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Abstract

Background: While continental level ancestry is relatively simple using genomic information, distinguishing
between individuals from closely associated sub-populations (e.g., from the same continent) is still a difficult
challenge.

Methods: We study the problem of predicting human biogeographical ancestry from genomic data under
resource constraints. In particular, we focus on the case where the analysis is constrained to using single nucleotide
polymorphisms (SNPs) from just one chromosome. We propose methods to construct such ancestry informative SNP
panels using correlation-based and outlier-based methods.

Results: We accessed the performance of the proposed SNP panels derived from just one chromosome, using data
from the 1000 Genome Project, Phase 3. For continental-level ancestry classification, we achieved an overall
classification rate of 96.75% using 206 single nucleotide polymorphisms (SNPs). For sub-population level ancestry
prediction, we achieved an average pairwise binary classification rates as follows: subpopulations in Europe: 76.6% (58
SNPs); Africa: 87.02% (87 SNPs); East Asia: 73.30% (68 SNPs); South Asia: 81.14% (75 SNPs); America: 85.85% (68 SNPs).

Conclusion: Our results demonstrate that one single chromosome (in particular, Chromosome 1), if carefully analyzed,
could hold enough information for accurate prediction of human biogeographical ancestry. This has significant
implications in terms of the computational resources required for analysis of ancestry, and in the applications
of such analyses, such as in studies of genetic diseases, forensics, and soft biometrics.
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Background
Accurate inference of biogeographical ancestry is important
for various application areas. For instance, population strati-
fication can confound the relationship between a genetic
marker and disease. Identifying ancestry informative markers
(AIMs) in the genome is essential for detecting such stratifi-
cation in case-control association studies of complex dis-
eases, such as cancer, diabetes, neurodegenerative diseases
(e.g., Alzheimer’s disease), and cardiovascular diseases [1–3].
Measuring genetic ancestry has also been a focus in the fo-
rensic science community. For routine forensic identification
of ancestry, a small number of genetic markers is needed
that can be tested quickly and cheaply [4, 5]. Reliable estima-
tion of biogeographic ancestry is also a key procedure in
studies of admixed populations. Several AIM sets have been
proposed for estimating the admixture between given ances-
tral populations, for insance, the genetic contributions of
Africans and Europeans to African American populations,
and the contributions of Native Americans and Africans or
African Americans to Latino populations [6–8]. Ancestry
estimation also plays a significant role in guiding criminal in-
vestigations [9, 10]. Furthermore, many studies are investi-
gating the association between ancestry and certain types of
diseases [11–13]. Thus, analysis of genetic ancestry is a vast
research area with numerous applications, which has
attracted the use of a diverse array of techniques.
One aim in studies on human genetic ancestry is to iden-

tify sets of ancestry informative markers (AIMs) by analyz-
ing DNA sequences from different chromosomes collected
from the population samples under study. Most widely used
AIMs are based on single nucleotide polymorphisms (SNPs)
[14, 15] which demonstrate superior ability in predicting
biogeographical origin of an unknown individual compared
to other markers, such as short tandem repeats (STRs) [16].
Although a large number of SNPs can provide nearly accur-
ate ancestry information for multiple geographic regions, a
small but robust set of SNPs may be more desirable for
certain applications [17]. Several published SNP panels have
focused on distinguishing ancestral origins for individuals
from different continental regions, e.g., Europe, America,
Africa and East Asia [18], or between people from
widely-separated global populations [1]. Some also proposed
small SNP panels, typically ranging from the teens to hun-
dreds of SNPs, which can estimate continental genetic an-
cestry relatively well [18]. However, very few studies have
focused on identifying SNP panels for sub-continental an-
cestry estimation, a known challenging problem, given the
difficulties of using small SNP panels in distinguishing indi-
viduals from closely related populations [19].
Several studies on ancestry identification have demon-

strated that many globally distributed populations, can gener-
ally be distinguished by examining differences in allele
frequencies, using the fixation index, widely known as Fst
[20]. These studies identified that thousands of single
nucleotide polymorphisms (SNPs) distributed throughout the
human genome have significant differences in allele frequen-
cies between two or more continental populations [21, 22].
Thus, a small set of SNPs (e.g., a few hundred) can be used
to separate individuals with different continental origins using
the Fst feature [23–25]. However, such panels of SNPs are less
informative in detecting sub-continental differences in closely
related populations [6, 19, 26–30]. Apart from Fst based
ancestry estimation, techniques based on principal compo-
nent analysis (PCA) [31–33] have widespread applications. A
typical example of this class of methods is EIGENSTART
[31]. These methods represent genetic variations by principal
component vectors, however, they are not highly efficient due
to the need for a large number of SNPs (thousands to mil-
lions) to calculate the principal component vectors. Besides,
many studies have developed small panels of SNPs to distin-
guish ancestral origins from a large number of populations,
example, 73 populations (Kidd et al. [34]) and 119 popula-
tions (Kidd et al. [17]). However, they used unsupervised
learning (clustering) methods, such as STRUCTURE [35], to
determine which populations cluster together and thus ob-
served the ability of a SNP panel to infer ancestry.
Important progress has been made in the use of gen-

omic information for ancestry detection [36–39], how-
ever, significant challenges still remain. Although a panel
with a small number of SNPs can produce sufficiently
accurate continental-level ancestry classification, reliable
sub-continental population detection using only limited
number of marker SNPs is still a major challenge. Significant
research is still required to identify sets of ancestry inform-
ative SNPs (AISNPs) that can accurately distinguish closely
related sub-populations, e.g., those from the same continent.
This is a difficult multi-class classification challenge, with
only a few attempts at the problem. This problem is also re-
lated to the issue of separating admixture populations [7, 8,
40, 41], and recent approaches that have used GWAS (Gen-
ome-Wide Association Studies) data [2, 3, 41]. We do not
address the problem of admixture in the current paper, and
we do not use GWAS datasets.
Another significant challenge is that of computation, and

the ever limited resources available in most labs, where
such ancestry estimation or classification may be needed.
Thus, given resource limitations, we introduce a key new
constraint in addressing the problem: only SNPs from one
chromosome can be used in the analysis. This is significant,
as it means that the sequencing needed can be focused on
only the specified chromosome, hence saving time and se-
quencing cost. Essentially, the challenge, therefore, is to an-
swer the question: how much information about our
human biological and geographical ancestry can we found
in a single chromosome? Clearly, this question can be for-
mulated at different levels of granularity, for instance, using
sets of chromosomes, rather than just one chromosome, or
using sets of genes, rather than chromosomes.
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In this work, we address the problems of both
continental-level and sub-continental level ancestry identi-
fication using small SNP panels, with all SNPs in the panel
coming from just one single chromosome. For this study,
we will focus on Chromosome 1, since this is the largest
chromosome, and thus might provide the best starting
point for our exercise. Thus, in this work, we have
employed machine learning approaches and statistical
methods to determine small sets of SNPs that can be used
to predict an individual’s biogeographical origin to
continental as well as sub-continental levels. Here,
we studied DNA information from Chromosome 1 (lar-
gest human chromosome) to develop an efficient and
cost-effective ancestry inference system.
We consider the problem in three stages. Initially, we

employed parameter-based SNP selection, and later refined
the selection by using a clustering technique (specifically,
DBSCAN [42, 43]) to choose an efficient panel of SNPs.
The final SNP panel is selected by applying a statistical ap-
proach based on pairwise correlation of SNPs to identify im-
portant ancestry informative SNPs for both continental and
sub-continental ancestry classification. For continental-level
ancestry classification, we view it as a five-class classification
problem including the continents of Europe, Latin America,
Africa, East Asia, and South Asia. Within each continent,
we also have several closely-related sub-populations. Distin-
guishing these sub-populations accurately is the challenging
part. To address the sub-continental classification problems,
we consider pairwise classification of the sub-populations
Fig. 1 Graphical depiction of the proposed process of SNP selection for pr
within each continent. For both continental and
sub-continental classification problem, we have applied
the softmax neural network classifier [44].
Methods
Figure 1 shows a schematic diagram of the proposed
process for selection of ancestry informative SNPs. The fig-
ure shows how the initial set of over 20 million SNPs from
chromosome 1 is reduced in several data pre-processing
stages (e.g., data cleaning, similarity SNP set removal), and
initial pruning stages (parameter-based selection and
outlier-based selection) to a much smaller set of 6404 SNPs.
Below, we describe our methodology in more detail.
Datasets and pre-processing
In this study, we used datasets from the 1000 Genome Pro-
ject, Phase 3 [19]. The dataset contains information from
2504 individuals, from 26 different sub-populations, spanning
five continents. For each individual, information is provided
on 84.4 million variants (SNPs) from all 23 chromosomes.
Table 1 provides a summary on the different populations, in-
cluding the number of samples in each of the 26 populations.
We analyzed the variants from only Chromosome 1 which is
nearly 20.1 million SNPs. After the pre-processing steps (e.g.,
data cleaning), we identified continental and sub-continental
ancestry informative SNPs in several stages. The DNA infor-
mation for the 20.1 million variants (SNPs) from Chromo-
some 1 of each of the 2504 subjects is provided in a large
edicting human biogeographical ancestry



Table 1 26 populations in the dataset

Population code Population name Continent Sample size

PUR Puerto Rican America 104

CLM Colombian America 94

PEL Peruvian America 85

MXL Mexican-American America 64

GBR British Europe 91

FIN Finnish Europe 99

IBS Spanish Europe 107

CEU CEPH Europe 99

TSI Tuscan Europe 107

CHS Southern Han Chinese East Asia 105

CDX Dai Chinese East Asia 93

KHV Kinh Vietnamese East Asia 99

CHB Han Chinese East Asia 103

JPT Japanese East Asia 104

PJL Punjabi South Asia 96

BEB Bengali South Asia 86

STU Sri Lankan South Asia 102

ITU Indian South Asia 102

GIH Gujarati South Asia 103

ACB African-Caribbean Africa 96

GWD Gambian Africa 113

ESN Esan Africa 99

MSL Mende Africa 85

YRI Yoruba Africa 108

LWK Luhya Africa 99

ASW African-American SW Africa 61
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61.2 GB .vcf file. At the beginning, we extracted data from
the .vcf file and stored them in several .mat files to be able to
conduct our analysis in a MATLAB (MathWorks Inc., Na-
tick, MA) environment. For each SNP, we extracted their
rsID, loci number/position, reference allele, alternate allele(s),
and allele information of all 2504 subjects (each person’s al-
lele is diploid, containing two nucleotides, from different
combinations of the four nucleotide bases A, C, G, T). Next,
we performed data cleaning operations on the extracted data
based on the following criteria:

� Remove an SNP position if the SNP contains more
than one reference nucleotides.

� Exclude an SNP position in the analysis, if an
alternate allele nucleotide also exists in the reference
allele for this SNP,

� Exclude an SNP locus from the analysis, if for the
given SNP, each of the two nucleotides from all the
individuals in the dataset both match with the
reference allele’s nucleotide.
The result of the above is the removal of around 13
million SNPs at the cleaning stage. Further analysis is
then performed on the remaining SNPs. For the pur-
pose of SNP selection, we removed a person’s allele in-
formation from an SNP position, if the person’s two
nucleotides at the given position are the same as the
reference allele’s nucleotide. Consequently, two differ-
ent sets of SNPs have been observed in the analysis. In
one set, each SNP contains same allele information
among all individuals, although this allele information
is different from the reference nucleotide. We call this
SNP set the ‘Similarity set’. In contrast, in the other
set, allele information is not the same among all indi-
viduals at the given SNP position. We call this set the
‘Dissimilarity set’. Since, for ancestry identification, we
need to distinguish among populations with respect to
some attribute/feature(s), SNP loci that demonstrate
greater variation in DNA information among individ-
uals will lead to better identification results. Thus, we
have chosen only the ‘Dissimilarity set’ of SNPs for fur-
ther analysis.

SNP selection
The overall process of SNP selection is performed in three
stages, each building on the results from the preceding
stage. The initial stage employs a parameter-based selec-
tion; the latter stages use machine learning and statistical
methods to further improve the results, and to prune the
selected SNPs to significantly smaller set.

1. Stage 1: Parameter-based SNP Selection:

At the beginning, we aimed to identify important
markers for each of the 26 populations from the ‘Dis-
similarity set’ of SNPs. Consequently, we generated a
structure array where each row allocates information
from one SNP position containing 26 different fields,
with each field corresponding to one of the 26 differ-
ent populations. Each field associated with one popu-
lation group contains relevant information regarding
that group, such as, number of individuals of that
group existing at that SNP position (since we re-
moved individuals from a SNP position based on the
similarity of their allele with reference nucleotide)
and corresponding allele information of those individ-
uals. Next, we calculated two parameters ‘α’ and ‘β’ at
each dissimilar SNP position for each of the 26 popu-
lations using the following formulae:

α ¼ nip
np

and β ¼ f ip
nip

;

where, p = 1, 2, …, 26
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nip= No. of individuals of population type p existing at

SNP i
np= Total no. of individuals of population p in

training data
f ip= Frequency of occurrence of the allele that appears

most in population p at SNP i
For a given population p, a SNP position i is con-

sidered important if at that position α × β = 1 (i.e., α
= 1 and β = 1). Here, α = 1 indicates that all individ-
uals of that population exist at SNP i, since none of
them has both nucleotides being the same as the ref-
erence nucleotide, while β = 1 means those individ-
uals also share the same allele information at SNP i.
Thus, based on the values of parameters α and β, we
identify the best distinguishing SNPs for each popu-
lation. After we obtain important SNP sets for each
population, we take the union of all the 26 sets. The
result is a set of 38,532 ancestry informative SNPs.
From these 38 K SNPs, we further removed the SNPs
which contain the same allele information across all
individuals from all 26 populations in the training
set, since SNPs showing no variations between differ-
ent population groups are not informative in distin-
guishing them. At the end of this stage, the result is
a set of 34,631 ancestry informative SNPs, all from
Chromosome 1.

2. Stage 2: Outlier-Based SNP Selection:

In order to reduce the number of SNPs further, we
apply a cluster-based technique on the results from
Stage 1. In particular, we use a contrarian approach:
we group the SNPs using a clustering technique. In
doing so, we also indirectly identify those SNPs that
could not be grouped comfortably into any particular
cluster. These are the outlier SNPs that do not seem
to be similar with other SNPs, and thus represent
good candidates for use in discriminating between
ancestries. We use DBSCAN [42, 43] as the cluster-
ing technique for further selection of important
AISNPs which are reasonably distinct in nature. This
is a density-based clustering technique which does
not require the number of clusters of the data to be
pre-specified. Given a set of data points in some
space, the DBSCAN clustering approach attempts to
place points that are closely packed into one group.
Points that lie alone in low-density regions are
marked as outliers. In our specific problem of ances-
try classification, SNPs that contain similar ancestry
information are clustered together, while those that
could not be clustered into some group are identi-
fied as outliers with seemingly unique ancestry infor-
mation. In this work, we have considered these
outlier SNPs as good candidates for distinguishing
biogeographical ancestry between populations.
Here, we apply DBSCAN clustering on the 34,631

SNPs extracted in the previous stage of selection. The
algorithm requires three input parameters, namely,
data matrix D, radius parameter (ε) and neighborhood
density threshold (MinPts). Data matrix D has 34,631
rows, where each row is associated with one SNP.
Each SNP is considered as an object with l dimen-
sions, where l is the number of training samples. Each
dimension belongs to the allele information of a train-
ing subject represented by a number between 1 and
16, since four nucleotides {A, C, G, T} generate 16
possible allele symbols {AA, AC, …, TT}. The param-
eter MinPts (neighborhood density threshold) indi-
cates the minimum number of points required to
form a cluster, while ε (the radius parameter) is mea-
sured as the Euclidean distance between two l-dimen-
sional SNP objects. The DBSCAN clustering
algorithm is described in Algorithm 1 below using a
pseudo code [43].
The choice of the two parameters, ε and MinPts,

requires careful consideration as they play important
roles in determining the output clusters. For this
problem, we have set MinPts = 2, i.e., at least two
SNPs will be able to form a cluster if they are within
a certain distance ε. And, the value of ε is chosen
empirically. We measured the 26-class classification
performance for different values of ε for the 80/20
train-test split of the data. For ε=0.1 we obtained the
best classification result. The DBSCAN clustering
technique resulted in 2378 clusters and 6404 out-
liers. These 6404 outlier SNPs constitute our new
set of candidate SNPs for ancestry identification.
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3. Step 3: Correlation-based SNP Selection:

As we obtain the set of 6404 SNPs from the clus-
tering technique, we measure the overall 26-class an-
cestry prediction performance for each individual SNP
marker. That is, we perform ancestry estimation using
each of the 6404 SNPs, independent of the other
SNPs. Naturally, we do not expect to produce very
good performance for a single SNP. However, the
relative performance of the SNPs is a crucial piece of
information for our approach. Consequently, we gen-
erate a performance matrix X with m=6404 rows,
where each row of X is allocated for one SNP repre-
senting a six-dimensional vector,

x ið Þ ¼ x1
ið Þ x2 ið Þ x3 ið Þ x4 ið Þ x5 ið Þ x6 ið Þ

h i

The first element records the accuracy of 26-class
classification using SNP i. The next five elements of
the vector are related to five continents, where each
element denotes the percentage of test individuals
correctly predicted from a continent. Classification
into 26 populations by each SNP has been conducted
using an 80–20% train-test split, with n = 2504 indi-
viduals. For classification, the SNP is represented
using its allele-context feature, where each SNP’s
allele-context feature belongs to three possible values:
0, 1, 2. For the allele-context feature, a ‘0’ means both
nucleotides from a person are the same as the refer-
ence nucleotide, ‘1’ means one of the two nucleotides
is different from the reference nucleotide, and ‘2’
means both nucleotides of that person are different
from the reference nucleotide at SNP i. For both the
training sets and test sets, we denote the
allele-context feature vector a and class-label vector b
as follows:

a ið Þ
train ¼ a ið Þ

1 a ið Þ
2 ::…a ið Þ

l

h iT
and a ið Þ

test ¼ a ið Þ
1 a ið Þ

2 ::…a ið Þ
n−lð Þ

h iT

btrain ¼ b1 b2::…bl½ �T and btest ¼ b1 b2::…b n−lð Þ
� �T

Here, l = number of training subjects, and n-l = num-
ber of test subjects. Thus, for i = 1,2, …, m number of
SNPs, the overall performance matrix is represented as,

X ¼ x 1ð Þx 2ð Þ::…x 6404ð Þ
h iT

Having created the performance matrix X, we can now
compute the pairwise correlation between the SNPs
using the associated performance vectors. For example,
correlation of SNP i and SNP k is calculated using the
Pearson’s correlation coefficient as follows:
C ¼

X5
j¼1

ðxðiÞj −x−ðiÞÞ ðxðkÞj −x−ðkÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X5
j¼1

ðxðiÞj −x−ðiÞÞ
2

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X5
j¼1

ðxðkÞj −x−ðkÞÞ2
vuut

Here,

xðiÞj =element of the vector xðiÞ for continent j (j =

1,2,..,5),

x−(i)=average of the five xðiÞj elements of vector xðiÞ.
Now, if SNP i and SNP k are highly correlated (that is,

their correlation coefficient C is above a certain thresh-
old th), then one of them is kept in the analysis and the
other one is removed. Here, we consider the SNP that
provides a better classification accuracy in the perform-
ance matrix (represented by the first element of vector x
ðiÞ ) as “non-redundant”, while the other SNP is taken to
be redundant. The proposed correlation-based approach
to SNPs selection is explained in more detail below,
using pseudo code (see Algorithm 2).

Now that we have presented the general procedure for
selecting the SNPs, the final step will be to select those
that are best for continental-level classification, and
those that are more suitable for more localized discrim-
ination between sub-populations, say from the same
continent. We describe our approach below:

a) SNP selection for continental-level classification

To determine the best candidate SNPs for
continental-level classification, we have exploited the pro-
posed correlation-based SNP selection. First, the 6404
SNPs are ranked from highest to lowest based on their
classification accuracy in the performance matrix X and
the 6404 × 6 performance matrix is rearranged accord-
ingly. Following this ranking, we create the ordered listing
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of the SNPs for the initial ‘non-Redundant SNP set’ and
the algorithm is then initialized with the best performing
SNP. For a certain correlation threshold th, the algorithm
is executed to identify the final set of non-Redundant
SNPs from the 6404 SNPs. These candidate SNPs repre-
sented by the allele-context feature are subsequently used
to perform the five-continent classification using an 80/20
train-test split. We carried out empirical experiments for
a range of values of correlation thresholds and the thresh-
old which provides the best classification performance
with the smallest set of SNPs has been finally selected.

b) SNP selection for pairwise/binary classification
between sub-populations

Having determined the continental-level ancestry
using the above, the next question is how to differentiate
two sub-populations, within the same continent. When
an individual’s continental ancestry is known and the in-
dividual belongs to any of two possible closely related
sub-populations within that continent, the issue now be-
comes how to identify the accurate sub-population an-
cestry. In this work, we have selected candidate SNP sets
for all possible pairwise classification of sub-populations
within a given continent exploiting the same basic
correlation-based SNP selection algorithm used for
continental-level ancestry identification. Given two
sub-populations, say S1 and S2 from the same continent
j, the goal is to identify a powerful set of candidate SNPs
which will be able to distinguish individuals from these
two populations. Now, the 6404 SNPs are ranked from

highest to lowest based on the continent j elements xðiÞj
in the performance matrix X and performance matrix is
rearranged accordingly. Thus, the correlation algorithm
is initialized with the best performing SNP for continent
j and for a certain threshold the algorithm is executed to
obtain the required set of SNPs from the 6404 SNPs.
Next, we perform binary classification between the two
sub-populations using the allele-context feature of these
SNPs, again following an 80/20 train-test split. As was
done for the continental-level classification, we also
tested for a different values of the correlation threshold,
and selected the threshold that provided the best classifi-
cation performance while using a small number of SNPs.
Ancestry classification using selected SNPs
Having identified the best SNP subsets, ancestry classifi-
cation can be performed using standard classification al-
gorithms. In this work, we perform classification using
the softmax neural network classifier [44]. We use the
same algorithm for both continental-level classification
and for sub-population-level classification. In machine
learning, softmax regression is a generalization of binary
logistic regression that we can use for multi-class classi-
fication tasks. In logistic regression, the output labels are
assumed to be binary, that is, y(i) ∈ {0, 1}. The goal then
is to predict the probability that a given sample belongs
to the ‘1’ class, i.e., P(y = 1|x) vs. the probability that it
belongs to the ‘0’ class, i.e., P(y = 0|x). On the other
hand, in softmax regression setting, the output label can
take K different values: y(i) ∈ {1, 2⋯, K}. Now, the goal is
to estimate the probability for each value k ∈ {1, 2⋯, K},
i.e., P(y = k|x). Thus, softmax regression is an extension
of logistic regression to the multi-class case. With K = 2,
softmax regression is same as binary logistic regression.
Overall, with softmax regression scheme, we can solve
the classification problem not just for K = 2, but also for
many possible values of K.
Softmax regression is often used as the activation

function in the final layer of a neural network classifier.
For a K-class classification problem, the number of
units/nodes in the output layer of the neural network
should be K. Each of the K output nodes gives the prob-
ability of a certain class and probabilities from all output
nodes sum to 1. Each output node i in the final layer of
the neural network receives the weighted sum of the in-
puts from the previous layer with the addition of a bias
term, which is denoted as follows,

zi ¼
X
j

wi; jx j þ bi

where, j is the number of nodes in the previous layer.
Now to compute the softmax activation at each output
node, exponential of the term zi is calculated for each i,

ti ¼ ezi

Finally, activation at output node i is obtained by nor-
malizing the exponential term.

ai ¼ ti=
XK

i¼1
ti

Thus, by normalizing the distribution, output from
each node i falls in the range [0, 1]. Here, the class asso-
ciated with the highest probability value is considered as
the predicted output label.

Results
Experiments were performed using the identified 1000
Genome dataset, with 26 sub-populations, from 5 conti-
nents. The performance of the proposed approach was
evaluated, on both continental-level and sub-population
ancestry prediction/ classification. The results of these
experiments are described below.



Fig. 2 Results for continental-level ancestry classification using varying thresholds. Results include both accuracy (left) and the number of SNPs
(right) required to achieve a given accuracy

Table 2 Confusion matrix for continental-level Ancestry
classification (oveall classification rate of 96.75%, 206 SNPs)

Continents Europe America Africa East Asia South Asia

Europe 94.06% 3.96% 0.00% 0.00% 1.98%

America 10.94% 89.06% 0.00% 0.00% 0.00%

Africa 0.00% 0.00% 100.00% 0.00% 0.00%

East Asia 0.00% 0.00% 0.00% 100.00% 0.00%

South Asia 1.02% 2.04% 0.00% 0.00% 96.94%
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Continental classification
First, we performed a five-class classification (using the
five continents -- Europe, America, East Asia, South
Asia, and Africa) for a range of values of the correlation
threshold: th = 0.1 to 0.99 with an interval of 0.01. In
Fig. 2, we show the results on continental-level classifi-
cation for correlation threshold th = 0.4 to 0.99 with 0.01
interval along with the corresponding number of SNPs.
The highest performance achieved is 99.91% for th =
0.98 with 614 SNPs (marked by a red square in the plot).
But, since our goal is to rather use a smaller panel of
SNPs to distinguish the continental populations, we
searched for the threshold th that provides an optimum
performance with less number of SNPs (approximately
200 or less). From Fig. 2, we can observe the general
trend in performance for the proposed approach. At th
= 0.7, the system suggests a panel of 32 SNPs, for an
overall classification accuracy of about 90%. Performance
generally increases with increasing correlation threshold,
rising to about 93% accuracy rate, at about th = 0.83,
using about 93 SNPs. The best classification result is ob-
tained with correlation threshold th = 0.91, resulting in a
classification accuracy of 96.75% with 206 SNPs (marked
by the magenta square). These 206 SNPs have been con-
sidered as our final candidate SNPs for continental-level
ancestry classification. The confusion matrix for the
five-class classification problem with overall perform-
ance of 96.75 96.75% is shown in Table 2. With respect
to each continent, the best results were observed for
populations from Africa, and from East Asia. Those
from America were the most challenging, followed by
Europe. Also, for these two challenging cases, most Eu-
ropeans were misclassified as American, and vice versa.

Pairwise classification between sub-populations
Table 3 shows the overall pairwise classification results
between sub-populations in each of the five continents
in our dataset. The number of SNPs required for each
classification have also been noted. From the table, it is
evident that in all cases of pairwise classification of
closely related populations, we can infer the ethnicity
using a small panel of SNPs (less than 200) and for some
instances, the accuracy is as high as 100%. For a more
detailed analysis, Fig. 3 shows the performance of the
proposed methods with increasing correlation thresh-
olds, using sub-populations in the continent of America.
As in Fig. 3, the plots for pairwise classification of
sub-populations within the continent of America are
shown for a range of correlation thresholds th = 0.1 to
0.9 with an interval of 0.01. The best performance
(#SNPs & accuracy) has been marked with a red square
in the figures.



Table 3 Results for pairwise/binary classification between sub-populations in each continent

Continent Sub-populations Number of SNPs Correlation Threshold Accuracy (80–20)

America PUR-PEL 56 0.76 100.00%

PUR-MXL 44 0.72 93.33%

PUR-CLM 89 0.83 66.67%

CLM-PEL 96 0.84 97.06%

CLM-MXL 37 0.69 74.07%

PEL-MXL 96 0.84 84.00%

Europe GBR-FIN 15 0.47 78.38%

GBR-IBS 63 0.80 66.67%

GBR-CEU 30 0.64 67.57%

GBR-TSI 24 0.61 76.92%

FIN-IBS 82 0.83 83.33%

FIN-CEU 130 0.88 80.00%

FIN-TSI 75 0.82 90.48%

IBS-CEU 47 0.75 71.43%

IBS-TSI 82 0.83 77.27%

CEU-TSI 31 0.67 73.81%

East Asia CHS-CDX 44 0.73 64.10%

CHS-KHV 12 0.41 68.29%

CHS-CHB 30 0.66 64.29%

CHS-JPT 83 0.84 73.81%

CDX-KHV 30 0.66 68.42%

CDX-CHB 120 0.87 76.92%

CDX-JPT 120 0.87 87.18%

KHV-CHB 62 0.79 75.61%

KHV-JPT 92 0.85 82.93%

CHB-JPT 83 0.84 71.43%

South Asia PJL-BEB 29 0.65 74.29%

PJL-STU 57 0.78 62.50%

PJL-ITU 29 0.65 70.00%

PJL-GIH 153 0.89 100.00%

BEB-STU 42 0.72 72.97%

BEB-ITU 139 0.88 70.27%

BEB-GIH 113 0.86 100.00%

STU-ITU 29 0.65 64.29%

STU-GIH 79 0.82 100.00%

ITU-GIH 79 0.82 100.00%

Africa ACB-GWD 47 0.76 76.74%

ACB-ESN 20 0.56 79.49%

ACB-MSL 46 0.75 71.43%

ACB-YRI 43 0.72 80.49%

ACB-LWK 60 0.79 79.49%

ACB-ASW 15 0.49 81.48%

GWD-ESN 46 0.75 77.27%

GWD-MSL 73 0.82 72.50%
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Table 3 Results for pairwise/binary classification between sub-populations in each continent (Continued)

Continent Sub-populations Number of SNPs Correlation Threshold Accuracy (80–20)

GWD-YRI 132 0.88 100.00%

GWD-LWK 132 0.88 100.00%

GWD-ASW 132 0.88 96.88%

ESN-MSL 102 0.86 69.44%

ESL-YRI 132 0.88 100.00%

ESN-LWK 132 0.88 100.00%

ESN-ASW 132 0.88 96.43%

MSL-YRI 38 0.71 100.00%

MSL-LWK 132 0.88 100.00%

MSL-ASW 73 0.82 91.67%

YRI-LWK 28 0.65 78.57%

YRI-ASW 146 0.89 90.00%

LWK-ASW 162 0.90 85.71%

Fig. 3 Pairwise classification results with varying correlation thresholds, for subgroups within the continent of America: a PUR vs. PEL; b PUR vs.
MXL, c PUR vs. CLM; d CLM vs. PEL; e CLM vs. MXL; and f PEL vs. MXL
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Table 4 Comparative Performance on continental-level Ancestry classification

Basic Method Data Size Datasets Used Classification Rate (%)

STRUCTURE [36] 664 Mutiple datasets 96.1

SNPforID [4] 2689 1000 Genome, HGDP, NIST 98.8

STRUCTURE [37] 6410 Mutiple datasets 81.4

Random match probability [5] 451 Own collection 77.0 (+ 21.6 thresholded out)

Proposed 2504 1000 Genome Phase 3 99.19 (614 SNPs)

Proposed 2504 1000 Genome Phase 3 96.75 (206 SNPs)
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As can be observed, it is relatively easy to distinguish
between individuals from certain sub-populations, even
within the same continent. For instance, Fig. 3a shows
that individuals of Porto Rican (PUR) descent are rela-
tively easy to distinguish from those with Peruvian (PEL)
descent, achieving a 100% accuracy rate, using 56 SNPs,
under our approach. Similarly for Columbia (CLM) and
Peru (PEL) (Fig. 3c). As before, accuracy generally in-
creases with increasing correlation thresholds (and
hence more SNPs), but this is not monotonic. However,
we can also see some challenging cases, such as
Columbia (CLM) and Mexico (MXL), (see Fig. 3e),
where the highest classification rate is only about 74%,
using 37 SNPs. Even increasing the number of SNPs be-
yond 37 could not improve the result.

Computation time
The experiments were performed on a personal com-
puter running on Intel Core i7-7700 K Quad-Core
4.2 GHz Desktop Processor, 16GB RAM, with 4 TB
64 MB Cache Hard Drive. Part of the proposed ap-
proach required the evaluation of the predictive
power of each SNP. Thus, each SNP is used inde-
pendently to perform ancestry classification. In the
proposed methodology, we may notice that a per-
formance matrix was generated before initiating SNP
selection for a certain correlation threshold. With the
reduced set of 6404 SNPs, the algorithm had to run
Table 5 Comparative Performance In Sub-Population-level Ancestry

Pairwise sub-populations Continent Method Data size Da

CEU-TSI EUROPE ETHNOPRED [38] 267 HA

CHB-JPT EAST ASIA ETHNOPRED [38] 250 HA

LWK-MKK AFRICA ETHNOPRED [38] 294 HA

JPT-CHB EAST ASIA BAYESIAN [39] 9104 OW

JPT-KOR EAST ASIA BAYESIAN [39] 731 OW

CHB-KOR EAST ASIA BAYESIAN [39] 731 OW

– EUROPE PROPOSED 503 10

– AFRICA PROPOSED 661 10

– EAST ASIA PROPOSED 504 10

*Average accuracy of all pairwise sub-population classifications within the given co
**Average number of SNPs required in all pairwise sub-population classifications wi
***Results obtained without normalization
6404 times to generate the performance matrix, where
each time only one SNP is being used to perform
classification. The average time it takes to evaluate
the performance of a single SNP is approximately
1.17 s. With 6404 SNPs, the time required to con-
struct the whole performance matrix is about 2 h. By
using a graphics processing unit (GPU), we can re-
duce the total time for generating the performance
matrix to 1.5 h. After we generate the performance
matrix, the SNP selection process starts. We compute
pairwise correlation between SNPs and based on a
certain correlation threshold we identify a panel of
non redundant (or important) SNPs. The value of the
correlation threshold determines the size of the SNP
panel and the number of SNP features in a panel de-
termines how much time will be taken by the classi-
fier to perform classification. SNP selection time for
continental level classification using correlation
threshold 0.9 is approximately 27.35 s, where 184
SNPs have been selected.

Comparative performance evaluation
We have performed a limited comparison of our pro-
posed approaches with related work. Table 4 shows the
comparative performance of our proposed methods on
continental-level ancestry classification, when compared
with other related methods. Table 5 presents similar
comparative performance of our proposed method for
classification

tasets Classification rate (%) Number of attributes used

PMAP III 86.6 ± 2.4 180 SNPS

PMAP III 95.6 ± 3.9 877 SNPS

PMAP III 95.9 ± 1.5 341 SNPS

N COLLECTION 74.9 (77.2***) 15 STR LOCI

N COLLECTION 67.9 (63.7) 15 STR LOCI

N COLLECTION 69.6 (62.4) 15 STR LOCI

00 GENOME PHASE 3 76.6* 58 SNPS**

00 GENOME PHASE 3 87.02* 87 SNPS**

00 GENOME PHASE 3 73.3* 68 SNPS**

ntinent
thin the given continent
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binary/pairwise classification of sub-populations against
other related methods in the literature. The comparative
results show the proposed methods are competitive with
the state-of-the-art methods, even when using informa-
tion from just one chromosome.
Discussion and conclusion
Prediction of continental ancestry from genetic sequences
have been studied for years. However, much less has been
done on prediction of ancestry for closely-related
sub-populations, for instance, those that are within the
same country, or continent, especially under resource con-
straints, with potentially limited or missing genomic data.
In this work, we have developed an ancestry identification
system to predict the continental origin of an unknown in-
dividual and also distinguish between closely related
sub-populations within a continent. We used only SNPs
from just one chromosome (namely, Chromosome 1) for
our analysis, and to identify different panels of ancestry in-
formative SNPs. We have applied both machine learning
and statistical techniques to select candidate SNPs. Our re-
sults show that one single chromosome (Chromosome 1, in
this case), if carefully analyzed, could hold enough informa-
tion for accurate estimation of human biogeographical an-
cestry. This has a significant implication in terms of the
computational resources required for analysis of ancestry,
and in the applications of such analyses, such as in studies
of genetic diseases, forensics, and biometrics.
We have essentially considered binary classification,

given pairs of sub-populations. Further work can be per-
formed to extend the proposed approach to handle
multi-class classification of biogeographical ancestry.
Another interesting future work is to investigate the per-
formance of other chromosomes, especially the smaller
chromosomes, to see if we can construct equally
high-performing panels of AISNPs using an even less
amount of data. It will also be interesting to further in-
vestigate the identified SNPs to see if there is any con-
nection between them, or their nearby genes, with
specific diseases or health problems that are known to
be more prevalent in certain geographic regions.
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