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Abstract

Background: Deafness is a highly heterogenous disorder with over 100 genes known to underlie human non-
syndromic hearing impairment. However, many more remain undiscovered, particularly those involved in the most
common form of deafness: adult-onset progressive hearing loss. Despite several genome-wide association studies of
adult hearing status, it remains unclear whether the genetic architecture of this common sensory loss consists of
multiple rare variants each with large effect size or many common susceptibility variants each with small to medium
effects. As next generation sequencing is now being utilised in clinical diagnosis, our aim was to explore the viability of
diagnosing the genetic cause of hearing loss using whole exome sequencing in individual subjects as in a clinical
setting.

Methods: We performed exome sequencing of thirty patients selected for distinct phenotypic sub-types from well-
characterised cohorts of 1479 people with adult-onset hearing loss.

Results: Every individual carried predicted pathogenic variants in at least ten deafness-associated genes; similar
findings were obtained from an analysis of the 1000 Genomes Project data unselected for hearing status. We have
identified putative causal variants in known deafness genes and several novel candidate genes, including NEDD4 and
NEFH that were mutated in multiple individuals.

Conclusions: The high frequency of predicted-pathogenic variants detected in known deafness-associated genes was
unexpected and has significant implications for current diagnostic sequencing in deafness. Our findings suggest that in
a clinic setting, efforts should be made to a) confirm key sequence results by Sanger sequencing, b) assess
segregations of variants and phenotypes within the family if at all possible, and ¢) use caution in applying current
pathogenicity prediction algorithms for diagnostic purposes. We conclude that there may be a high number of
pathogenic variants affecting hearing in the ageing population, including many in known deafness-associated
genes. Our findings of frequent predicted-pathogenic variants in both our hearing-impaired sample and in the
larger 1000 Genomes Project sample unselected for auditory function suggests that the reference population for
interpreting variants for this very common disorder should be a population of people with good hearing for their
age rather than an unselected population.

Keywords: Hearing loss, Whole exome sequencing, Deafness

* Correspondence: sally.dawson@ucl.ac.uk

Karen P. Steel and Sally J. Dawson contributed equally to this work.
SUCL Ear Institute, University College London, WC1X 8EE, London, UK
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-018-0395-1&domain=pdf
http://orcid.org/0000-0002-4421-2043
mailto:sally.dawson@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lewis et al. BMC Medical Genomics (2018) 11:77

Background

Hearing loss is one of the most common sensory deficits
in the human population, and it has a strong genetic
component [1]. However, although more than 140 human
non-syndromic hearing impairment loci have been
mapped and over 100 genes identified, most underlie
childhood deafness or early-onset hearing loss. The vast
majority of genes involved in hearing remain unknown,
including those associated with adult-onset, age-related
progressive hearing loss. Age-related hearing loss (ARHL)
affects 1 in 3 people over the age of sixty, often leading to
social isolation and depression, is associated with subse-
quent cognitive decline [2—4] and a predictor of dementia
[5]. The heritability of ARHL has been estimated to be be-
tween 30 and 50%, similar to other common complex dis-
orders [1, 6, 7].

Although several ARHL genome-wide association stud-
ies (GWAS) have been carried out [8-11] and promising
candidate genes identified, such as SIK3 and ESRRG [10,
11], only five loci have been associated with hearing status
at the genome-wide significance level: GRM7 [12],
PCDH20 and SLC28A3 [13], and ISG20 or ACAN and
TRIOBP [14]. Furthermore, single genes can underlie pro-
gressive hearing loss with post-lingual onset, including in
middle-age, particularly genes underlying dominantly-
inherited deafness [15, 16]. Thus, adult-onset hearing loss
may result from either rare Mendelian gene variants with
large effect size or multiple variants each making a small
contribution to hearing loss. It is also unclear whether
these variants are in novel genes involved in maintenance
of auditory pathways or whether they are milder variants
of the same genes that are mutated in congenital deafness.

Here, we have taken a more in-depth approach than
GWAS, using whole-exome sequencing (WES) to study
thirty patients carefully selected from a total sample of
1479 patients with a variety of adult-onset hearing loss
phenotypes to represent the mixed phenotypes and var-
ied genetic aetiology that might be present in a clinical
scenario, targeting specific sub-phenotypes to maximise
power to detect shared variants. Our aim was to estab-
lish to what extent exome sequencing is an effective and
appropriate tool for genetic diagnosis of hearing loss in
a clinic setting, where there is usually only a single adult
patient involved and family members are not available
for segregation analysis. Whole exome and genome se-
quencing are beginning to be used in this scenario for
diagnosis of adult-onset hearing loss with the clinician
faced with challenges in evaluating the candidate vari-
ants identified. Our results demonstrate the value of tar-
geting well-characterised phenotypic subtypes and
cross-species data comparison in exome sequencing ana-
lysis, and highlight issues which need to be considered
in interpreting genetic variants of unknown pathogen-
icity in current genetic diagnosis and gene discovery
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studies, in particular the finding that many individuals
have multiple predicted-pathogenic variants in different
genes known to underlie deafness.

Methods

Recruitment of patients

Twenty patients (seven males, thirteen females) with
non-syndromic sensorineural adult-onset hearing loss
(self-reported age of onset between 20 and 50) were se-
lected from a larger group of 700 patients recruited from
the adult hearing aid clinic at the Royal National Throat
Nose and Ear Hospital, London, U.K. (described in [17]).
The twenty were chosen based on a family history of
hearing loss and an age of onset in middle age. Air and
bone conduction thresholds at 0.25, 0.5, 1, 2, 4 and 8 kHz
and 0.5, 1, 2 and 4 kHz, respectively were measured with
masking as indicated according to BSA Recommended
Procedures [18] (Additional file 1: Figs. S1, and
Additional file 2: Figs. S2). Ethical approval for this project
was granted from the Royal Free Local Research Ethics
Committee (reference 6202).

A second group of 10 older individuals were selected
from the 779 people in the database of the longitudinal
study of ARHL being conducted at the Medical Univer-
sity of South Carolina (MUSC) since 1987 (described in
[19]). These individuals were selected for the current
analyses on the basis of age (>60 and<79 years),
negative or limited self-reported occupational and
recreational noise history, available DNA samples, and
audiometric phenotype (five metabolic: 4 females, 1
male; mean age 69.8 years and five sensory: 2 females, 3
males; mean age 68.3 years) (Additional file 3: Fig. S3).
The protocols for this study were approved by the
Institutional Review Board at MUSC.

All patients were recruited by written informed consent.

Exome sequencing

DNA was submitted for WES using either the Agilent
SureSelect Human All Exon V3 kit or a custom library
designed by Agilent for human whole exome sequence
capture (which predates the SureSelect kit). Sequencing
was carried out on either the Illumina Genome Analyzer
IIx or Illumina HiSeq 2000 platform as paired-end
54 bp, 75 bp or 76 bp reads according to the manufac-
turer’s protocol.

The data were filtered on quality, Minor Allele
Frequency (MAF) in the ExAC non-Finnish European
population [20], most severe consequence and predicted
pathogenicity using the pipeline shown in Fig. 1 (Fig. 1,
Additional file 4: Table S1). Where no data were re-
corded in EXAC but a MAF was available from the 1000
Genomes European population [21], e.g. for rs1813100,
this was used. The impact of filtering on variant number
is shown in Additional file 5: Fig. S4. Following filtering,
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Fig. 1 Filtering pipeline. Diagram showing the filtering pipeline used for processing and analysing data. Mean variant counts are shown at each stage
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variants were examined both individually and by gene
(using only genes and known miRNAs present in
Ensembl, accessed May 2016), and the gene lists analysed
to find those mutated genes shared between individuals.

Variant confirmation

Candidate variants were re-sequenced using Sanger se-
quencing (Source Bioscience). Primers were designed
using Primer3 [22] (Additional file 6: Table S2). Sequence
data were analysed using Gap4 [23].

1000 Genomes project data

Genotype and annotation data from the 1000 Genomes
project [21, 24] were used to create files of gene variants
from each of the 2504 individuals sequenced in the
project. Variants were processed using the same pipeline
(Fig. 1), with the exception of the quality filter (quality of
variant call >30, read depth >20, mapping quality >45),
which was omitted because these variant calls have already
been validated and filtered [21].

Results and discussion
In order to determine the possibility of using WES to re-
veal the genetic basis of adult onset hearing loss in a

typical clinical scenario, we identified 30 individuals with
different phenotypic sub-types based on family history,
age of onset and audiogram shape from large well char-
acterised cohorts. Twenty patients with family histories
were subdivided into ten with probable dominant hear-
ing loss and ten with presumed recessive hearing loss.
Ten older adults without a family history of hearing loss
were subdivided into five people with a metabolic
phenotype of ARHL and five with a sensory phenotype
of ARHL based on audiogram shape [19]. These
sub-groups are henceforth referred to as Dominant, Re-
cessive, Metabolic and Sensory respectively.

Because hearing loss is common, we selected a
low-stringency allele frequency filter of 10%, to detect com-
mon risk variants in our phenotypic sub-groups. We com-
piled a list of known deafness genes comprising all genes
listed in the Hereditary Hearing Loss Homepage [15] plus
the human orthologues of all the mouse deafness genes
from the Hereditary Hearing Impairment in Mice website
(described in [25]); 357 genes in total (Additional file 7:
Table S3). Mutant mice continue to be valuable tools for
discovering genes required for hearing [25], many of which
have subsequently been shown to also underlie deafness in
humans, such as WBP2 [26] and MIR%% [27, 28].
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To identify potential false positives due to platform er-
rors we utilised a list of 507 such genes described for the
[llumina Genome Analyser IIx by Fuentes Fajardo et al.
[29] (Additional file 8: Table S4). We have not excluded
these genes from our analysis but have marked them as
“candidates for exclusion” where they occur.

First analysis: Common variants

Here, common variants that were predicted to be patho-
genic (£10% MAF in the non-Finnish European population)
were analysed to find genes common within each
sub-group.

Known deafness genes in all four sub-groups combined

We first examined known deafness genes in all thirty
people together and found that every person had at least
ten known deafness genes with one or more predicted
pathogenic variants (Fig. 2A, pale blue bars). The same
analysis on data from the 1000 Genomes project, which
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includes exome sequences from 2504 people with
unknown auditory function, produced a very similar dis-
tribution of predicted pathogenic variants to the 30
people with adult-onset hearing loss (Fig. 2B). As this
high frequency of predicted pathogenic variants was an
unexpected finding, we asked if the same pattern of dis-
tribution was present in genes known to be involved in
retinal disease, another sensory deficit with a large num-
ber of single genes known to be involved. We repeated
the analysis using 265 retinal disease genes (from RetNet
[30, 31], Additional file 9: Table S5) instead of our list of
deafness genes. Again, we found a very similar distribu-
tion of predicted pathogenic variants in both our thirty
patients with hearing loss and in the 2504 samples from
the 1000 Genomes project (Fig. 2C, D). We then looked
at human dominant deafness genes only (n =33,
Additional file 7: Table S3), where pathogenic variants
would be expected to have an effect even when only
present in one allele. We found once again a similar
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pink, orange and red; pale blue and pink indicate the variants were predicted pathogenic by a majority of predictors, dark blue and orange indicate
the variants were predicted pathogenic by all predictors, and red and purple indicate the variants are classified as loss of function variants
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distribution of variants in our thirty patients and the
1000 Genomes samples (Fig. 2E, F) and 27 of our 30 pa-
tients had at least one predicted pathogenic variant in a
dominant deafness gene (Fig. 2C).

To test whether this finding was due to having too many
common variants, we repeated the analysis using a 1%
MATF cut-off (instead of 10%), and found the same pattern
(Fig. 2, pink bars). We then tested a more stringent filter
for pathogenicity, selecting only those variants predicted
to be pathogenic by all the predictors used instead of the
majority of predictors. The distributions were again simi-
lar for all groups of people and sets of disease-associated
genes with both MAF filters (Fig. 2, dark blue and orange
bars for MAF < 10% and MAF < 1% respectively). Finally,
we looked for only loss of function variants (loss of tran-
script, essential splice site, frameshift indel, stop gain or
start loss, see Fig. 1), and again observed a similar distri-
bution (Fig. 2, purple and red bars for MAF <10% and
MAF < 1% respectively). Two of our patients and 152
people from the 1000 Genomes project had a loss of func-
tion variant in a known human dominant deafness gene
(Fig. 2E, F). The two patients were both from the domin-
ant sub-group; one had a single base pair insertion
(causing a frameshift) in MYO6 and the other had a non-
sense mutation in HOMER?2.

Genes common to individual sub-groups

We then looked at individual genes with predicted patho-
genic variants (MAF < 10%, predicted by a majority of pre-
dictors) present in all members of each sub-group. No
known deafness genes were common to any of the
sub-groups. We found four other such genes: TTN (a can-
didate for exclusion) bore variants in all ten individuals
with recessive hearing loss, MONIB was mutated in all
five individuals with metabolic deafness (but see later),
and the five people with sensory hearing loss all had vari-
ants in NEDD4 and ZAN (Table 1).

Implications for WES analyses in common disease

Our common variant analysis has highlighted several po-
tential problems with detecting common variants of
small effect size in a common disorder. Although each

Table 1 Genes with common variants (MAF < 10%) in all the
members of a subgroup

Gene Sub-group Number of Type of variants
variants

TN Recessive 22 Non-synonymous

MON1B Metabolic 1 Frameshift

NEDD4 Sensory 2 Non-synonymous

ZAN Sensory 7 Six non-synonymous,

one in-frame deletion

Details of the four genes found to be mutated in all members of a subgroup.
TTN (underlined) is a candidate for exclusion
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individual had many deafness genes with predicted
pathogenic variants, the overall spread didn’t look any
different to that observed in the 1000 Genomes dataset
[21] (Fig. 2). However, the 1000 Genomes data do not
exclude people with hearing loss, particularly adult-onset
hearing loss which may not be evident at the time of
sampling an individual. This highlights the need for
good controls in this type of analysis, in both clinics and
research; suitable controls in this case might be older
adults with good hearing typical of a younger adult.
Other exome sequencing projects have reported similar
results for age-related macular degeneration [32] and in
the ExAC data an abundance of rare, functional variants
were reported in many disease genes [20]. It has been
hypothesised that both false pathogenicity reports and
incomplete penetrance contribute to this over-reporting,
but whatever the reason, putative causative variants
must be treated with caution until proof of pathogenicity
has been obtained, preferably by functional studies and
linkage analysis.

Another factor to consider is whether variants which
are rare in the most relevant ethnic populations and
passed the MAF filter but are more prevalent in other
populations should be retained; 1234 of the 10,482
unique variants in the thirty patients which passed all
our filtering steps were present in other ExXAC popula-
tions at a MAF of more than 10%. To give one extreme
example, it is worth considering whether a variant which
is present in 60% of the African ExAC population should
be included even if it is very rare (0.3%) in the
non-Finnish European population, as for a T > C mis-
sense variant in LPP (chr3:g.188327555 T > C).

Second analysis: Very rare variants

Since the pattern of common variants in our thirty pa-
tients with hearing loss did not differ from that observed
in the data from the 1000 Genomes project, we then fil-
tered for very rare variants with a minor allele frequency
of <0.5%, predicted to be deleterious to protein function
by a majority of predictors to identify any likely causal var-
iants. This is the recommended MATF filter for recessive
hearing loss (the recommended MAF for dominant hear-
ing loss is 0.05%) [33]. No individuals from any of the
groups, including those with a strong family history
consistent with recessive inheritance, were homozygous
for a variant in a known deafness gene. Apparently-homo-
zygous variants were found in 29 other genes in only one
of the individuals, and two genes bore homozygous vari-
ants in multiple people: SIRPA (a candidate for exclusion)
and ZAN (Additional file 10: Table S6).

Many known deafness genes were mutated in multiple
samples in the heterozygous state (Table 2); for example,
7 individuals bore variants in GPR98. One individual
from the dominant group had five predicted variants in
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Table 2 Genes with very rare predicted pathogenic variants in more than one person

Number of individuals Genes

12 MON1B

11 TIN

8 ADC NEFH ZAN

7 DNAH?2 GPR98 LRBA PAX2

6 CHD3 DNAH3 MACF1 PTGER4 UBE20 NEB
WDR19 ZMIZ2

5 VWA5B1 DNAHS HSPG2 DNAH1 CELSR3 PCNX
DNAH7 PKHDI1L1 TECTA ATG2A ATM RANBP17
LRIG3 DNAH9 HECTD4 OBSCN VPS13B FAT2
LAMA2 CAPN5 CDH23 WDR41

4 DMD DUOX2 RBPJ USH2A MYO6 +52°

3 COL11A1 NAV2 CPXM2 COL4A4 LRP2 MY015A
MYH9 TSPEAR ACAN PCDH15 oT0G +160°

2 WFS1 MECOM NTN1 GJB2 TCOF1 COL11A2
CELSR1 SLC9A3R1 COL9A1 TJP2 ALMS1 JAG1T
ATP2B2 SLC26A4 LRIG1 LOXHD1 CHRNA9 RDX
CHD7 NTF3 ELMOD3 SLC4A7 ATP8B1 NPC1
KARS ERCC6 +7457

Details of genes found to be mutated in multiple samples. Known deafness genes are in bold, and candidates for exclusion are underlined.
#Number of additional non-deafness genes with variants; only known deafness genes shown for these lists

WFS1 (Fig. 3), and many people bore more than one
variant in the same gene, including three individuals
from the recessive group who bore two heterozygous
variants in a deafness gene (Additional file 11: Table S7).
These variants might explain the hearing loss seen in
these three patients, but with one exception, without
segregation analysis it isn’t possible to tell whether the
variants are on the same chromosome or were inherited
one from each parent. The exception is the two variants
in GPRY8 in sample 11,813, which are close enough to
fall within the same sequencing read, and can be con-
firmed to originate from the same chromosome. Fur-
thermore, several very rare variants were also found to
be present in more than one individual (Additional file
12: Tables S8 and Additional file 13: Table S9).

When we examined heterozygous variants in all genes,
we found several genes bearing rare variants in six or
more people (Additional file 13: Table S9). One of par-
ticular interest was NEFH, which encodes the neurofila-
ment heavy chain and is strongly expressed in the spiral
ganglion neurons innervating the inner hair cells [34].

We also examined the eight strongest candidate genes
(PCDH20, GRM?7, ESRRG, SIK3, SLC28A3, TRIOBP,
ISG20 and ACAN) linked to adult hearing ability or
ARHL in GWAS [10-14]. Five rare variants were found:
a novel deletion predicted to cause a frameshift in
GRM?7, a missense variant in SIK3, and three missense
variants in ACAN, each present in one individual except

for one of the variants in ACAN, which is present in two
people (Additional file 14: Table S10).

Resequencing

We chose 29 variants for confirmation by Sanger se-
quencing, covering fourteen genes, for our final quality
control step. We focussed on variants in the genes com-
mon to phenotype-specific subgroups (NEDD4, MON1B,
ZAN, Table 1), genes with rare variants in multiple
people (SIRPA, ZAN, MONI1B, NEFH, ADC, GPR9S,
LRBA, PAX2 and DNAH?2, Table 2 and Additional file 10:
Table S6), genes with identical variants in multiple
people (PAX2, RBPJ, MON1B, NEFH, Additional file 12:
Tables S8 and Additional file 13: Table S9), variants in
GWAS genes (GRM7, SIK3, Additional file 14: Table
S$10) and WFSI1, which had 5 variants in one individual
(Additional file 11: Table S7). Where genes had multiple
predicted variants, we focussed on those present in more
than one individual.

Approximately two thirds of our selected variants were
confirmed (Table 3 and Additional file 15: Table S11), al-
though the predicted zygosity was not always correct.
Most failures were single base pair indels called by Din-
del, but three were SNVs called by SAMtools (Table 3).
Four additional indels called by Dindel were present but
found to be different to the Dindel prediction. For ex-
ample, eight patients were predicted to bear a single
base pair insertion in NEFH, which would result in a
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Fig. 3 WFST mutations in a single patient. Patient 2590 has 5 missense mutations in the WFST gene. a shows a pedigree of patient 2590 (who is
designated by an arrow), showing the hearing loss inherited in a pattern consistent with a dominant mechanism. b shows the audiogram of
individual 2590 at age 62, crosses and circles show the thresholds of the left and right ear, respectively. ¢ describes all 5 mutations in WFST and
the predicted effect on Ensembl transcript ID ENST00000226760. The mutation predicted to cause a p.H313Y change has been described before
in patients with Wolfram Syndrome

frameshift, but in fact Sanger sequencing detected an
18 bp insertion, which is not a frameshift. This miscalling
also leads to incorrect minor allele frequencies being asso-
ciated with each variant (compare the predicted MAF with
the MAF of the confirmed variants in Table 3). None of
the confirmed indels were detected by SAMtools, even
though it is capable of calling small indels. Our findings
suggest that while it is valuable to include Dindel, its out-
put should be used with care in variant calling pipelines.
In summary, we found a surprisingly high level of false
calls from the exome sequencing, confirming that
Sanger sequencing should always be used to verify
important variants.

Candidate genes

Eight genes had confirmed variants, including four can-
didate novel deafness genes; NEDD4, ZAN, DNAH2, and
NEFH. The four known deafness genes with confirmed
variants are GPR98, WFS1, GRM?7 and SIK3.

Details of the 9 predicted variants in GPR98 are de-
scribed in Additional file 16: Table S12, including those
found in multiple individuals (Table 2), as well as 2 add-
itional variants found in individuals who carry multiple
variants in this gene (Additional file 11: Table S7). GPR98
is a large gene (90 exons encoding 6307 amino acids) en-
coding a G protein coupled receptor, and frameshift muta-
tions in this gene cause one form of Usher’s syndrome,

USH2C, an autosomal recessive disorder [35] causing con-
genital hearing impairment and retinitis pigmentosa
(OMIM #605472). The variants described here in patients
without retinitis pigmentosa are heterozygous missense
variants, plus one in a splice site (Additional file 14: Table
$10), and these are spread throughout the protein from
exons 9 to 89. The two missense SN'Vs we sequenced were
confirmed in the three patients predicted to carry them.
All five predicted variants in WFSI in individual 2590
were confirmed by resequencing. Mutations in WFSI
can cause either a dominantly-inherited non-syndromic
hearing loss typically affecting the low frequencies
(below 2 kHz) or Wolfram Syndrome (OMIM #222300),
a recessive neurodegenerative disease which can include
mental retardation, childhood diabetes, optic atrophy
and deafness which typically is progressive and affects
the high frequencies [36]. The family history, medical
history and audiogram shape of individual 2590 are con-
sistent with a dominant non-syndromic hearing loss ra-
ther than Wolfram Syndrome (Fig. 3). All five mutations
are predicted to be pathogenic but only one of the muta-
tions (p.His313Tyr) has been reported previously, in the
heterozygous state in 4 families with Wolfram Syndrome
[37, 38]. Individuals previously reported with this variant
are all deaf, some also had mental retardation but not
all, this mutation is reported as a probably pathogenic
mutation in the Wolfram Syndrome Mutation Database
(https://lovd.euro-wabb.org/home.php?select_db=WES1).


https://lovd.euro-wabb.org/home.php?select_db=WFS1
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Both variants in two of the genes linked to hearing loss
by previous GWAS reports were confirmed, in two pa-
tients from the metabolic subgroup, one with a deletion in
GRM?7 and one with a SIK3 SNV (Table 3). GRM7 codes
for a metabotropic glutamate receptor, and is expressed in
the spiral ganglion and the cochlear and vestibular hair
cells in the mouse [12]. The variant was predicted to be a
deletion of a T, but we found instead a deletion of TG
34 bp 5" of the prediction and 22 bp 5" of the acceptor
splice site for exon 6 (transcript ENST00000357716),
which makes it an intronic variant and unlikely to affect
protein function. SIK3 is a salt-inducible kinase, and is
also expressed in the mouse spiral ganglion and cochlear
hair cells, although only in young mice [11]. The contribu-
tion of these heterozygous variants to the hearing loss of
the patients bearing them is unclear.

NEDD4 is a particularly interesting novel candidate; it is
known to be widely expressed in the cochlear duct [39],
and the encoded protein is a ubiquitin ligase that binds to
and ubiquitylates the products of several deafness genes,
including WBP2 [40] and KCNQ!I [41], both of which are
implicated in sensorineural deafness in humans and mice
[26, 42—44] (Fig. 4). It is involved in AMPA receptor ubi-
quitination, playing a critical role in AMPA receptor traf-
ficking in rat neurons [45]. The two variants are both
missense, one resulting in a substitution of arginine for
serine in exon 1, and the other is a substitution of valine
for methionine towards the start of exon 1. Patients bear-
ing these variants are all heterozygotes, and fall into the
dominant and sensory subgroups.

NEFH, the neurofilament heavy chain, is expressed in
the rat cochlear nucleus [46] and the spiral ganglion
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neurons [34]. It is known to bind to OTOF [47], which
is involved in deafness in humans and mice [48-50], and
its expression is affected by several other deafness genes
(Fig. 4). We confirmed an 18 bp duplication
(rs147489453) in eight people (homozygotes and hetero-
zygotes, from the recessive, sensory and dominant sub-
groups), and a missense variant (rs59371099) in four
people (heterozygotes and one homozygote, from the
dominant and recessive subgroups) (Table 3). Four
people carried both variants, three from the dominant
subgroup and the one individual from the recessive sub-
group who was heterozygous for both. The other two
patients from the recessive subgroup with a variant in
NEFH were homozygous for the 18 bp duplication
(Table 3). Both variants are in the last exon of NEFH
(exon 4), which has only one isoform. The 18 bp dupli-
cation is predicted to duplicate six amino acids in a low
complexity region. The missense variant results in a sub-
stitution of lysine, which is positively charged, for glu-
tamate, which is negatively charged, which may affect
protein function, but without functional studies it is
hard to predict what difference either variant would
make to the function of the protein.

ZAN is a multiple-domain transmembrane protein
found on the apical region of the sperm head [51], which
functions to bind the sperm to the zona pellucida [52].
The MAM domains, D domains, EGF-like domains and
mucin-like domains it contains all play a role in adhe-
sion in other proteins, typically in cell-cell or
cell-extracellular matrix binding [51]. Although ZAN is
thought to be testis-specific, it may also be involved in
cell-cell adhesion in the organ of Corti. Variants in ZAN

Fig. 4 Network analyses of NEFH and NEDD4. NEFH has been linked to TNF, IGFT and MBP [58-60], which are all deafness genes in the mouse [58,
61, 621, and binds to OTOF [47], which is involved in deafness in mice and humans [48-50]. NEDD4 binds to and ubiquitylates the products of the
mouse deafness genes PTEN, SPRY2 and IRS2 [63-69], and two proteins implicated in deafness in both mice and humans, WBP2 and KCNQT1 [26, 40-44]

From this study

Human deafness gene
Mouse deafness gene
Indirect interaction
Direct interaction
Protein-protein binding
Ubiquitination

Increases/upregulates
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were found in patients from each subgroup, all in the
heterozygote state except for three dominant patients
who were homozygous for a 35 bp deletion
(g.7:100385563_100385597del).

DNAH2 is an axonemal dynein heavy chain, about
which very little is known. Six missense variants, one in-
tronic splice site SNV and one single base pair insertion
were predicted in seven patients (MAF < 0.5%), and six
further missense variants with a MAF < 10% were pre-
dicted in 5 patients, of which we have confirmed one mis-
sense variant present in the heterozygous state in two
patients from the dominant and recessive subgroups.

Expression and mouse mutations of novel candidate
deafness genes

We examined the expression of our novel candidate deaf-
ness genes using the gEAR portal [53], which displays data
from the mouse organ of Corti at postnatal day (P)0 [54]
— P7 [55], and found that both Nedd4 and Zan were de-
tected during this period. Nedd4 is expressed at reason-
ably high levels in sensory cells, and only slightly lower
levels in non-sensory cells, in accordance with previous
publications [39]. Zan has very little expression in the hair
cells but is strongly expressed in the supporting cells at PO
[54]. Nefh is expressed in the neurons under the inner hair
cells [34], and is commonly used as a neuronal marker
[26]. Dnah?2 is expressed in the cochlear duct at PO, but
not as strongly as Zan or Nedd4.

There are several mouse lines bearing mutations in
Nedd4, Zan, and Nefh, but the only mouse line with a vari-
ant in Dnah?2 has a large inversion on chromosome 11 cov-
ering 1898 genes. No hearing phenotype has been reported
for any of the mutant alleles of these genes (as recorded in
the Mouse Genome Informatics database [56]), but these
mice may not have been tested for auditory function.

Conclusions

Our analysis has identified several candidate variants and
genes for involvement in adult-onset progressive hearing
loss, in particular variants in NEFH and NEDD4. It is per-
haps surprising that our relatively small sample size of
thirty individuals was able to identify good candidate vari-
ants and genes. By targeting our approach to specific
phenotypic subtypes within large, well-characterised pa-
tient cohorts based on audiogram shape, family history
and similar age of onset, we have sought to increase power
to detect causal genetic variants. In addition, by
cross-referencing our data in the filtering pipeline with
data from the mouse we were able to prioritise the stron-
gest candidate variants.

The two strongest candidates from our analysis, the
variants in NEDD4 and NEFH, should be followed up in
larger cohorts and by functional studies to confirm
whether they are causal mutations.
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Our study also highlights the potential pitfalls of using
targeted sequencing to diagnose the cause of adult-onset
hearing loss in a typical clinical scenario, where relatives
are not available for segregation analysis especially on a
gene by gene basis. Of the 30 individuals WES was only
able to identify the likely causal mutation in one individ-
ual with five WFS1 variants. For the remaining patients
the variants identified are of uncertain pathogenicity
without further validation. Interpretation of these vari-
ants in single individuals is extremely challenging given
that even when we limited our analysis to
dominantly-inherited human deafness genes, 2334 of the
2504 individuals in the 1000 Genomes Project data
carried at least one predicted pathogenic variant in a
known dominant human deafness gene. These findings
reveal the need for allele frequency databases from
carefully-selected controls with good hearing for their
age rather than the existing unselected general popula-
tion controls in studies of highly-prevalent disorders
such as hearing loss. Here, we have explored the use of
WES in undiagnosed individuals, based on our results it
would be interesting to pursue a similar study in individ-
uals who have received a genetic diagnosis to ascertain
the number of other predicted pathogenic variants that
are present in deafness genes. Furthermore, our study
demonstrates that confirmation of candidate variants by
Sanger sequencing is always a necessary step. Our find-
ings further suggest that for diagnostics in a clinical situ-
ation, novel candidate variants identified by sequencing
should be investigated by family analysis if possible, to
look for segregation. Without these additional steps, our
data suggest that it is not possible to determine with
confidence the causative mutation responsible for a pa-
tient’s hearing impairment from exome sequence alone.
Even with these secondary steps great caution should be
exercised in interpreting predicted disease-causing vari-
ants, given our findings of the incidence of such variants
in every genome.
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