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Abstract

Background: Noninvasive prenatal screening (NIPS) of common aneuploidies using cell-free DNA from maternal
plasma is part of routine prenatal care and is widely used in both high-risk and low-risk patient populations. High
specificity is needed for clinically acceptable positive predictive values. Maternal copy-number variants (mCNVs)
have been reported as a source of false-positive aneuploidy results that compromises specificity.

Methods: We surveyed the mCNV landscape in 87,255 patients undergoing NIPS. We evaluated both previously
reported and novel algorithmic strategies for mitigating the effects of mCNVs on the screen’s specificity. Further, we
analyzed the frequency, length, and positional distribution of CNVs in our large dataset to investigate the curation
of novel fetal microdeletions, which can be identified by NIPS but are challenging to interpret clinically.

Results: mCNVs are common, with 65% of expecting mothers harboring an autosomal CNV spanning more than
200 kb, underscoring the need for robust NIPS analysis strategies. By analyzing empirical and simulated data, we
found that general, outlier-robust strategies reduce the rate of mCNV-caused false positives but not as appreciably
as algorithms specifically designed to account for mCNVs. We demonstrate that large-scale tabulation of CNVs
identified via routine NIPS could be clinically useful: together with the gene density of a putative microdeletion
region, we show that the region’s relative tolerance to duplications versus deletions may aid the interpretation of
microdeletion pathogenicity.

Conclusions: Our study thoroughly investigates a common source of NIPS false positives and demonstrates how to
bypass its corrupting effects. Our findings offer insight into the interpretation of NIPS results and inform the design
of NIPS algorithms suitable for use in screening in the general obstetric population.
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Background
Noninvasive prenatal screening (NIPS) aims to detect
fetal chromosomal abnormalities early in pregnancy by
quantifying cell-free DNA (cfDNA) in maternal plasma
[1]. Due to its high sensitivity and specificity, clinical
ease, low cost, and minimal risk of complications, NIPS
has been widely adopted for the general obstetric popu-
lation, including high- and average-risk pregnancies [2].

High specificity is critical in fetal aneuploidy screening,
because professional guidelines recommend that all pa-
tients with positive aneuploidy results be offered follow-up
invasive testing [2, 3], a procedure associated with an
increased risk of pregnancy loss [4].
When performing NIPS by whole genome sequencing

(WGS) of cfDNA, a sample is considered aneuploid for a
given region if it has a statistically significant deviation in
the number of sequenced fragments (“depth”) relative to
the average depth of disomic background samples and/or
regions. Because most cfDNA originates from the mother,
copy-number variants in the maternal genome (mCNVs)
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can cause sufficiently large depth deviations to yield false
positives, thereby reducing the specificity of NIPS. Indeed,
the depth deviation of an mCNV relative to a fetal anom-
aly is so strong that even small mCNVs can have a large
impact on specificity; mCNVs spanning ≥250 kb were pre-
dicted to increase the false-positive rate by 40- to
1000-fold or more [5]. Further, two recent studies of triso-
mies 13, 18, and 21 attributed one-third to one-half of
NIPS false positives to maternal duplications [6, 7]. A
22-study meta-analysis of NIPS discordances found that
48% of false positives with an identified cause were due to
mCNVs [8]. These findings underscore the need for NIPS
bioinformatics pipelines to be robust to these confounding
variants.
A z-score is a common statistic used in WGS-based

NIPS to describe the deviation of observed from ex-
pected depth values, with a higher z-score indicating a
gain in DNA suggestive of a fetal trisomy (Fig. 1a, b).
The depth of a region of interest (e.g., chromosome or
microdeletion) is typically measured by first subdividing
the region into non-overlapping bins of equal size (e.g.,
20 kb) and then calculating the average depth per bin
[9]. As opposed to simply calculating a region’s average
depth by dividing the total mapped sequenced fragments
(“reads”) by its length, an average across bins provides a
straightforward way to detect and omit localized anom-
alies such as mCNVs and alignment artifacts. If not ap-
propriately mitigated, mCNVs cause false aneuploid calls
(Fig. 1c) because they strongly deflect the depth in their
encompassing bins, and this deviation affects the average
bin depth and resulting z-score in a region of interest.
In addition to enhancing the search for mCNVs, parti-

tioning reads into bins also facilitates the identification
of subchromosomal fetal CNVs like microdeletions. The
aneuploidy-detection algorithm can enumerate each suf-
ficiently lengthy set of contiguous bins as a possible
microdeletion, evaluate an average, compute a z-score,
and yield an assertion of fetal copy number. Recent studies
have shown that WGS-based NIPS data reveal novel fetal
CNVs at a resolution of 7 Mb [10]; however, the clinical
interpretation of such variants is not straightforward, and
the utility of reporting them to patients is unestablished.
We sought to explore the impact of mCNVs on the iden-

tification and interpretation of fetal chromosomal abnor-
malities. Our first step was to develop an mCNV-finding
algorithm to measure the frequency of mCNVs and iden-
tify patterns in their genomic locations. Next, we evaluated
the impact of mCNVs on NIPS specificity, highlighting the
virtues and drawbacks of different algorithmic strategies,
including both adapted and novel approaches. Finally, we
used the observed frequency, length, and positional distri-
bution of mCNVs—coupled with the assumption that most
mCNVs are benign—to shed light on the clinical interpret-
ation of novel fetal microdeletions.

Methods
Analysis of NIPS samples
The protocol for this study was reviewed and designated
as exempt by Western Institutional Review Board and
complied with the Health Insurance Portability and Ac-
countability Act (HIPAA). The information associated
with patient samples was de-identified in accordance
with the HIPAA Privacy Rule. A waiver of informed
consent was requested and approved by the IRB. A total
of 87,255 de-identified samples meeting internal quality
control criteria were retrospectively analyzed for the

Fig. 1 Isolating the effect on z-scores of mCNVs, a common source
of NIPS false positives. For euploid (a), trisomic (b), and mCNV-
harboring (c) samples on chromosome 18, the copy-number values
in tiled 20 kb bins (see Methods) shown at left for the sample of
interest (teal) and background samples (black). Shown in the middle
of each panel is the average copy-number across all bins, which
contributes to the z-score distribution shown at right. In (c), the
average and z-score are calculated in the presence and absence of
the mCNV; the mCNV-specific z-score gain defines Δzdup
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presence of mCNVs across all chromosomes. Samples
without mCNVs and fetal aneuploidies comprised a sub-
set later employed for mCNV simulations (described
below).

mCNV detection
mCNVs were detected using a moving-window approach
that considered copy-number values in 20 kb bins tiling
each chromosome. A bin’s copy-number value is a frac-
tional number (e.g., 1.997) that reflects the bin’s read
depth and results from multiple normalization steps
described below in the section about mCNV handling.
The presence or absence of an mCNV was assessed at
each bin i. First, the median copy-number value across
the 10 bins i through i + 9 was calculated in both the sam-
ple of interest and in background samples. A z-score was
computed for each sample’s observed median
copy-number value relative to the background average.
Bins i through i + 9 were classified as part of an mCNV if
(1) the absolute median copy-number value was <1.5 or
>2.5, and (2) the absolute z-score was determined to be
significant. As some genomic bins are filtered out else-
where in the analysis pipeline (e.g., for spuriously high
read depth or for “unmappable” regions with redundant
sequences that complicate unique mapping of reads), gaps
of up to five genomic bins within mCNVs were allowed.
Consecutive mCNV calls of the same type were merged if
the resulting call had a significant z-score. For example a
12-bin mCNV would be called by merging three mCNV
calls starting at bins i, i + 1 and i + 2, or a 25-bin call could
be made by merging calls starting at bins i and i + 15 (if
bins i + 10 through i + 14 were a gap). The edges of merged
calls were trimmed by up to 10 bins on either side, with
the final mCNV boundaries determined by the pair of
edges that maximized the absolute z-score of the call. Due
to the trimming, calls smaller than 200 kb were possible if
the trimmed set of bins yielded a large enough absolute
z-score. Aside from this section, z-score refers to the aneu-
ploidy z-score, not the z-score of the mCNV.
Additional file 1: Figures S1 and S2 illustrate the efficacy
of this mCNV-detection algorithm on simulated sam-
ples, which are themselves described further below.

Strategies for mCNV handling
For six NIPS bioinformatic analysis pipelines, we evalu-
ated the specificity of whole-chromosome aneuploidies as
a function of the presence of mCNVs. Each pipeline dif-
fered in key ways as described below but shared a com-
mon general analysis foundation: mapping short NGS
reads from WGS of cfDNA to a reference genome, count-
ing the number of reads per genomic bin (20 kb), applying
GC-content corrections at the read level [11] and mapp-
ability corrections at the bin level [12], normalizing these
reads-per-bin values at the sample and bin level, calculating

an average of these values per chromosome, and comparing
the sample-specific averages of the chromosome to the av-
erages of background samples using a z-score. The z-score
is calculated based on measures of central tendency (e.g.,
mean or median) and dispersion (e.g., standard deviation).
Each approach below differs in how these measures are
calculated. The left panels of Fig. 4 illustrate the mechanics
of each strategy.
The first pipeline, “Simple,” is based on the initially

published algorithms for NIPS [13] and does not feature
any mCNV-specific nor generally robust features. The
method calculates z-scores using the mean and standard
deviation of the bin copy-number values without any
outlier filtering.
The second pipeline, “Robust,” builds on the “Simple”

method, uses the median in place of the mean, and esti-
mates the standard deviation by (1) calculating the inter-
quartile range (IQR) of bin copy-number values, and (2)
converting the IQR to an estimate of standard deviation
based on the assumption that the data are normally dis-
tributed [14]. Algorithms that use robust statistical mea-
sures in some but not all steps of the z-score calculation
have been previously reported [15].
The third pipeline, “Robust+Gaussian,” refines the cen-

tral tendency and dispersion estimations by (1) discarding
the top and bottom fifth percentiles of the region’s
copy-number values, (2) fitting a Gaussian function to the
copy-number values of a region, and (3) discarding any
values more than four standard deviations away from the
estimated mean. Similar methods of discarding outlying
bins—without explicit mCNV detection—have been re-
ported previously [7].
The fourth pipeline, “Z-correction,” is inspired by a

previously proposed compensation approach [16]. The
approach assumes that mCNVs have a consistent,
size-specific effect on aneuploidy z-scores and corrects
for this. Our implementation uses results from the
“Robust” pipeline but subtracts a z-score offset for
chromosomes harboring an mCNV that is itself a
function of the mCNV size. The mapping of mCNV
size to z-score offset was determined via simulations
(described below).
The fifth pipeline, “Value filtering,” builds upon the

“Robust” pipeline by filtering out any bins with
copy-number value less than clow = 1.5 or more than
chigh = 2.5. The cutoff pair clow = 1.61 and chigh = 2.35
based on the empirical bin copy-number value distribu-
tion values within and outside of mCNVs (Additional
file 1: Figure S3 and S4) was also analyzed.
The sixth pipeline, “mCNV filtering,” builds upon the

“Robust” pipeline by identifying mCNVs and ignoring
their constituent genomic bins on an individualized,
per-sample basis when calculating the central tendency
and dispersion.

Kaseniit et al. BMC Medical Genomics           (2018) 11:90 Page 3 of 13



Additional file 1: Table S1 summarizes the various
algorithm strategies considered.

mCNV simulations
To supplement the mCNVs observed in our patient
cohort and characterize algorithm performance for arbi-
trary mCNV sizes, we simulated mCNVs by scaling the
bin-level copy-number values obtained from patient
samples. We focused our analysis on maternal duplica-
tions as they can lead to false positives in the analysis of
trisomies. For the region in which we wanted to simulate
a CNV, the copy-number values were multiplied by a
factor that mimics the gain observed in empirical mater-
nal duplications; the expected ratio of bin copy numbers
in maternal duplications vs. non-mCNV regions is 3/2 =
1.50, but we observed this factor to be slightly lower at
2.88/2 = 1.44 (Additional file 1: Figure S3). This ap-
proach further assumes that simulated mCNVs were
inherited by the fetus. mCNVs not inherited by the fetus
would have marginally decreased signal in proportion to
the fetal fraction, and this would reduce their potentially
compromising effect on specificity but also make them
slightly more difficult to detect.
For each of the chromosomes 13, 18, and 21, at least

10,000 mCNV-harboring samples were simulated, each
using as a baseline a randomly chosen sample shown to
be both euploid (via the “mCNV filtering” pipeline) and
void of mCNVs. Most samples (83%) were chosen for
exactly one round of simulation, with the rest used in
several rounds of simulations (15% in two and 2% in 3
or more simulations). The sizes of the mCNVs were se-
lected to span a logarithmic range, and the position of
each mCNV was randomly chosen. The mCNV size
values used in downstream analyses were based on the
simulated boundaries rather than the algorithm-detected
boundaries (e.g., a 3 Mb simulated duplication identified
as being 2.8 Mb by the mCNV-finding algorithm is rep-
resented in the plots and associated analyses herein
based on the 3 Mb size; Additional file 1: Figure S1).

Maternal duplication impact analysis
The impact of maternal duplications on aneuploidy
z-scores was evaluated in both empirical and simulated
samples.
The empirical approach included only those samples

observed to have an mCNV, and it estimated the median
aneuploidy z-score as a function of the duplication size.
If a chromosome contained multiple mCNVs, the dupli-
cation size was the sum of the observed mCNV lengths.
The aneuploidy z-score has an expectation of 0 for
euploid samples, and the median is not expected to devi-
ate appreciably from 0 even if some trisomic samples are
present due to their relative rarity. Hence, a systematic
positive shift of the median z-score as a function of

maternal duplication size is consistent with mCNVs
underlying some NIPS false positives.
The simulation-based approach directly estimated the

effect of maternal duplications on z-scores and, subse-
quently, on specificity. We defined Δzdup = zmCNV+ −
zmCNV− as the z-score difference attributable to a maternal
duplication (Fig. 1c), with zmCNV+ and zmCNV−, respect-
ively, representing the z-score with and without the simu-
lated mCNV. For a given size of mCNV, positive Δzdup
values indicate z-scores are sensitive to the presence of
maternal duplications, and no shift (Δzdup of 0) means the
bioinformatic analysis pipeline is not biased by mCNVs.
To calculate the specificity of NIPS as a function of

mCNV size, we modeled the z-score of a euploid sample
harboring an mCNV as a random variable Z = ZmCNV

− + ΔZdup. ZmCNV− represents the z-score of a sample
without an mCNV. It follows a standard normal distri-
bution N(μ = 0, σ = 1) and is not a function of mCNV
size. By contrast, for an mCNV of size s, ΔZdup is nor-
mally distributed with mean μdup and standard deviation
σdup calculated from the Δzdup values of the 200 simu-
lated samples whose mCNV sizes were closest to s.
Assuming ZmCNV− and ΔZdup are independent, Z is a
normal random variable with mean μdup and standard
deviation (1 + σdup

2)0.5. Since the simulations introduced
mCNVs into otherwise euploid samples, any modeled
positives (i.e., Z = ZmCNV− + ΔZdup > 3) were false posi-
tives. Furthermore, any modeled samples with zmCNV− > 3
were considered to be statistical false positives. Hence,
the false-positive rate (FPR) attributable to mCNVs was
calculated by omitting these statistical false positives:

FPRmCNV ¼ PðZmCNV− þ ΔZdup > 3Þ− PðZmCNV− > 3Þ

Specificity was simply 1 − FPRmCNV. The specificity as a
function of mCNV size was estimated for each chromo-
some separately using simulated samples with mCNVs
introduced on the chromosome of interest.
The estimate of cumulative false positives due to

mCNVs per 100,000 was calculated as the weighted sum
of the empirical maternal-duplication size-prevalence data
(Fig. 2b) multiplied by the size-dependent specificity data
from the simulation-based analysis (Fig. 4, right column).

Results
Autosomal mCNVs larger than 200 kb are detected in
65% of patients and cover the majority of the genome
As a first step toward measuring the impact of mCNVs
on NIPS performance, we surveyed their frequency, size,
and positional bias in 87,255 patient samples. Using a
rolling-window z-score algorithm (see Methods), we
identified mCNVs ≥200 kb. On average, patients had 1.07
autosomal mCNVs, and 65% of patients had at least one
mCNV. There were 37% more deletions than duplications
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overall, but duplications were generally larger than
deletions (median sizes 360 and 260 kb, respectively;
Kruskal-Wallis H-test p < 0.05).
Chromosomes 13, 18, and 21 are commonly tested in

NIPS, and mCNVs on these chromosomes pose the
most direct risk for false positives. On these chromo-
somes, 2.1% of all patients had at least one duplication
and 2.5% had at least one deletion with 4.5% having an
mCNV of either type (Fig. 2a). On chromosome 21,
deletions and duplications were observed at a similar
frequency, yet mCNVs larger than 1 Mb were all dupli-
cations (21 duplications and no deletions, Fig. 2b, c).
The high frequency of mCNVs on the commonly tri-
somic chromosomes illustrates why an NIPS strategy
that results in no-calls for samples with mCNVs would
be clinically inviable, as the rate of no-calls and inva-
sive follow-up procedures would be unacceptably
frequent.
We investigated the positional distribution of

mCNVs to evaluate the previously published premise
[13] that if mCNV positions were highly predictable,
an algorithm could achieve robustness simply by

masking out (or “blacklisting”) such regions. Indeed,
we observed that mCNVs were not distributed uni-
formly (Fig. 2d). Hotspots of mCNVs were common,
with some hotspots having an equal number of dupli-
cations and deletions, and others having an imbal-
anced ratio of the two. However, mCNVs were not
constrained to hotspot regions, as they were observed
across nearly all of the mappable portion of chromo-
some 21, with only about 14% of the chromosome
having no observed mCNVs in our dataset (approxi-
mately 7% of chromosome 13 and 9% of chromosome
18 did not have mCNVs; Additional file 1: Figure S5).
Though mCNV hotspots suggest that a blacklist ap-
proach could partially mitigate the impact of mCNVs,
this strategy has drawbacks: either (1) many sites are
blacklisted, which would impair sensitivity for aneu-
ploidy detection or (2) few sites are blacklisted, after
which many samples would retain mCNVs within the
analyzed regions that could lower specificity. This
result extends to NIPS assays that apply the blacklist
at a biochemical level, e.g., by only targeting certain
regions for sequencing [17, 18].

Fig. 2 mCNVs vary in positional frequency and length. a Cumulative distribution of mCNV duplication size on the three commonly aneuploid
autosomes—as well as their aggregate (“chr13/18/21”)—expressed as the percentage of the chromosome the mCNV spans (N = 87,255 samples).
b, c The size distribution of mCNVs on chromosome 21 for duplications (b) and deletions (c). d For the mappable regions of chromosome 21,
lines indicate observed mCNV positions and lengths (1 Mb scale bar indicated) for duplications (top) and deletions (bottom)
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The impact of mCNVs on z-scores observed in empirical
data is recapitulated and supplemented with simulations
We next explored the impact of mCNVs on aneuploidy-
calling fidelity as a function of mCNV size (Fig. 3).
Empirically observed mCNVs rarely spanned ≥1% of a
chromosome, which prohibited a statistically powered
assessment of the impact of these large mCNVs. To over-
come the sparsity of empirical data, we implemented simu-
lations to systematically analyze the effects of maternal
duplications on trisomy detection. To create a simulated
sample harboring an mCNV of a given size and position,
the bin-level copy-number data corresponding to the region
of interest was scaled by an empirically derived factor in a
euploid and mCNV-free sample (Fig. 3a, b). Simulated sam-
ples strongly resembled their observed counterparts, both at
the level of bin profile (Fig. 3a) and the distribution of bin
copy-number values (Fig. 3b). The bin copy number within
simulated mCNVs was very slightly overdispersed compared
to the bin copy numbers within detected patient mCNVs
(Fig. 3b). The strong overlap between median z-scores for
the empirical and simulated samples (Fig. 3c, thick gray and
red lines, both for the “Simple” method) suggests that this
dilation effect has a negligible impact on our results.

Maternal duplications exert an upward pressure on
z-scores, and this effect was reproduced in our simulated
data on autosomes (Fig. 3c, gray and red traces, respect-
ively). Importantly, with the simulated data the effect
was more readily observed, as the full size spectrum of
potential mCNVs was modeled. Larger simulated duplica-
tions led to increasing positive shifts away from the ex-
pected median z-score of 0 for a euploid sample (Fig. 3c,
red trace). The threat to the clinical performance of NIPS
is that this bias toward higher z-scores contributes to false
positives and lowers specificity. Indeed, the simulations
suggest that the average sample harboring an mCNV
spanning 2.4% or more of a chromosome would be ex-
pected to yield a false positive using the “Simple” approach
(i.e., the median z-score exceeds 3).

mCNV impact on z-scores can be reduced, but not
eliminated, with outlier-robust algorithms
We sought to determine which algorithmic features in an
NIPS analysis pipeline minimize the effect of mCNVs on
z-scores. Our simulated samples were an ideal data set for
this analysis, as the samples have both a “pre-mCNV”
z-score (reflecting their original status as both euploid and
free of mCNVs; see Methods) and a “post-mCNV” z-score
calculated after introducing a modeled maternal duplica-
tion. The difference between the post- and pre-mCNV
z-scores—which we term Δzdup—is a direct measure of
the effect of mCNVs on z-scores. A positive Δzdup means
the aneuploidy z-score was increased with the introduc-
tion of a simulated mCNV.
Six analysis strategies were tested on simulated

samples with maternal duplications on chromosomes
21 (Fig. 4), 13 (Additional file 1: Figure S6), or 18
(Additional file 1: Figure S7). For each test of a strat-
egy and a chromosome, we evaluated at least 10,000
simulated samples. As described in Methods and summa-
rized in Additional file 1: Table S1, the strategies differ
both in their approaches for calculating the central ten-
dency (e.g., mean or median) and dispersion of bin
copy-number values across a chromosome and in their
filtering methods that determine which bins are used in
those calculations. For each method, Δzdup was plotted as
a function of mCNV size (Fig. 4, middle panels), and these
data were sampled to estimate how specificity falls as
mCNVs grow (Fig. 4, right panels; see Methods).
The “Simple” approach (Fig. 4a) summarizes the bin

copy-number values of a chromosome by the mean and
standard deviation, without applying any mCNV-specific
or nonspecific filters. As anticipated, this method was the
most susceptible to false positives due to mCNVs; at the
point where duplication size exceeded 1.3% of chromo-
some 21 (0.42 Mb, autosomal duplications of this size or
greater observed in 13% of patients), the estimated specifi-
city dropped below 95%, and duplications spanning more

Fig. 3 Simulating mCNVs enables thorough performance analysis. a
Simulated bin-level copy-number trace for a simulated sample
containing an mCNV on chr21 (red) is highly similar to the trace for an
observed sample (gray) with a similar maternal variant. b The probability
distribution of copy-number values for bins within mCNVs is similar for
simulated (red) and observed (gray) samples. c There is a similar upward
trend in z-scores for observed (gray; N= 38,102 data points from 87,255
samples) and simulated (red; N= 30,887 data points, one per simulation)
samples that have a maternal duplication of the indicated size on
autosomes (“Simple” method). The solid line is a rolling median of 500
adjacent data points. Z-scores are capped at 9 in the plot only for
visualization purposes
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Fig. 4 (See legend on next page.)
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than approximately 10% of the chromosome always
caused false positive results [3]. Methods using an
alternative to the z-score while still using the mean
and standard deviation in the analysis—such as
employing a t-test [19]—would likely be similarly sus-
ceptible to mCNVs.
The “Robust” approach (Fig. 4b) improves upon the

“Simple” strategy by replacing the mean with the median
and estimating the standard deviation of bin copy-number
values from their interquartile range, rather than calculat-
ing the standard deviation directly. The median and IQR
are less susceptible to outlying bins than the mean and
standard deviation; therefore, utilizing these values is ex-
pected to increase robustness to mCNVs. Indeed, this ap-
proach had smaller z-score deflections than the “Simple”
strategy for mCNVs spanning <10% of the chromosome
but was still suboptimal; specificity dropped below 95%
for mCNVs spanning ≥3.6% (1.2 Mb) of chromosome 21,
and our patient cohort contained 1168 samples (1.3%)
with duplications in that size range (Fig. 2a).
The “Robust+Gaussian” approach (Fig. 4c) adds another

layer of nonspecific outlier removal to the “Robust” ap-
proach by rejecting bins that fall far outside of a Gaussian
fit to the bin copy-number data. This method performed
better than both the “Simple” and “Robust” methods, but
was susceptible to mCNVs spanning approximately 8.9%
of chromosome 21 (2.9 Mb), at which point specificity
dropped below 95%. As a consequence of more stringent
filtering, the Robust+Gaussian method discards more bins
relative to the previous strategies. This excess bin culling
would reduce sensitivity because sensitivity of WGS-based
NIPS is an increasing function of the number of bins [20].

Directly accounting for mCNVs boosts specificity
We next considered strategies that specifically address
mCNVs, positing that directed approaches would further
boost specificity. The “Z-correction” method (Fig. 4d) first
calculates a z-score for the chromosome—without removal
of mCNV bins—and next subtracts a chromosome- and
size-specific z-score offset determined via simulated sam-
ples analyzed with the “Robust” approach. In adjusting for
mCNVs, this method assumes that the effect of mCNVs on
z-score is determined by size and is reproducible across
samples. This method performed better in aggregate com-
pared to the previous approaches, as the median of Δzdup

remained near 0 even for large duplications. However,
Δzdup values were relatively highly dispersed for simu-
lated duplications around >3% (1 Mb) in size, meaning
that an mCNV would still cause large z-score devia-
tions for some samples. The specificity for chromosome
21 dropped below 95% at duplication sizes of approxi-
mately 22% (7.0 Mb).
The “Value filtering” approach (Fig. 4e) operates on a

simple premise: neutralize mCNVs by purging bins with
high (>2.5) or low (<1.5) copy-number values prior to
calculating the chromosome-wide average and disper-
sion. This method was robust to mCNVs that were not
extremely large (<95% specificity for mCNVs larger than
27% of chromosome 21, or 8.7 Mb), but showed elevated
variability in Δzdup for all mCNV sizes relative to other
strategies. The increased noise results from filtering out
bins too aggressively, leaving fewer data points—and
consequently more noise—for z-score calculation. Du-
plications are still expected to have some bins with
copy-number values less than 2.5 but elevated com-
pared to non-duplicated regions, which is likely why
large duplications caused a positive Δzdup. A variant of
this method using cutoff values based on empirical bin
copy-number values is shown in Additional file 1: Figure S4.
This method showed the most variability in the fraction of
bins retained after filtering (Additional file 1:Figure S4, right
panels) compared to all other methods that were analyzed,
suggesting that it could have a nontrivial and variable impact
on aneuploidy sensitivity for samples with mCNVs, as sensi-
tivity depends on the number of bins available for z-score
calculation [20].
Finally, the “mCNV filtering” approach (Fig. 4f) performs

a sample-specific exclusion of bins included in mCNVs.
Treating each sample separately, chromosomes are
scanned for the presence of mCNVs (see Methods) and
then mCNV-spanning bins are excised prior to all down-
stream calculations. This method was the most robust to
mCNVs compared to the others, with specificity dropping
below 95% only for maternal duplications larger than 58%
of chromosome 21 (18 Mb). Because the “mCNV filtering”
method removes only the data that should be removed, it
decreases z-score noise, retains high specificity, and has
more consistent sensitivity compared to the “Value filter-
ing” approach due to less noise in the number of bins
retained (Additional file 1: Figure S4, right panels).

(See figure on previous page.)
Fig. 4 Change in z-score and specificity due to simulated maternal duplications for different analysis approaches. Each row displays the
performance of the indicated analysis strategy. The left column plots Δzdup as a function of maternal duplication size on chr21, with each plot
having >10,000 simulated samples. The thick trace is a rolling median, and the top and bottom thinner lines are the 75th and 25th percentiles,
respectively. In the right column, the impact on specificity of maternal duplications is shown, with the dashed lines indicating the position of
95% specificity for chr21. The calculations for specificity and the expected frequency of false positives are described in Methods. (*) The indicated
false-positive rate is an aggregate measure based on the specificity and mCNV prevalence of chromosomes 13, 18, and 21. a Simple, b Robust, c
Robust+Gaussian, d Z-correction, e Value filtering, f mCNV filtering
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mCNV filtering reduces mCNV-caused false-positive rate
to fewer than 1 in 520,000
To evaluate the algorithmic strategies through a more
clinically relevant lens, we calculated the expected fre-
quency of false-positive aneuploidy calls resulting from
mCNVs on chromosomes 13, 18, and 21 (see Methods).
Using the measured relationship between duplication
size and Δzdup (Fig. 3), as well as the size and chromo-
some of the observed maternal duplications in over
56,000 NIPS samples (the 65% of the 87,255 sample co-
hort with mCNVs), we estimated the false-positive rate
combined across the three chromosomes for each NIPS
data-analysis strategy described earlier.
On average, mCNVs are predicted to cause a

false-positive result of trisomy 13, 18, or 21 for 1 in 860
patients using the “Simple” approach. This false-positive
rate is similar to the rates reported by laboratories prior
to incorporating changes that mitigate the effect of
mCNVs: in outcome studies, Chudova et al. reported 3
mCNV-caused false positives in 1914 patients (a rate of 1
in 640) [7], and Strom et al. reported 61 mCNV-caused
false positives in 31,278 patients (a rate of 1 in 510) [6].
The “Simple” estimated false-positive rate is also consist-
ent with aggregate statistics of NIPS specificity from
meta-analyses over the time period when comparable
methods were common [3].
Overall, mCNV-aware approaches (“Z-correction”,

“Value filtering”, “mCNV filtering”) had higher specificity
than mCNV-unaware approaches. All mCNV-aware ap-
proaches increased the pooled specificity for the three
common trisomies such that the aggregate false-positive
rate was fewer than 1 in 100,000 tests. Remarkably,
relative to the “Simple” approach with one false positive
expected for every 860 samples, the “mCNV filtering”
approach is expected to incur only one mCNV-caused
false positive for every 520,000 samples, representing a
600-fold reduction.

mCNVs offer insight into clinical interpretation of novel
fetal microdeletions
The high frequency and positional dispersion of CNVs
across the genome (Fig. 2) was noteworthy in this osten-
sibly healthy pregnant population. We were curious
about whether the landscape of maternal copy-number
variation could inform the potential clinical impact of
copy-number variation in the fetal genome. Such know-
ledge is important because WGS-based NIPS technology
can detect novel fetal microdeletions on the order of
10 Mb [10], and it is not yet clear how to interpret the
health implications of such variants.
We reasoned that the clinical consequences of a novel

10 Mb microdeletion would be less severe if there are
deletions observed throughout the region in a healthy
population. Therefore, we calculated the proportion of

each autosomal, 10 Mb sliding window that was covered
by at least three observed deletions in our mCNV data-
set, termed the “deletion span” (Fig. 5a). We assumed
that duplications are more likely to be benign than dele-
tions and, therefore, calculated the corresponding dupli-
cation span for each region to serve as a proxy to
control for CNV propensity. As schematized in Fig. 5a, a
window with a high duplication span has several ob-
served duplications covering most of the region, and a
window with a low deletion span has deletions only in a
few parts of the region. The number of observed
mCNVs in a given window is not the sole determinant
of the span; for example, a 10 Mb window that had a
200 kb deletion hotspot but no deletions elsewhere
would have a small deletion span. Figure 5b shows
span values as a function of position across chromo-
somes 4 and 5 (all other chromosomes in Additional
file 1: Figure S8), and Fig. 5c compares deletion and
duplication spans for all 10 Mb windows across auto-
somes. The two span measurements were significantly
correlated (Pearson r = 0.73, p < 0.05), consistent with
there being an intrinsic propensity for CNVs (dele-
tions and duplications) that varies by position [21].
Based on the presumption that deletions are more

likely to be pathogenic than duplications, we expected
that a small deletion span, relative to the duplication
span, would be a feature of pathogenic microdeletions.
Therefore, we calculated the ratio of spans (“dup:del ra-
tio”) and evaluated whether pathogenic microdeletions
had elevated dup:del ratios. Figure 5d shows the histo-
gram of the dup:del ratio for autosomal 10 Mb bins; it
highlights five commonly screened pathogenic microde-
letions (22q11.21, 5p15, 1p36.32–33, 4p16.2–3, and
15q11.2–13.1). Four of the five pathogenic microdele-
tions had a dup:del ratio in the 75th percentile or
greater, but 22q11.21 had a nearly 1:1 dup:del ratio (10th
percentile). These data suggest that a high dup:del ratio
could be a common—but not ubiquitous—feature of
pathogenic microdeletions.
We investigated the density of genes in a region as a sec-

ondary feature that could distinguish whether a deletion is
pathogenic. Notably, based on gene density and dup:del ra-
tio, each of the common pathogenic microdeletions was an
outlier relative to typical 10 Mb windows in the genome in
one feature, the other, or both (a result robust to the
mCNV-count threshold used to define a span, Additional
file 1: Figure S9, as well as resamplings of the study popula-
tion, Additional file 1: Figure S10). Microdeletion 22q11.21
had only an intermediate dup:del ratio, as mentioned, but
its gene density is very high. Microdeletion 5p15, by con-
trast, had the opposite: an elevated dup:del ratio (≥99th
percentile) but approximately average gene density. Finally,
microdeletions 1p36, 4p16, and 15q11 all had both high
gene density and elevated dup:del ratio.
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To expand the investigation to a larger number of
known pathogenic microdeletions, we additionally ana-
lyzed expert-curated pathogenic deletions [22] ≥1 Mb in
length from the International Collaboration for Clinical
Genomics (ICCG, formerly ISCA). Nearly all such
variants were outliers in one or both metrics (purple dia-
monds, Fig. 5e), consistent with the findings for common
microdeletions. Two known pathogenic microdeletions
(2p15p16.1 and 12q14) had low dup:del ratios (~ 1:1) and
relatively low gene density, but they also had low values
for both the duplication span and deletion span (≤10%;
Additional file 1: Table S2). As such, low span values
might represent cases in which the dup:del ratio alone is
equivocal for interpreting novel microdeletions.
The above analyses suggest that outlying regions in

the plot of gene density versus dup:del ratio are more
likely to be pathogenic when deleted. To scrutinize this

hypothesis, we tested its inverse, i.e., that deletion of
non-outlying regions is benign. We observed multiple sam-
ples in our patient cohort with microdeletions ≥4 Mb,
most of which we expected to be benign—or to have a
mild or incompletely penetrant pathogenic phenotype—be-
cause of their presentation in expecting mothers. For all
such microdeletions, we evaluated their respective gene
densities, duplication spans, deletion spans, and dup:del ra-
tios (yellow dots in Fig. 5e and Additional file 1: Figure S8;
Additional file 2: Table S3). All but one of the regions
directly supported our hypothesis because they were not
outliers on either axis (Fig. 5e). We looked more deeply at
the one variant that appeared to counter the hypothesis
due to its very high dup:del ratio (yellow dot with arrow in
Fig. 5e). Remarkably, this variant is a deletion of 13q34 that
has recently been shown to be pathogenic, as it associ-
ates with intellectual disability and dysmorphism [23].

Fig. 5 Implications of deletion prevalence in a pregnant population. a The “duplication span” and “deletion span” values were calculated by
counting the percentage of bins in a 10 Mb window at which the depth (count) of mCNVs is ≥3. Dotted boxes demarcate regions with sufficient
mCNV depth to contribute to the span percentage. In the duplication span schematic, the dotted boxes constitute 50% of bins in the 10 Mb
window, and in the deletion span schematic, 30% of bins are in the dotted boxes; thus, the duplication and deletion spans 50 and 30%,
respectively. b Examples of the span values and gene content for chromosomes 4 and 5. Gray regions indicate the common 4p16 and 5p15
microdeletions. c 2D histogram of the deletion and duplication spans (Pearson r = 0.73, p < 0.05) with their respective 1D histograms above and
at right. d The dup:del ratios of common microdeletions (red triangles) are plotted relative to a histogram of dup:del ratios of 10 Mb moving
windows across the autosomes. e Common microdeletions and most other pathogenic ICCG microdeletions (purple diamonds) are outliers in
either their gene density or dup:del ratio compared to 10 Mb windows (2D histogram in background). Arrow indicates an observed pathogenic
13q34 maternal terminal microdeletion that is an outlier in both parameters, while other observed maternal deletions (yellow circles)—expected
to be benign—had low values. Panels (d) and (e) plot variants with dup:del ratios outside of the shown x-axis bounds at the nearest boundary
and variants with a deletion span of 0 as having a maximal dup:del ratio. c and e show 2D histograms with hexagonal bins, where dark colors
are high density and light colors are low density
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Therefore, rather than invalidate or weaken the hypoth-
esis, the observed 13q34 microdeletion reinforces it.
Taken together, these observations suggest that param-

eterizing putative microdeletions on multiple biologically
relevant axes, such as the two investigated here, could fa-
cilitate identification of pathogenic outliers and aid the clin-
ical interpretation of novel fetal CNVs identified via NIPS.

Discussion
Here we show that mCNVs are common on the chro-
mosomes that NIPS interrogates (4.5% of patients have
mCNV on chromosome 13, 18, or 21) and can cause
frequent false positives if not properly neutralized at the
algorithmic level. Even NIPS tests that share a common
sequencing approach (e.g., WGS of cfDNA) may never-
theless have very different test specificities based on the
sophistication of their mCNV handling. Using 87,255
empirical and 30,000 simulated samples, we quantified
the impact on specificity of various mCNV-mitigation
strategies and observed a very wide range of values. Our
novel approach, which excludes bins in mCNVs from
downstream calculations, reduces the expected rate of
mCNV-caused false positives nearly 600-fold relative to
the algorithms used in the early iterations of WGS-based
NIPS and which may still be used in practice in clinical la-
boratories (1 in 520,000 vs. 1 in 860; Fig. 4). Finally, as a
result of characterizing the frequency, length, and position
of mCNVs, our work provides initial insight into the clin-
ical interpretation of the novel fetal microdeletions that
WGS-based NIPS can detect.
Algorithmic approaches tailored to mCNVs had better

specificity than strategies that had robust features but
were not mCNV-specific. For example, the value-filtering
approach that excludes genomic bins based on their
copy-number values (Fig. 4e) performed better than a
method that simply used robust statistical metrics like the
median and IQR (Fig. 4b). Value filtering has drawbacks,
however, as the choice of threshold results in a tradeoff
between specificity and sensitivity; a permissive threshold
impairs specificity by retaining some bins from mCNVs,
whereas an aggressive threshold lowers sensitivity by ex-
cluding bins that may not be in mCNVs. This tradeoff is
avoided with an approach that identified the location of
mCNVs and removed only the relevant bins from subse-
quent analysis. This mCNV filtering method had the high-
est specificity of the options considered, with a small
Δzdup in aggregate across all mCNV sizes, as well as low
variance in the individual Δzdup values (the z-score correc-
tion method was mCNV-aware but had high variance,
which is expected to lower specificity).
Though mostly tailored to retain specificity, mCNV-

mitigation approaches must also not reduce sensitivity for
aneuploidies. Algorithms that retain all bins (“Simple” and
“Robust”) were shown to be inferior due to their poor

specificity, but they may have no net impact on sensitivity
because they will have higher fetal-aneuploidy sensitivity
in samples with maternal duplications and lower sensitiv-
ity in samples with maternal deletions. Strategies that re-
move outlying bins without directly identifying mCNVs
(“Robust+Gaussian” and “Value filtering”) could slightly
lower sensitivity for fetal aneuploidies (depending on the
filtering cutoffs) because conservative filtering could su-
perfluously remove bins not associated with mCNVs
(Additional file 1: Figure S4). With the mCNV filtering ap-
proach, the small values and variance of Δzdup mean that
mCNVs minimally affect the z-score in either direction,
suggesting that the filtering process does not compromise
sensitivity. mCNV filtering could slightly boost sensitivity
by avoiding false negative results in trisomic samples
where the aneuploidy-inflated z-score is lowered to nor-
mal levels due to a maternal deletion.
While not directly investigated, mCNVs on non-tested

chromosomes (i.e., autosomes other than chromosomes 13,
18, or 21)—or even mCNVs in other patient samples—could
affect the z-score of a test chromosome [16]. WGS-based
NIPS involves normalization of NGS read depth to calculate
a z-score, and this normalization could include one or many
chromosomes, as well as other samples in a background co-
hort. Robust normalization, including a large number of
background samples and/or filtering out mCNVs before
normalization, can mitigate spurious z-score changes due to
cryptic mCNVs in the analysis pipeline.
Expert manual review of both z-scores and bin-level

copy-number data across all autosomes can further safe-
guard against mCNV-caused false positives [24]. Based on
our experience, strong collaboration between the manual re-
viewers and user-interface developers—as well as algorith-
mic flags that point out cases requiring careful scrutiny—
can facilitate timely review at scale. However, we caution
against an mCNV-mitigation strategy that relies solely on
manual review of ideograms for putative positives [15] and
foregoes a computational component that detects and as-
sesses the impact of mCNVs. After all, most mCNVs do not
cause false positives. Manual review without mCNV-specific
algorithmic assistance could lower the sensitivity of the
screen if trisomic samples with maternal duplications were
dismissed as negatives. For instance, in addition to being
cost-prohibitive and logistically challenging in a screening
setting, a recently published recommendation [25] (currently
used in practice [19]) supports dismissal of positive calls in
samples that contain an mCNV verified by sequencing ma-
ternal white blood cell DNA. This guidance could decrease
sensitivity relative to an mCNV-aware computational ana-
lysis that preserves true positive calls in aneuploid samples
harboring mCNVs, where the mCNVs alone are insufficient
to explain the observed z-scores.
Advances in WGS-based NIPS technology have enabled

genome-wide microdeletion calling, but the challenge of
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interpreting positive findings could limit their clinical
validity and utility. In principle, the clinical impact of a large
fetal deletion stems from the cellular roles of its constituent
genes and regulatory regions, but specific knowledge of
these roles is often lacking. We identify the dup:del ratio as
a general criterion that could advance the interpretation of
large fetal CNVs; importantly, used together with gene dens-
ity, each of the common microdeletions (plus the recently
characterized 13q34 microdeletion [23]) was identified as an
outlier. These bulk metrics might be well-suited for cases in
which the genes encompassed by a novel microdeletion are
not well-studied. We expect any information gained from
the dup:del ratio to improve in quality with a larger patient
cohort, as the observation of more mCNVs would enable
use of a higher mCNV-count threshold for a bin to contrib-
ute to the duplication or deletion span. In addition, more
examples of benign microdeletions observed in expecting
mothers can further power the analysis.

Conclusions
With proper algorithm design and extensive testing that le-
verages empirical and simulated data, high specificity in
NIPS is possible even in the presence of mCNVs that range
widely in size. Importantly, by using the mCNV-filtering ap-
proach described here, achieving robustness to mCNVs—
and the corresponding rise in positive predictive value—does
not compromise detection of true aneuploidies and, thereby,
preserves both high sensitivity and a low test-failure rate.
While the identification and analysis of mCNVs provide
biological insight into the impact of large copy-number vari-
ants, mCNV removal upstream of fetal aneuploidy assess-
ment is important to maintain exemplary test performance,
which will be especially critical as NIPS adoption increases
in the wider, general obstetric population.
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