions and noncoding variants could cause comor-
bidity by regulating expression levels of messenger
RNA transcripts, which are associated with both dis-
eases. These regulated genes can presumably be im-
puted using expression quantitative trait loci (eQTL)
that associate single nucleotide polymorphisms
(SNPs) with altered levels of messenger RNAs,
microRNAs, and/or noncoding RNA transcript ex-
pression. Note, we will refer eQTL-associated RNAs
as eQTL RNA hereafter. Statistically-significant over-
lap of eQTL-associated RNAs whose expression is
regulated by distinct disease-associated SNPs could
identify a novel shared biomolecular mechanism be-
tween a disease-disease pair, or comorbid syndromes
in general. This relationship could then be validated
by the overrepresentation of that disease-disease pair
(comorbidity) in clinical care.
To examine this hypothesis, we integrated summary

statistics from the NHGRI-EBI GWAS Catalog of
published genome-wide association studies [14] with
eQTL calculated by Fagny and colleagues [17] from
the Gene-Tissue Expression (GTEx) project [18] to
investigate the effects of intergenic variants with an
emphasis on trans-regulation of gene expression. We
previously published precursors to this approach
which were limited to lymphoblastic cell line and
liver tissue-derived eQTL data [19, 20]. In these two
studies, we could accurately predict genetic synergy
and antagonism between within-disease SNP pairs
which were validated by an independent GWAS.
This demonstrates that within-disease-SNP pairs, for
which a statistical relationship has been predicted be-
tween their downstream messenger RNAs are associ-
ated by eQTL, were substantially overrepresented
among interacting chromatin elements found
in ChIA-PET data drawn from The Encyclopedia of
DNA Elements [21]. With that established, the study
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in this paper now focuses on convergent mechanisms
between diseases and leverages a large clinical dataset
from 35 million patients.

Methods
An overview of this study is shown in Fig. 1 and consists
of six major steps: 1) data preprocessing (Fig. 1a), 2)
computation of convergent molecular mechanisms be-
tween SNP pairs associated with distinct diseases via
GWAS and eQTL studies (Fig. 1b), 3) disease comorbid-
ity calculations using Healthcare Cost and Utilization
Project (HCUP) clinical datasets (Fig. 1c), 4) comparative
study and validation (Fig. 1d), 5) network construction
(Fig. 1e), and 6) additional validation through manual
curation (Fig. 1f ). In detail, the preprocessing step
(Methods- Data preprocessing to define disease bun-
dles and map heterogeneous diseases representation)
consisted of defining the terminology between the dis-
ease classes of interest, represented in the GWAS
studies, for the purposes of the study, i.e., disease-bun-
dles. This disease list was obtained through a
semi-automated procedure consisting of expert curation
and the use of different data sources, such as the Systema-
tized Nomenclature of Medicine--Clinical Terms (SNO-
MED-CT) [22, 23] and the Unified Medical Language
System (UMLS) [24]. This also enabled the harmonization
of discrepant disease nomenclatures of the GWAS studies
and the claim records by defining a controlled disease ter-
minology between the molecular and clinical datasets. The
second step included the imputation of molecular conver-
gence between disease bundle pairs and the related
statistical significance using eQTL associations of SNPs as-
sociated via GWAS to the two diseases in the pair
(Methods- Statistical overlap of eQTL-associated RNAs
between distinct disease-associated SNPs). Next, we
used the HCUP Electronic Health Records (EHR) datasets
to calculate disease comorbidities and their statistical sig-
nificance (Methods- Calculation of disease comorbidity
based on HCUP). Finally, to verify our hypothesis, we
studied the concordance between the genetic convergence
and clinical comorbidity and discuss our findings
(Methods- Comparative studies between eQTLs and
HCUP - Curation of prioritized comorbidities).

Datasets
The study integrates nine data sources (Table 1). GWAS
diseases and their reproducible disease-associated SNPs
were downloaded from the NHGRI-EBI GWAS cata-
log. To extract eQTL associations linking SNPs to
expressed genes (RNAs), we downloaded files calculated
by Fagny and colleagues [17] from the GTEx project V6
[18] spanning 19 tissues. The authors determined cis-
and trans-eQTL at p-value< 0.2 for 19 tissues. These files
were chosen to conduct a more in-depth analysis of

trans-eQTLs. For clinical data, we acquired the Health-
care Cost and Utilization Project (HCUP) claim datasets.
Both the HCUP National Inpatient Sample (NIS13) and
the HCUP Nationwide Emergency Department Sample
(NEDS13) datasets were employed to compute and en-
sure the reproducibility of comorbidities. For the defin-
ition of the disease bundles and for mapping purposes,
we integrated several phenotype datasets, including
EMBL-EBI Experimental Factor Ontology (EFO) [14],
the SNOMED-CT, and the Unified Medical Language
System (UMLS) MRCONSO file. Finally, other datasets
were downloaded as needed for biological study, such as
the Single Nucleotide Polymorphism database (dbSNP)
[25] for intragenic (within gene coordinates) and inter-
genic (between genes) categorization, and HapMap [26],
1000 Genomes Project [27], and LDlink [28] for linkage
disequilibrium (LD) in case studies.

Data preprocessing to define disease bundles and map
heterogeneous diseases representation
The HCUP clinical datasets use ICD-9-CM diagnosis
codes while the genetic GWAS dataset uses heteroge-
neous descriptive language for disease names that vary
even in related studies of the same trait. To bridge the
heterogeneous disease names between datasets, as a first
step (Fig. 1a), we performed semi-automated curation
and normalization of the disease names into the
SNOMED-CT concepts. The use of SNOMED-CT, i.e., a
comprehensive ontology organized as a directed
acyclic graph (DAG), allowed for the automatic cal-
culation of a semantic relatedness/similarity between
the diseases by leveraging the SNOMED-CT hier-
archy [23]. Thanks to this procedure, all disease
names in the GWAS Catalog were first regrouped
into SNOMED-CT classes of proper semantic granu-
larity, i.e., disease-bundles (Methods- Creation of
the SNOMED-coded disease-bundles from GWAS
terms). Similarly, each ICD-9-CM code [29] relating
to a disease in the HCUP datasets was also mapped
to the corresponding SNOMED-CT code, facilitating
the comparison with the diseases represented in the
GWAS studies (Methods- Mapping HCUP diseases
to disease-bundles).

Creation of the SNOMED-coded disease-bundles from
GWAS terms
To focus only on diseases from the GWAS Catalog
corresponding to disease phenotypes (e.g., removing
phenotypes associated with response to therapy or
non-disease traits such as skin color), we kept only
GWAS traits under the disease branch of the
EMBL-EBI EFO, reducing the number of unique
traits from 1622 to 533. Next, a first round of cur-
ation was performed by physicians, which further
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Fig. 1 (See legend on next page.)
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reduced these 533 GWAS disease traits to 481 of
interest for purposes of the study. Through the
disease-EFO mapping, we linked (whenever available)
each GWAS disease-trait to external terminology
IDs, i.e., SNOMED-CT and ICD-9-CM. To automat-
ically augment the coverage of GWAS
trait-to-SNOMED-CT mapping, we first mapped the
EFO-linked external IDs to UMLS Concept Unique
Identifiers (CUIs) using the UMLS MRCONSO table
and, second, we obtained the final SNOMED-CT list
by retaining all the SNOMED-CT IDs covered under
each CUI. After the augmented mapping, we linked
431 disease terms to at least one SNOMED-CT ID.
Next, starting from the resulting mapping, we defined

a list of non-redundant and clinically meaningful
disease-bundle candidates by applying two criteria: 1)
merging pairs of diseases into a disease-bundle if they
were mapped to an identical set of SNOMED IDs; and

2) merging pairs of diseases into a disease-bundle if the
disease names were identical after removing the ending
parenthetical qualifier of the GWAS term, e.g., “Glau-
coma” and “Glaucoma (high intraocular pressure)”. For
quality control, the disease-bundles underwent iterative
curation by a physician, a geneticist, and a clinical infor-
matician. Following this procedure, we finally selected
from the GWAS Catalog a total of 238 disease-bundles
associated with 6175 SNPs.
Mapping HCUP diseases to disease-bundles (coded in

SNOMED-CT).
To compare the disease comorbidity obtained using

the HCUP datasets with the disease pairs sharing
convergent mechanisms via GWAS and eQTL associ-
ations, we had to convert the ICD-9-CM diagnosis
codes in the HCUP datasets to the previously identi-
fied disease-bundles. Since ICD-9-CM is a classification
and SNOMED-CT is a nomenclature, our mapped

Table 1 Data sources

Dataset name Version Downloaded Source (URL) Data type derived

NIGHRI-EBI GWAS
Catalog

2016 07/10/2016 https://www.ebi.ac.uk/gwas/docs/file-downloads Disease-to-SNP associations derived
from GWAS

EMBL-EBI EFO 2016 07/10/2016 https://bioportal.bioontology.org/ontologies/EFO Disease branches

GTEx V6 05/04/2017 http://networkmedicine.org:3838/eqtl/ SNP-to-eQTL_RNA relations derived from
eQTL studing associating SNPs to the
regulated targets (RNAs)

dbSNP 142 08/25/2016 ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/
ASN1_flat/

SNP host gene or intergenic SNPs

HCUP 2013 09/01/2016 https://www.distributor.hcup-us.ahrq.gov/ Disease-patient relations

SNOMED Sep.
2015

11/2015 https://www.nlm.nih.gov/healthit/snomedct/us_edition.html Disease SNOMED-CT IDs

UMLS 2015AA 07/09/2015 https://www.nlm.nih.gov/research/umls/licensedcontent/
umlsarchives04.html

Disease UMLS IDs

HapMap LD 2009 10/11/2010 ftp://ftp.ncbi.nlm.nih.gov/hapmap/ld_data/ Linkage disequilibrium data

1000 Genome 2014 11/14/2014 ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ Linkage disequilibrium r^2

(See figure on previous page.)
Fig. 1 Overview of the study. a Preprocessing. We created a controlled disease terminology across the molecular data from the GWAS
Catalog and the HCUP clinical datasets (Methods- Data preprocessing to define disease bundles). We mapped GWAS diseases into
disease bundles, i.e., group diseases, using the EMBL-EBI EFO, UMLS-CUI, SNOMED-CT nomenclatures integrated with expert curation
(Methods- Creation of the SNOMED-coded disease-bundles from GWAS terms). Similarly, we mapped HCUP diseases coded with ICD-9-
CM terminology into disease bundles by using SNOMED-CT, UMLS, and expert curation (Methods- Mapping HCUP diseases to disease-
bundles). b eQTL RNA overlap model. Convergence between downstream eQTLs signals associated with coding and intergenic
disease-associated polymorphisms are calculated for each pair of diseases (Methods- Statistical overlap). We selected significant disease
pairs sharing convergent mechanisms by applying the Fisher’s Exact Test (FET) according to the contingency table shown in the
panel. We considered significant disease pairs surpassing FDReRNA of 0.05. c Disease comorbidity model. We computed the disease
comorbidity for each disease pairs by applying logistic regression (Methods- Calculation of disease comorbidity) to the clinical
datasets. The effect size and significance of disease co-occurrence in clinical datasets (comorbidities) were controlled for age, gender,
and race. Significant comorbid disease pairs were selected accordingly with FDR values (FDRcomorbidity < 0.05). d Comparative study.
Finally, congruence between molecular-prioritized disease pairs and clinically-prioritized comorbidities is measured by applying FET-
based enrichment studies (FETfinal) (Methods- Comparative studies between eQTLs and HCUP). e Network visualization. We further
investigated in detail the molecular networks of comorbid disease pairs with sharing convergent genetics (eQTL RNAs) (Methods-
Network visualization of the comorbidities sharing intergenic genetic risks). f Curation. For additional validation, we conducted a
systematic curation of the literature using PUBMED and Google Scholar for the comorbidities discovered from HCUP datasets (FDR <
0.05, OR > 3) having convergent eQTL RNAs (Methods- Curation of prioritized comorbidities)
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SNOMED-CT concepts are more comprehensive than
ICD-9-CM codes [29]. Therefore, we proceeded by identi-
fying all descendant terms of a SNOMED-CT term associ-
ated with a GWAS disease-bundle. Next, the most precise
correspondence between SNOMED-CT codes and
ICD-9-CM codes were identified using the UMLS dataset.
Inconsistent SNOMED-CT-to-ICD-9-CM mappings were
detected through a final curation by experts. This proced-
ure enabled the mapping of 2454 ICD-9-CM codes into
188 bundles that occur in the two HCUP datasets.

Statistical overlap of eQTL-associated RNAs between
distinct disease-associated SNPs (eQTL RNA overlap)
To identify the effect size and significance of shared
genetic risk mechanisms between two diseases, we
assessed the statistical overlap of expressed RNAs as-
sociated with disease-associated SNPs by eQTL stud-
ies (eQTL RNA overlap model, proxy for shared
transcript mechanisms). As our focus was specifically
on interpretable downstream mechanistic insight
through the incorporation of eQTL, we investigated
beyond the simple model of SNPs or loci shared by
two different diseases (eQTL SNP overlap model). Ex-
amples of studies on disease-disease relationships
through common shared risk loci (e.g., HLA) can be
found in [30–33].
In our model, we integrated disease-to-SNP associa-

tions via GWAS with SNP-to-eQTL RNA associations
via eQTL. As each disease may have one or many
associated SNPs by GWAS and each SNP may regu-
late the expression of multiple genes via eQTL (eQTL
RNAs), acting either in cis or trans, we used
SNP-SNP pairs associated with two distinct diseases
and with a statistically-significant overlap of RNA(s)
to prioritize the disease pairs (Fig. 1b) (described
below).
For each SNP-SNP pair where the SNPs are associ-

ated with two distinct diseases, we determined
whether or not both SNPs were independently asso-
ciated with regulating the same eQTL RNA tran-
script within a specific tissue/cell line. Since we
focused on SNP-SNP pairs associated to distinct dis-
ease pairs, we could determine disease pairs with
significant eQTL RNA overlapping using the Fisher’s
Exact Test (FETeRNA). In detail, for each of the 19
tissues, we used the FET by taking all expressed
eQTL RNAs as background and evaluating whether
or not a eQTL RNA was associated with each of the
two diseases via the associated SNPs. This allowed
us to construct a contingency table (Fig. 1b) and de-
rive a statistical significance (p-value) between any
pair of diseases for each tissue. P-values were ad-
justed for multiple comparisons by False Discovery

Rate (FDReRNA) using the Benjamini–Hochberg pro-
cedure [34].
In our approach, we retained all disease pairs sur-

passing the stringent cutoff of 0.05 for the FDR
values.

Calculation of disease comorbidity based on HCUP
As mentioned, the comorbidity between bundled dis-
eases from two HCUP datasets, the National Inpatient
Sample (NIS13) and the Nationwide Emergency De-
partment Sample (NEDS13), were assessed for robust
findings. Two directional comorbidities for every pair
of disease-bundles were evaluated separately (Fig. 1c).
For each pair of disease-bundles, denoted D1 and D2,
we tested the following logistic regression models (E:
expectation):

E logit D1ð Þð Þ ¼ β10 þ β11D2 þ β12raceþ β13sex
þ β14age ð1Þ

E logit D2ð Þð Þ ¼ β20 þ β21D1 þ β22raceþ β23sex
þ β24age ð2Þ

The two models correspond to the comorbidity risk
of D1 given D2 and D2 given D1 respectively. Covari-
ates (confounders), such as race, sex, and age, were
adjusted in both models. β ij are logistic coefficients
of each variable to be estimated from the data. We
chose not to use alternative methods, such as graph-
ical modeling [35] and LASSO [36, 37] since graph-
ical models are typically used to understand the joint
dependence structure for a set of variables, while
LASSO is commonly used for regularization when
there are large numbers of potential effects in the
model.
In implementation, we collected the most specific

disease codes (all five ICD-9-CM digits) mapped to
the disease-bundles. Then, for each patient, we deter-
mined whether the patient has a billing code among
the mapped ICD-9-CM codes, through which the sta-
tuses for a pair of disease-bundles were determined.
From all patients without missing required data (e.g.,
missing sex information), the parameters within the
two models were estimated and the significance of
the directional comorbidity (β11 and β21) was in-
ferred. We adjusted multiple comparisons from both
models and across all pairs of disease-bundles using
Benjamini-Hochberg procedure to derive the False
Discovery Rate [34], which derived two directional
FDRs for each pair of disease-bundles (e.g., disease A
may cause disease B and not the reverse). Disease
pairs with FDR < 0.05 in either directional tests were
considered as comorbidities. Larger odds ratio (OR)
were estimated from the power of two coefficients
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(β11 and β21) as the OR of comorbidity between each
pair of diseases. These calculations were conducted in
both HCUP datasets separately and the best p-value
is reported in Additional file 1 as FDRcomorbidity. We
further confirmed the ORs from an additional bivari-
ate logistic model within the Zelig R package for the
retained disease pairs, where the bivariate logistic
model is unidirectional and able to estimate the de-
pendence of the two disease variables subjected to co-
variates, yielding a mean odds ratio between a pair of
diseases [38].

Comparative studies between eQTLs and HCUP
To verify the hypothesis that diseases sharing conver-
gent downstream are more likely to show comorbidi-
ties and that an association exists between disease
comorbidity and genetic/genomic architectures, we in-
vestigated the concordance between disease pairs
showing significant downstream eQTL convergence in
GWAS (Methods- Statistical overlap of eQTL-associated
RNAs between distinct disease-associated SNPs) and the
pairs of diseases resulted prioritized as comorbid
using the HCUP clinical data (Methods- Calculation
of disease comorbidity based on HCUP). To this

end, we performed a FET to test the enrichment of
comorbid disease-pairs with the disease pairs sharing
eQTL mechanisms (FETfinal, Fig. 1d). In the FETfinal

test, we examined the number of disease pairs re-
sulted statistically significant (FDR < 0.05)/not signifi-
cant in the molecular dataset and in the clinical
comorbid data. Therefore, the FETfinal test was con-
ducted by counting the number of disease pairs
under each of the four combinative conditions (con-
tingency table shown in Fig. 1d). The signal robust-
ness was verified across different conditions and
datasets, different FDR cutoffs (ranging from 0.02 to
1) were evaluated for both comorbidity and eQTL
RNA overlap, and the reproducibility and the enrich-
ment trend were examined with respect to the
strength of the cutoffs (Fig. 2). The reproducibility
from multiple HCUP datasets was also examined
using the comorbidity observed in multiple datasets.
In addition, we performed a further validation ap-

plying the FET test as previously described but ex-
cluded the disease pairs involving similar diseases.
This way we could assess the significance of diseases
not similar resulted sharing convergent mechanisms
as well as comorbid.

Fig. 2 Convergent downstream genetic mechanisms predicted from shared eQTL RNA between disease-pairs are enriched among
comorbidities observed in clinical datasets. Vertical axis = odds ratio of overrepresentation of shared molecular mechanisms among
clinical comorbidities (Results-Convergent genetic mechanisms between disease-pairs are enriched among comorbid disease). Left
bottom axis = FDR cutoffs of comorbidities found in the HCUP clinical datasets (OR > 3; Results- Prioritized comorbidities), right bottom
axis = FDR cutoffs of shared molecular mechanisms discovered between two diseases
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To identify similar pairs, we computed a
clinical-ontology-based semantic similarity (or dis-
tance) between the disease-bundle pairs applying
Lin’s similarity metric [39] with Sanchez et al.’s in-
formation content estimation [40]. This approach
takes into account the SNOMED-CT ontological
structure, and SNOMED-CT are used as proxy for
phenotypic relatedness of diseases. For each bundle
pair, a score between 0 and 1 was derived. We con-
sidered two diseases similar if their similarity score
was higher than 0.9.

Network visualization of the comorbidities sharing
intergenic genetic risks through eQTL RNA overlap
First, we created a network representing disease pairs
(Fig. 1e) including (i) disease pairs sharing genetic
mechanism through eQTL RNA overlap of eQTL as-
sociations to disease-associated SNPs (Methods- Stat-
istical overlap of eQTL-associated RNAs between
distinct disease-associated SNPs), and (ii) disease
comorbidities in at least one of the two HCUP data-
sets (Methods - Calculation of disease comorbidity
based on HCUP). Here, network nodes represent dis-
eases and two nodes (diseases) are linked (network
edge) if the related disease pair meet both the
above-mentioned comorbidity and eQTL RNA overlap
criteria. To every edge, we assigned a weight corre-
sponding to the number of distinct tissues that
yielded the significance of the disease pairs. We col-
ored the nodes according to the clinical organ-system
classes as defined by Han et al. [19] and adjusted
edge width according to the edge-related weight
value.
Second, for any interesting overlapping disease

pairs, we built a related network to represent the
biomolecular mechanisms underlying the comorbid-
ity between the two diseases. Therefore, a network
was built for each comorbid pair by connecting each
disease in the pair to the related SNPs via GWAS
and then associating each SNP to the overlapping
RNAs resulted via the eQTL associations. Nodes of
the resulting network can represent a disease, a SNP,
or a RNA, and edges can correspond to
disease-to-SNP or SNP-to-eQTL RNA associations.
The biomolecular network of a comorbid disease
pair therefore includes the common downstream
RNAs (prioritized at FDR < 0.05) between the corre-
sponding prioritized and disease-associated SNPs
(Methods- Calculation of disease comorbidity
based on HCUP). Irrelevant information for the co-
morbidity (e.g., insignificant eQTL RNA overlap)
that can be derived from other edges is not shown.
Note, we grouped as a single locus (LD ≥ 0.8) the
SNP pairs associated with the same disease and that

are in Linkage Disequilibrium (LD). All networks were vi-
sualized using Cytoscape [41].

Curation of prioritized comorbidities
For the comorbidities discovered from HCUP data-
sets (FDR < 0.05, OR > 3) that have convergent eQTL
downstream genes, we conducted a systematic cur-
ation of the literature using PUBMED and Google
Scholar (Fig. 1f ). Disease names were searched in
PUBMED and Google Scholar and abstracts of the
resulted papers were checked for comorbidity evi-
dence. Full texts were examined if a conclusion of
comorbidity could not be concluded in the abstracts.
For quality control, three independent curators car-
ried out the curation and resolved. In addition, 15%
of random disease pairs (controls), selected among
pairs with no comorbidity in either HCUP datasets
nor convergent eQTL mechanisms in any GTEx tis-
sue, were added to the curation list (blind to cura-
tors). An inter-rater agreement was computed using
the Spearman correlation test, while disagreement
was thereafter solved under the supervision of an ex-
pert physician. Next, we categorized the resulting
curation evidence of a disease pair into six levels: 1
= well-performed controlled studies confirming the
positive comorbidity, 2 = evidence from studies with
important limitation (e.g., small sample size), 3 = an-
ecdotal case reports, 4 = strong evidence of absence
of association (well-controlled studies, no signifi-
cance), 5 = absence of studies in the literature, and 6
= strong evidence for an anti-correlation or
non-coexistence of the diseases. Finally, to assess our
results, we compared the frequencies of levels of
evidence confirming the “prioritized comorbidities
sharing molecular mechanisms” with those of the
random disease-pair controls using the Chi-square
test since multiple levels were involved in the test.

Results
Preprocessing results
We mapped the diseases extracted from the GWAS
Catalog and HCUP datasets into disease bundles as
described in Methods- Data preprocessing to de-
fine disease bundles and map heterogeneous dis-
eases representation. In detail, 262 disease bundles
were associated with 429 diseases collected from the
GWAS (Additional file 2). Out of these 262 diseases,
188 are associated with SNPs having eQTL associa-
tions with at least one eQTL RNA. On the other
hand, using the clinical HCUP datasets, we associ-
ated 238 disease bundles with 2454 ICD-9-CM dis-
eases (Additional file 3).
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Disease pairs with convergent eQTL-mechanisms of
genetic polymorphisms
The eQTL RNA overlap model allowed for the iden-
tification of shared RNAs associated with eQTL
SNPs that were also significantly associated with two
distinct diseases (FETeQTL). We conducted the eQTL
RNA enrichment among all the possible combina-
tions of the 188 disease bundles associated with
SNPs present in at least one eQTL study, using each
of the 19 GTEx tissues. The possible disease pairs
combinations resulting from the 19 tissues were
16,320 (Note: this number is not the possible theor-
etical combination between all the 188 diseases since
not all the pairs were present in all tissues). Starting
from the GTEx studies, for each tissue, we extracted
the eQTL SNPs and RNAs associated to the diseases
(Table 2; Input columns) and computed the eQTL
mRNA overlap model to extract significant disease
pairs with convergent molecular mechanisms
(Methods- Statistical overlap of eQTL-associated
RNAs between distinct disease-associated SNPs).
Overall, we prioritized 2043 distinct disease pairs
with significant eQTL RNA overlap (FDReRNA < 0.05;
across all tissues) out of these possible pairs. In our
calculation, we considered SNP-SNP pairs and the
related eQTL RNAs where each SNP was associated
to a distinct disease. Therefore, we specifically tested
for cis- and trans-eQTL overrepresentation from
coding as well as noncoding and intergenic SNPs.
Note that the number of significant disease pairs
varied from tissue to tissue, with lung tissue yielding
the minimal number (45) of disease pairs and skin
tissue yielding the maximal number (1775) of disease
pairs (Table 2; Output column).

Prioritized comorbidities
From the clinical NIS13 and the NEDS13 HCUP
datasets (7 and 29 million patients observed at the
hospital and emergency department, respectively and
involving 237 disease bundles), 3032 and 4430 sig-
nificant comorbidities were prioritized (OR > 1.5;
FDRcomorbidity < 0.05; Additional file 4) accordingly,
after adjusting for age, gender, and race. Overall, the
union of the two findings resulted in 5200 significant
comorbidities (HCUP OR > 1.5; FDRcomorbidity < 0.05),
of which 2346 were found at OR > 3.

Convergent genetic mechanisms between disease-pairs
are enriched among comorbid diseases
Among 5200 and 2346 comorbidities respectively ob-
served in the HCUP clinical datasets at OR > 1.5 and
OR > 3 (FDRcomorbidity < 0.05; Results- Disease pairs
with convergent eQTL-mechanisms of genetic poly-
morphisms), 398 (Additional file 1) and 211 were also

predicted as sharing common mechanisms among 2043
distinct disease pairs resulted with significant eQTL
RNA overlap (FDReRNA < 0.05; Results - Disease pairs
with convergent eQTL-mechanisms of genetic poly-
morphisms). Thus, the enrichment of clinical comor-
bidities with convergent genetics resulted significant
(OR = 1.6; p-value = 2 × 10− 9; Fig. 2). Moreover, the
enrichment of convergent downstream eQTL RNA
(overlap) reaches an odds ratio as high as 8.6
(p-value = 6.4 × 10− 5 FET) when eQTL RNA overlap is
FDReRNA < 10− 18, and comorbidity OR > 3 and FDRco-

morbidity < 10− 11. The removal of highly-related diseases
using information theoretic similarity in SNOMED
yielded similar results (result not shown) confirming
the robustness of the approach. These results suggest

Table 2 Count of prioritized disease pairs by eQTL RNA
overlap for each tissue

Tissue of
eQTL
associations

INPUT OUTPUT

Distinct
eQTL
SNPs

Distinct
eQTL
RNAs

Distinct
SNP-RNA
associations

Distinct
diseases

Prioritized
disease pairs
(FDR < 5%)

Adipose
subcutaneous

620 489 2400 127 1581

Artery aorta 337 200 1264 96 1198

Artery tibial 492 365 1898 125 1331

Blood 270 117 1388 77 1191

Brain 188 50 554 67 448

Breast
mammary
tissue

238 83 987 80 970

Cells
transformed
fibroblasts

541 417 1485 123 799

Colon
transverse

231 95 810 80 748

Esophagus
mucosa

518 398 1927 126 1462

Esophagus
muscularis

560 421 1856 135 1366

Heart atrial
appendage

218 55 867 71 674

Heart left
ventricle

378 199 1283 104 1201

Lung 154 138 416 68 45

Muscle skeletal 551 408 2240 130 1617

Nerve tibial 748 627 2497 134 1536

Pancreas 279 126 843 85 753

Skin 806 667 2669 155 1775

Stomach 202 64 779 68 676

Thyroid 857 793 2759 145 1484

Total
(union of sets)

1721 2644 8033 188 2043
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B)

Fig. 3 (See legend on next page.)
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that convergent eQTL regulation by distinct genetic vari-
ants may contribute in part to comorbid syndromes.

Visualization of comorbidities sharing intergenic genetic
risks through eQTL RNA overlap
The network of disease pairs prioritized as both (i)
sharing eQTL RNAs significantly through their re-
spective disease-associated eQTLs (Methods- Statis-
tical overlap of eQTL-associated RNAs between
distinct disease-associated SNPs) and (ii) comorbid
in HCUP datasets (Methods- Calculation of disease
comorbidity based on HCUP) is shown in Fig. 3.
Two hundred and eleven disease-pairs were observed
under these conservative criteria, most of which have
been prioritized by eQTL associations derived from
multiple relevant tissues, with each being analyzed
independently (shown by the thickness of the edges).
The network forms several clusters, corresponding to
major disease classes (encoded by colors) such as
immune-mediated diseases (the largest one), neuro-
logical diseases, cancers, metabolic diseases, cardio-
vascular diseases, among others. Specific examples of
the patterns observed are further discussed in the
caption of Fig. 3.

Curated literature review of the prioritized eQTL-driven
comorbidity network
We curated the 211 prioritized comorbidities with
eQTL underpinning (Fig. 3) along with 31 (about
15% of the comorbidities) random pairs of diseases
added to blind the curators (Methods- Curation of
prioritized comorbidities). The curation results are
shown in Fig. 4. Compared to controls (random set
among non-prioritized disease pairs), truly prioritized
disease comorbidities were significantly enriched in
validated positive comorbidities in the literature
(Levels 1 or 2), while controlled pairs were signifi-
cantly enriched in a no-correlation curation category
(Levels 5 or 6) (Chi-square test; p = 0.001). The

results indicate among our prioritized disease pairs,
molecular mechanisms are proposed for ~ 42% of
disease-pairs with known comorbidity (Levels 1 or 2)
and ~ 30% for novel disease pairs (Level 5). The lat-
ter predictions had eluded clinicians and population
health specialists and unveil novel clinical syndromes
as well as opportunities for new therapies.

Case studies of biologically convergent disease
comorbidities
The majority of GWAS variants in complex diseases
are thought to manifest their effect through

(See figure on previous page.)
Fig. 3 Network of disease-pairs prioritized as comorbid and sharing convergent genetic mechanisms through cis- and trans-eQTL
associations of their coding and intergenic polymorphisms. Convergent molecular mechanisms were confirmed at FDR < 0.05 (Methods-
Calculation of disease comorbidity based on HCUP). Disease comorbidities were confirmed in either clinical datasets NIS13 or NEDS13
at FDR < 0.05 (Panel a with OR > 3; panel b with OR > 1.5; Methods- Statistical overlap of eQTL-associated RNAs between distinct
disease-associated SNPs). Known clinical syndromes with common genetic risks are recapitulated (e.g., metabolic syndrome), as well as
less known monogenic diseases modulated with SNPs unrelated to their monogenic cause (e.g., SNPs worsening cystic fibrosis
associated by eQTL studies to those of the metabolic syndrome for which the comorbidity is known but not the underpinning
biological mechanisms). Many eQTL mechanisms relate known co-classified diseases (e.g., cancers, immune-mediated diseases), however
many cross classes provide intriguing novel comorbidities linked by genetics that had eluded discovery by both clinicians and
geneticists (e.g., Parkinson’s disease and Allergic Dermatitis). In most cases, though, the comorbidity was known and explained to
clinicians by non-genetic pathophysiology (e.g., duodenal cancer and pancreatic cancer), and yet this study implies that previously
undiscovered genetic mechanisms further amplify these comorbid conditions in predisposed individuals. Legend. Edge widths are
proportional to the number of tissues that yielded eQTL RNA associations with SNPs by eQTL analyses (19 tissues, eQTL RNA and SNPs
not shown; details in Fig. 5 for two examples). Diseases classifications are color-colored (e.g., autoimmune disorders in blue)

Fig. 4 Curation results for prioritized comorbidities with an eQTL
downstream convergence. Prioritized comorbidities (green) were
enriched in curation categories as compared to blind controls (grey)
consisting of random disease pairs among non-prioritized ones (p =
0.001; inter-rater agreement p < 1.4 × 10− 3). Legend: evidence for
positive correlation (levels 1–2); no evidence for association or
evidence for non-coexistence of diseases (levels 5 or 6), see
Methods- Curation of prioritized comorbidities
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regulation [42], but the majority of identified vari-
ants lie far from genes or transcription start sites
making candidate molecules and functions difficult
to identify or study. The evidence from ENCODE
suggests that as much as 80% of the non-coding
intergenic regions are biologically interacting [21].
Figure 5 illustrates two cases of reproducible comor-
bidities in clinical datasets for which the shared mo-
lecular underpinning had not been identified in the
literature, indicating this provides testable novel
mechanisms. The networks were built as described
in Methods- Network visualization of the comor-
bidities sharing intergenic genetic risks through
eQTL RNA overlap.
Figure 5a shows the psoriasis and polycystic ovary syn-

drome disease pair resulted as clinically comorbid (bi-
variate logistic regression OR = 3.3, 95% CI: 2.8–3.9 in
NIS13; OR = 68.5, 95% CI: 63.2–74.3 in NEDS13). Their
independent disease-associated variants are both lo-
cated in chromosome 12 but have negligible linkage
disequilibrium (LD r2 ≤ 0.05 for any pairs of SNPs
shown in the panel). rs12580100 associated with
psoriasis and rs705702 with polycystic ovary syn-
drome are both associated by eQTL studies with the
expression change of the eQTL RNA AC004057.1 on

chromosome 4, a transcribed processed pseudogene,
whose functions have yet to be characterized. An-
other example, in Fig. 5b, illustrates the prioritized
molecular mechanisms between Parkinson’s disease
and schizophrenia, which also are reproducibly co-
morbid (bivariate logistic regression OR = 4.2, 95%
CI: 4.0–4.3 in NIS13; OR = 4.3, 95% CI: 4.1–4.5 in
NEDS13). Immune-mediated mechanisms are being
prioritized by eQTL associations as common be-
tween intergenic SNPs of these diseases, with 14
common downstream RNAs associated by eQTL
with their respective distinct variants in chromosome
6. The two diseases share a cis-regulated gene
IGSF9B which may inhibit synapse development [43].
Besides, two SNPs, rs17115100 and rs11191419 (LD
R2 = 0.15), are associated with the expression of
CYP17A1-AS1, a ncRNA within a P450 enzyme pro-
tein CYP17A1, which catalyzes many reactions and
synthesis of cholesterol, steroids, and other lipids. In
addition, they also share a microRNA MIR1307 [43],
which further regulates a series of downstream
genes. The prioritized mechanisms also recapitulate
many known HLA mechanisms, thus warranting fur-
ther experimental validation of the previously stated
novel ones.

A) B)

Fig. 5 Examples of comorbidities that share downstream intergenic eQTL mechanisms via their associated SNPs. Panel a: Polycystic ovary
syndrome (POS) and psoriasis are observed comorbid in HCUP (Odds ratio (OR) = 2.3) and were previously described as co-occurring
[45]; however, the common genetic risk remains unreported. Here, we provide evidence that intergenic SNPs of psoriasis share eQTL
associations with the intragenic SNPs of POS (LD r2 = 0.05 on CEU population). Panel b: Parkinson’s disease and schizophrenia are also
known as comorbid, and here we show a novel shared mechanism among their numerous intergenic SNPs (protein-coding IGSF9B,
microRNA MIR1307, and ncRNA CYP17A10-AS1). SNPs on chromosome 11 are 57 k away (LD r2 = 0.04), and SNP rs17115100 is 20.9 k
byte from rs11191419 (LD r2 = 0.15) and 314.8 k byte apart from a LD SNP rs1191580
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Discussion
In summary, we computationally integrated and
mined two clinical datasets jointly with GWAS/
GTEx datasets and identified hundreds of comorbid
diseases that also presented associations with conver-
gent eQTL regulation, which may contribute in part
to their common progression and pathophysiology.
The substantial enrichment of convergent genetic
mechanisms among comorbid diseases provides an
internal validation to the methodology. The curation
against the literature provides an external validation,
controlled by non-prioritized diseases pairs submit-
ted in a blinded way to curators. In addition, the
disease association network recapitulated many
known clinical syndromes, such as the metabolic
syndrome, and identified published comorbidities for
which the underpinning genetic mechanisms have yet to
be unveiled. We are pursuing a systematic curation of the
mechanisms results to identify known vs. novel molecular
underpinnings of comorbidities. Associating diseases by
their common cis-eQTL downstream mechanisms has
been recently reported [16], however, their predictions
have not been confirmed in clinical datasets. In addition,
Hauberg et al. did not investigate trans-eQTL associations
as we did in this study [16]. Altogether, such studies
may provide novel mechanisms of comorbidities and
provide insight for disease prevention or new thera-
peutic interventions.
Future studies will extend predictions beyond exact

eQTL RNA overlap to use broader shared pathway
memberships for distinct RNAs [19, 20, 44]. Other
types of biological data (e.g., epigenetic assays and
chromatin interactions in ENCODE) and clinical data
(e.g., UK Biobank) could further contribute distinct
and perhaps, a more accurate biological roadmap for
disease comorbidity. Future studies should also focus
on novel clinical syndromes that share genetic under-
pinning, which we are currently curating the results
to identify those as well. Further, we are planning to
build a publicly-accessible database with the resulting
comorbid disease pairs having convergent molecular
mechanisms, the network results, and an interactive
visualization tool for the resulting network.

Conclusions
This proof-of-concept study highlights the promise of
integrating multiscale genomics datasets to unveil the
shared molecular mechanisms of disease comorbidi-
ties. We first integrated GWAS studies with eQTL as-
sociations to discover diseases showing significantly
convergent mechanisms. Then, the parallel computa-
tion of disease comorbidity using clinical datasets
enabled the identification of relationships between

convergent mechanisms and disease comorbidities.
This subset of comorbid diseases, with convergent
eQTL genetic mechanisms underpinning them, highly
suggests the novel or established clinical syndromes.
While it took over a decade to confirm the genetic
underpinning of the metabolic syndrome, this study is
likely highlighting hundreds of new ones. In addition,
this knowledge could potentially improve the clinical
management of comorbid syndromes with precision
(using SNPs that interact), as well as shed light on
novel approaches of drug repositioning, or SNP-guided
precision molecular therapy even when risk variants are
intergenic.

Additional files

Additional file 1: File S1. Comorbid disease pairs (OR > 1.5) sharing
molecular mechanisms. In the table we show all the disease pairs resulting
comorbid (OR > 1.5 and FDRcomorbidity < 0.05) and with significant
convergent mechanisms (FDReRNA < 0.05). Disease1 and disease2 columns
represent the disease pair. The related FDRs obtained from the clinical and
the molecular datasets are reported in FDRcomorbidity and FDReRNA columns,
respectively. We reported also the resulting ORs and FDRs for both the
HCUP datasets separated, i.e. NIS13 and NEDS13. For each single dataset
there are two OR since they correspond to the beta related to the diseases
and we derived two directional FDRs (see Methods). (XLSX 103 kb)

Additional file 2: File S2. Mapping between disease bundles and
diseases from the GWAS Catalog. (TXT 19 kb)

Additional file 3 File S3. Mapping between disease bundles and ICD-9-
CM diseases from the HCUP clinical datasets. (TXT 24 kb)

Additional file 4: Figure S4. Reproducibility of comorbidity odds ratios
observed in NIS13 (hospitalizations) and NEDS13 (emergency departments)
HCUP datasets. The correlation R2 is 0.62 and 0.63 respectively. Top disease
comorbidity was measured and compared directionally, and odds ratios are
shown in a log scale. (DOCX 54 kb)
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