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Abstract

Background: Large-scale collaborative precision medicine initiatives (e.g., The Cancer Genome Atlas (TCGA)) are
yielding rich multi-omics data. Integrative analyses of the resulting multi-omics data, such as somatic mutation,
copy number alteration (CNA), DNA methylation, miRNA, gene expression, and protein expression, offer tantalizing
possibilities for realizing the promise and potential of precision medicine in cancer prevention, diagnosis, and
treatment by substantially improving our understanding of underlying mechanisms as well as the discovery of
novel biomarkers for different types of cancers. However, such analyses present a number of challenges, including
heterogeneity, and high-dimensionality of omics data.

Methods: We propose a novel framework for multi-omics data integration using multi-view feature selection.
We introduce a novel multi-view feature selection algorithm, MRMR-mv, an adaptation of the well-known Min-
Redundancy and Maximum-Relevance (MRMR) single-view feature selection algorithm to the multi-view setting.

Results: We report results of experiments using an ovarian cancer multi-omics dataset derived from the TCGA
database on the task of predicting ovarian cancer survival. Our results suggest that multi-view models outperform
both view-specific models (i.e., models trained and tested using a single type of omics data) and models based on
two baseline data fusion methods.

Conclusions: Our results demonstrate the potential of multi-view feature selection in integrative analyses and
predictive modeling from multi-omics data.
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Background

The advent of “big data” offers enormous potential for
understanding and predicting health risks and interven-
tion outcomes, as well as personalizing treatments,
through integrative analysis of clinical, biomedical,
behavioral, environmental, and even socio-demographic
data. For example, recent efforts in cancer genomics
under the Precision Health Initiative offer promising
ways to diagnose, prevent, and treat many cancers [1].
Recent advances in high-throughput omics technologies
offer cost-effective ways to acquire diverse types of
genome-wide multi-omics data. For instance, Large-scale
collaborative efforts such as the Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consor-
tium (ICGC) are collecting multi-omics data for tumors
along with clinical data for the patients. An important goal
of these initiatives is to develop comprehensive catalogs of
key genomic alterations associated for a large number of
cancer types [2, 3].

Computational analyses of multi-omics data offer an
unprecedented opportunity to deepen our understanding
of complex underlying mechanisms of cancer that is
essential for advancing precision oncology (See for ex-
ample, [4-7]). Because different types of omics data have
been shown to complement each other [8], there is a
growing interest in effective methods for integrative ana-
lyses of multi-omics data [9-11]. The resulting methods
have been successfully used to predict the molecular ab-
normalities that impact both clinical outcomes and thera-
peutic targets [5, 10, 12-16].

Effective approaches to integrative analyses and predict-
ive modeling from multi-omics data have to address three
major challenges [5]: i) the curse of dimensionality (i.e.,
the number of features p is very large compared to the
number of samples #n); ii) the differences in scales as well
as sampling/collection bias and noise present in different
omics data sets; iii) extracting and optimally combining,
for the prediction task at hand, features that provide com-
plementary information across different data sources.
Unfortunately, baseline methods that simply concatenate
the features extracted from the different data sources or
analyze each data from each source separately and com-
bine the predictions fail to satisfactorily address these
challenges. Therefore, there is an urgent need for more
sophisticated methods for integrative analysis and predict-
ive modeling from multi-omics data [16].

The problem of learning predictive models from
multi-omics data can be naturally formulated as a
multi-view learning problem [17] where each omics
data source provides a distinct view of the complex bio-
logical system. Multi-view learning offers a promising ap-
proach to developing predictive models by leveraging
complementary information provided by the multiple data
sources (views) to optimize the predictive performance of
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the resulting model [17]. The state-of-the-art learning
algorithms attempt to learn a set of models, one from each
view, and combine them so as to jointly optimize the pre-
dictive performance of the combined multi-view model.
Some examples of multi-view learning algorithms include:
multi-view support vector machines [18], multi-view
Boosting [19], multi-view k-means [20], and clustering via
canonical correlation analysis [21]. However, barring a few
exceptions (e.g., multi-view feature selection methods [22],
and multi-view representation learning [23]) the vast ma-
jority of existing multi-view learning algorithms are not
equipped to effectively cope with the high-dimensionality
of omics data [17]. Hence, predictive modeling from
multi-omics data calls for effective methods for multi-view
feature selection or dimensionality reduction.

Against this background, we present a general two-
stage framework for multi-omics data integration. We
introduce MRMR-mv, an adaptation of the well-known
Min-Redundancy and Maximum-Relevance (MRMR)
single-view feature selection algorithm to the multi-view
setting. We provide, to the best of our knowledge, the
first application of a multi-view feature selection method
to predictive modeling from multi-omics data. We report
the results of our experiments that compare the proposed
approach with several baseline methods on the task of
building a predictive model of cancer survival [13] using a
TCGA multi-omics dataset composed of three omics data
sources, copy number alteration (CNA), DNA methyla-
tion, and gene expression RNA-Seq. The results of our
experiments show that: (i) the multi-view predictive
models developed from multi-omics data outperform their
single-view counterparts; and that (i) the predictive
models developed using MRMR-mv for multi-view feature
selection outperform those developed using two baseline
methods that combine multiple views into a single-view.
These results demonstrate the potential of multi-view
feature selection based approaches to multi-omics data
integration.

Methods

Datasets

Normalized and preprocessed multi-omics ovarian cancer
datasets (most recently updated on August 16, 2016),
including genelevel copy number alteration (CNA), DNA
methylation, and gene expression (GE) RNA-Seq data,
were downloaded from UCSC Xena cancer genomic
browser [24]. Table 1 summarizes the number of samples
and features (e.g., genes) in each dataset. Clinical data
about vital status and survival for the subjects were also
downloaded from Xena server. Only the patients with
CNA, methylation, RNA-Seq, and survival data were
retained. Patients with survival time >3 years were labeled
as long-term survivors while patients with survival time
<3 years and vital status of 0 were labeled as short-term
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Table 1 TCGA ovarian cancer omics data used in this study
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Number of samples

Number of features Number of features with high variance

Data source Platform

CNA Affymetrix SNP 6 579
Methylation lllumina Infinium HumanMethylation27k 616
GE RNA-Seq lllumina HiSeq 308

24,777 7355
27,579 6206
30,531 283

survivors. The resulting multi-view dataset consists of
215 samples, 127 of them are classified as long-term
survivors. Each view was then pre-filtered and normal-
ized as follows: i) features with missing values were ex-
cluded; ii) feature values in each sample were rescaled
to lie in the interval [0,1]; iii) features with variance less
than 0.02 were removed.

Notations

Table 2 summarizes convenient notations used in this
work. For simplicity, we assumed a binary label for each
sample. Note however, that Algorithms 1 and 2, de-
scribed below, are also applicable to multi-class as well
as numerically labeled data.

Minimum redundancy and maximum relevance feature
selection

Unlike univariate feature selection methods [25] that
return a subset of features without accounting for re-
dundancy between the selected features, the minimum
redundancy and maximum relevance (MRMR) feature
selection algorithm [26] iteratively selects features that
are maximally relevant for the prediction task and

Table 2 Notations

minimally redundant with the set of already selected
features. MRMR has been successfully used for feature
selection in a number of applications including micro-
array gene expression data analysis [26, 27], prediction
of protein sub-cellular localization [28], epileptic seiz-
ure [29], and protein-protein interaction [30].

While the exact solution to the problem of MRMR se-
lection of k = |S| features from a set of n candidates re-
quires the evaluation of O(1") candidate feature subsets,
it is possible to obtain an approximate solution using a
simple heuristic algorithm (see Algorithm 1) [26]. Algo-
rithm 1 accepts as input: a labeled dataset D; a function
g:(x,%) — R" that quantifies the redundancy between
any pair of features (e.g., the absolute value of Pearson’s
correlation coefficient); a function f:(x;y) — R" that
quantifies the relevance of a target feature for predicting
the labels y (e.g., mutual information (MI) or F-statistic);
and the number of features k to be selected using the
MRMR criterion. In lines 1 and 2, the algorithm creates
an empty set S and the feature with the maximum rele-
vance for predicting y is added to S. In each of the subse-
quent k — 1 iterations (lines 3-5), the features that greedily
approximate the MRMR criterion in Eq. 1 are successively

Symbol Definition and Description

D= <X y> Labeled dataset where X e R™*" is a matrix of m instances and n features,
and y€{0, 1Y is the binary class labels of the instances

Xi /™ feature in X

g, x) Function that returns the redundancy between two features x; and x;

f(x;, y) Function that returns the relevance between a feature x; and class labels y

S Indices of selected features

O Indices of all features

Qs Indices of candidate features QO —S

k Number of features to be selected

v Number of views in a multi-view dataset

MVD = < (X! XY), y> Labeled multi-view dataset where X'eR™*" is a matrix of m samples and n;
features and y € {0, 1} is the binary class labels of the instances in all views

D'= <X, y> " view in a multi-view dataset

X, /" feature in X'

g Indices of selected features from i view

Q' Indices of all features in /" view

Indices of candidate features Q' — §' in " view
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added to S. Eq. 1 has two terms: the first term maximizes
the relevance condition, whereas the second term mini-
mizes the redundancy condition.

argmax g, (f(x,,y)—lk;'zz‘g(xj,xlv (1)

leS

Algorithm 1. MRMR

Require: D =< X,y >,g,f, k

1:5«0

2:add x; = argmaxeq f(x;,y) to S
3:fort = 1: k—1do

4: add the feature that satisfies Eq. 1 to S
5: end for

6: return S

Multi-view minimum redundancy and maximum

relevance feature selection

MRMR, or any single-view feature selection algorithm,
can be trivially applied to multi-view data as follows: i)
Apply MRMR separately to each view and then concaten-
ate view-specific selected features. The major limitation of
this approach is that it ignores the redundancy and com-
plementarity of features across the views [31]; ii) Apply
MRMR to a single-view dataset obtained by concatenating
all the views. A key limitation of this approach is that it
fails to explicitly account for the prediction task specific
differences in the relative utility or relevance of the fea-
tures extracted from the different views.

Here, we propose a novel multi-view feature selection
algorithm, MRMR-mv, that adapts the MRMR algorithm
to the multi-view setting. MRMR-mv (shown in Algo-
rithm 2) accepts as input: a labeled multi-view dataset,
MVD, with v>2 views; a redundancy function g; a rele-
vance function f; number of features to be selected k; and
a probability distribution P={p;---p,} that models the
relative importance of each view (or the prior probability
that a view contributes a feature to the set of features
selected by MRMR-mv). If each of the views is equally
important, P should be a uniform distribution. MRMR-mv
proceeds as follows. First, S” is initialized for each view ¢ to
keep track of selected features from that view (lines 1-3).
Second, the procedure choice, implemented in NumPy py-
thon library [32], is invoked to obtain k-1 views, sampled
from with replacement, according to B from the set of
views. The list of sampled views is recorded in C (lines 4
and 5). Third, the maximally relevant feature across all of
the views (say xj, the jth feature in the i view) is retrieved
and the set (S') of the selected features for the correspond-
ing view, i, is updated accordingly (line 6). Fourth, for each
of the views in C, considered in turn and at each step &,
the feature from the corresponding view that satisfies the
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MRMR criterion with respect to the previously selected
features from iterations (1 through ¢-1) is added to sctd
(lines 7-10). Finally, the algorithm returns selected
view-specific features S', ---S".

We note that MRMR-mv applies the MRMR criteria
across all of the views, as opposed to the baseline
methods that apply the criteria to each view separately
or to the concatenation of all views. Thus MRMR-mv
can select complementary features from within as well
as across views. It can also assign different degrees of
importance to the views to reflect any available informa-
tion about their relative utility in the context of a given
prediction task.

Algorithm 2. MRMR-mv

Require: MVD =< (X%, ..., X"),y >,9,f,k,P = (i, -, Py)

Iifort = 1:v

2: Ste 9

3: end for

4:V<{1,..,v}

5: C « choice(V,k —1,P)
6: add x]-i = argmaxe(1,,y) argMax ;i f(xji,y) to St

7:fort = 1:k—1do

8: 1« C[t]

9: addx{ = argmax;eq , (f (%}, ¥) = 3z Zae(t,.o) Znes 9 (xf, %)) 0 !
10: end for

11: return S = {S?,---,5"}

A two-stage feature selection framework for multi-omics
data integration

Figure 1 shows our proposed two-stage framework for
integrating multi-omics data for virtually any prediction
task (e.g., predicting cancer survival or predicting clinical
outcome). The input to our framework is a labeled
multi-view dataset in the form D'= <X, y>. Stage I in-
cludes view-specific filters that can be used to encapsulate
any traditional single-view feature selection method (e.g.,
Lasso [33] or MRMR). Each filter has a gating signal that
could be used to disable that filter in which case the
disabled filter passes on no data to the 2nd stage. A special
view-specific filter, called AllFilter, passes all of the input
features without performing any feature selection. Stage II
has a single filter that can encapsulate either a single-view
or a multi-view feature selection method. If the 2nd stage
filter encapsulates a single-view feature selection method,
the feature selection method will be applied to the concat-
enation of the Stage II input. On the other hand, if the
2nd stage filter encapsulates a multi-view feature selection
method (e.g,, MRMR-mv), then the multi-view feature se-
lection method will be applied to the multi-view input of
Stage II. The framework supports two modes of opera-
tions: i) training mode, where each enabled filter will be
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El

E2
Ev

Stage |

features selected from the ™ view using the /™ filter

Fig. 1 Two-stage framework for integrating multi-omics data. £; refers to the enable signal for the ™ view-specific filter. F; refers to the set of

Stage II

trained using the input so as to produce the filtered ver-
sion of the input; ii) test (or operation) mode, where test
multi-view dataset is provided as input and the trained fil-
ters will output the selected features of the input data.

The framework can be easily customized so as to
allow evaluation of different approaches of predictive
modeling from multi-omics data. For example, to build
a single-view model by applying the Lasso method to
the i view, we: set E; to 1 and disable all other filters;
pass Lasso feature selection method to the /™ filter; use
AllFilter as Stage 1II filter. Similarly, to apply MRMR to
concatenated views, we: enable Stage I filters and use ei-
ther AllFilter (to pass the input as is) or any single-view
filter; and deploy MRMR as the Stage 1I filter.

Implementation

We implemented Algorithms 1 and 2 and the two-stage
feature selection framework in Python using the
scikit-learn machine learning library [34]. We will release
the code as part of sklearn-fuse, a python library for data
and model-based data fusion that is currently under devel-
opment in our lab. In the mean time, the code for the
methods described above will be made available to inter-
ested researchers upon request.

Experiments

We report results of experiments on the task of building a
predictive model of cancer survival from an ovarian can-
cer multi-omics dataset derived from the TCGA database.
The resulting data set is comprised of three views, namely,
CNA, methylation, and gene expression RNA-Seq for each

patient along with the corresponding clinical outcomes
(short-term versus long-term survival). Our first set of ex-
periments consider single-view classifiers based on each of
the 3 views to obtain view-specific models for comparison
with the proposed multi-view models; The second set of
experiments compare some of the representative instanti-
ations of the two-stage multi-view feature selection frame-
work in combination with some representative choices of
(single-view) supervised algorithms for training the classi-
fiers. In both cases, we experimented with three widely
used machine learning algorithms for developing cancer
survival predictors: i) Random Forest (RF) [35] with 500
trees; ii) eXtreme Gradient Boosting (XGB) [36] with 500
weak learners; ii) Logistic Regression (LR) [37] with L1
regularization. We used the implementations of these
algorithms available in the Scikit-learn machine learning
library [34].

For Stage I feature selection, we experimented with
several feature selection methods implemented in
Scikit-learn including: RF feature importance [35];
Lasso [33]; ElasticNet [38]; and Recursive Feature
Elimination (RFE) [39]. However, due to space limita-
tion, we describe only the results of the best perform-
ing method, Lasso with L1 regularization parameter
set to 0.0001. In Stage II feature selection, we used MRMR
as a baseline method and MRMR-mv for multi-view fea-
ture selection.

For both MRMR and MRMR-mv feature selection, we
used the absolute value of Pearson’s correlation coeffi-
cient as the redundancy function, g. For the relevance
function, f, we experimented with three functions Chi2,
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F-Statistic (F-Stat), and Mutual Information (MI). All
functions are implemented in Scikit-learn.

We estimated the performance of the resulting classi-
fiers on the task of predicting cancer survival using the
5-fold cross-validation (CV) procedure. Briefly, the data-
set is randomly partitioned into five equal subsets. Four
of the five subsets are collectively used to select the fea-
tures and train the classifier and the remaining subset is
held out for estimating the performance of the trained
classifier. This procedure is repeated 5 times, by setting
aside a different subset of the data for estimating model
performance. The 5 results from all the folds are then
averaged to report a single performance estimate. In our
experiments we used the area under ROC curve (AUC)
[40] to assess the predictive performance of classifiers.
When the number of samples used to estimate the clas-
sifier performance is small, as is the case with the ovar-
ian cancer data, the estimated performance can vary
substantially across different random partitions of the
data into 5 folds (see Section “Single-view models for
predicting ovarian cancer survival” for details). To obtain
a more robust estimate of performance, we ran the
5-fold cross-validation procedure 10 times (each using
different partitioning of the data into 5 subsets) and re-
ported the mean AUC estimated from the 10 5-fold CV
experiments.

Results

Single-view models for predicting ovarian cancer survival

We evaluated RE, XGB, and LR classifiers trained using
each of the individual views with the top k features se-
lected using Lasso feature selection algorithm for choices
of k=10,20,30, ..., 100.Tables 3, 4 and 5 report the per-
formance of the resulting classifiers averaged over 10 dif-
ferent 5-fold cross-validation experiments.

Table 3 Average AUC scores of RF, XGB, and LR models trained
on CNA data, estimated using 10 runs of 5-fold cross validation
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Table 4 Average AUC scores of RF, XGB, and LR models trained
on methylation data, estimated using 10 runs of 5-fold cross
validation

# Features RF XGB LR

10 052 051 0.50
20 0.51 0.52 0.50
30 0.52 0.52 049
40 052 053 0.50
50 0.52 0.53 0.51
60 052 053 052
70 0.53 0.54 0.51
80 0.53 0.54 0.52
90 053 0.55 052
100 053 0.55 052
Max 0.53 0.55 0.52
Avg. 052 053 0.51

We observed that models built using only the methy-
lation view performed marginally better than random
guessing (i.e., the best observed average AUC in Table 5
is 0.55). In contrast, single-view models using CNA or
RNA-Seq achieved higher average AUC scores of up to
0.66. These results are in agreement with those of pre-
viously reported studies (e.g., [13]). It should be noted
that when the performance of single-view models is
estimated using a single 5-fold cross-validation experiment
(as opposed to average over 10 different cross-validation ex-
periments), the best observed AUC scores were 0.70, 0.55,
and 0.69 for models built from the CNA, methylation, and
RNA-Seq views, respectively. The observed variability in
performance among different 5-fold cross-validation experi-
ments is expected because of the relatively small size of the
ovarian cancer survival dataset. This finding underscores

Table 5 Average AUC scores of RF, XGB, and LR models trained
on RNA-Seq data, estimated using 10 runs of 5-fold cross
validation

# Features RF XGB LR # Features RF XGB LR

10 057 0.56 058 10 0.58 057 0.59
20 061 061 061 20 0.60 058 061
30 0.61 0.61 0.61 30 0.61 0.60 0.63
40 0.63 0.62 0.61 40 0.62 061 0.64
50 0.64 0.64 062 50 062 061 0.65
60 0.65 0.65 0.63 60 0.63 0.60 0.66
70 0.65 0.65 0.63 70 0.63 0.60 0.64
80 0.65 0.65 062 80 0.64 0.60 0.65
90 0.66 0.66 0.63 90 0.63 061 0.65
100 0.66 0.66 0.62 100 0.64 061 0.65
Max 0.66 0.66 063  Max 0.64 061 0.66
Avg. 0.63 0.63 0.62 Avg. 0.62 0.60 0.64
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the importance of using multiple CV experiments to obtain
robust estimates and comparisons of classifier performance.
Next, we show how integrating data sources (i.e., views)
can further improve the predictive performance of the can-
cer survival predictors.

Integrative analyses of multi-omics data sources using
multi-view feature selection

We used our two-stage feature selection framework
(See Fig. 1) to construct multi-view (MV) models with
the following settings. The input to the framework is
two views, CNA and RNA-Seq. We chose not to use
the methylation view because the performance of
single-view models built using the methylation data
performed marginally better than chance (see Section
“Single-view models for predicting ovarian cancer sur-
vival”). For the Stage I filters, we used Lasso with L1
regularization parameter set to 0.0001 to select the top
100 features from CNA and RNA-Seq views, respectively.
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For the Stage II filter, we used MRMR-mv with Pearson’s
correlation coefficient as the redundancy function and a
uniform distribution for the selection probability param-
eter, P. Finally, we experimented with different multi-view
models obtained using combinations of choices for the
remaining MRMR-mv parameters, k and f. Specifically, we
experimented with k=10, 20, ..., 100 and the relevance
function fe {Chi2, F - Stat, M1, and CFM}, where CFM is
the average of the other three relevance functions.

Figure 2 compares the performance of the different MV
models described above. Interestingly, no single relevance
function consistently outperforms other functions for
different choices of the number of selected features, k, and
machine learning algorithms. However, the best AUC of
0.7 is obtained using either Chi2 or MI relevance func-
tions and RF classifier trained using the top 100 features.
Hence, our final MV models will use Chi2 as the relevance
function and the remaining MRMR-mv settings stated in
the preceding paragraph.

-

10

classifiers, a) RF, b). XGB, and ¢) LR
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Fig. 2 Performance comparisons of multi-view models using four different relevance functions for MRMR-mv and three machine learning
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The selection probability parameter, B, in MRMR-mv
algorithm controls the expected number of selected fea-
tures from each view. Results shown in Fig. 2 have been
produced using a uniform selection probability distribu-
tion. Although using a uniform distribution is reasonable
since the best AUC score for the single-view models
based on CNA or RNA-Seq is 0.66 (See Tables 3 and 5),
it is interesting to examine the influence of P on the
performance of our MV models. Let P = (p1, p,) be the
probability distribution where p; and p, denotes the
sampling probability for CNA and RNA-Seq, respect-
ively. In this experiment, we considered 11 different
probability distributions obtained using p; = {0,0.1,0.2,
..., 1}. Then, for each choice of the number of selected
features, k, we evaluated 11 MV models using RF algo-
rithm and the same MRMR-mv settings described in the
preceding subsection and the 11 different probability
distributions for P. We used the percent relative range
in the recorded AUC to assess the sensitivity of MV
models to changes in P. Figure 3 shows the relationship
between the number of selected MV features, k, and the
sensitivity of MV models to changes in P. Interestingly,
our results suggest that as the number of selected MV
features increases, the resulting MV models become
less sensitive to the selection probability distribution
parameter P.

Multi-view vs. single-view models for predicting ovarian
cancer survival

Figure 4 compares our final MV models with the fol-
lowing single-view models: i) SV_CNA, single-view
models developed using CNA data source; ii) SV_RNA-
Seq, single-view models developed using RNA-Seq data
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source; iii) SV_C, single-view models obtained by applying
MRMR to the concatenation of the two views, CNA and
RNA-Seq; iv) SV_S, single-view models obtained by apply-
ing MRMR separately to CNA and RNA-Seq views,
respectively. In addition, Fig. 4 shows the results for a sim-
ple ensemble model that averages the predictions from
SV_CNA and MV models. In general, MV and Ensemble
models outperform SV models in most of the cases.

We noted some interesting observations from our ex-
periments with each of the machine learning algorithms
considered in our experiments. In the case of models de-
veloped using RF algorithm, MV and Ensemble models
outperformed the four single-view models for all choices
of the number of selected features, k. Ensemble models
outperformed MV models for k = 10, 20, and 80. Base-
line single-view models outperformed SV_CNA and
SV_RNA-Seq for k< 40. The highest observed AUC was
0.7 and was obtained using the MV model and k=100. In
the case of XGB based models, SV_S, MV, and Ensemble
models outperformed the remaining single-view models.
Ensemble models outperformed MV models for 8 out of
10 choices of k. Finally, for models developed using LR
algorithm, SV_S, MV, and Ensemble models outper-
formed the other three single-view models. Regardless of
which machine learning algorithm was used, SV_RNA--
Seq and SV_C models had the lowest AUC in most of
the cases reported in Fig. 4. Our results suggest that the
best single-view model is more likely to perform better
than models developed using concatenated views. Our
results also suggest that either applying feature selection
to each individual view or selecting features jointly using
multi-view feature selection consistently outperform the
best single-view model.
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Analysis of the top selected multi-view features
In order to get insights into the most discriminative
features selected by our framework, we considered the
top 100 features selected using MRMR-mv jointly from
CNA and RNA-Seq views. To determine which features
(genes) could serve as potential biomarkers for ovarian
cancer survival, at each of the 50 iterations (resulting
from running 5-fold procedure for 10 times), we scored
each per-view input feature (input to our framework) by
how many time it appears in the top 100 features. Table 6
summarizes the top 20 features from each view along
with their normalized feature importance scores.

To examine the interplay between the top selected
features from each view, we constructed an integrated

network of interactions among the features using the
cBio portal by integrating the biological interactions
from public databases including NCI-Nature Pathway
Interaction Database, Reactome, HPRD, Pathway Com-
mons, and MSKCC Cancer Call Map [41]. Examination
of the resulting network (Fig. 5) shows that RPS19, PNOC,
SFRP1 and KCNJ16 are connected to other frequently al-
tered genes, including MYC or EIF3E as oncogenes, from
TCGA ovarian cancer dataset. In particular, ribosomal
protein S19 (RPS19), which is known to be up-regulated
in human ovarian and breast cancer cells and released
from apoptotic tumor cells, was found to be associated
with a novel immunosuppressive property [42]. Further-
more, HTR3A is targeted by several FDA approved cancer
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Table 6 Top 20 features selected from CNA and RNA-Seq views

CNA Score RNA-Seq Score
TBX18 044 OVGP1 0.56
TSHZ2 042 TOX3 0.54
RN7SL781P 042 SIX3 0.52
MANTA2 042 HTR3A 0.50
KIF13B 040 FLG 048
DKFZP667F0711 0.36 SOSTDC1 048
CD70 0.36 EPYC 048
PRDM1 0.36 OBP2B 048
ZNF471 0.34 FBN3 046
RPS19 034 COL6A6 046
snoU13 0.34 NKAIN4 046
IRX1 032 LYeK 0.44
MIA 032 FABP6 044
LYPLAT 030 KIFTA 044
SHROOM3 030 KCNJ16 0.44
USP13 030 PNOC 042
SFRP1 0.28 TKTL1 042
CYP11A1 0.28 HLA-DRB6 042
ZMYM4 0.28 KRT14 042
APCDDI1L 0.28 DPP10 040

drugs retrieved from PiHelper [43], an open source com-
pilation of drug-target and antibody-target associations
derived from several public data sources.

Finally, we performed a gene-set enrichment analysis
to identify overrepresented GO terms in the two sets of
top 20 features from CNA and RNA-Seq views. Specif-
ically, we used the gene-batch tool in GOEAST (Gene
Ontology Enrichment Analysis Software Toolkit) [44]
with default parameters to import the gene symbols
and to identify significantly overrepresented GO terms,
for Biological Processes, Cellular Components and Mo-
lecular Function categories, in the CNA and RNA-Seq
features sets. We found that the selected CNA gene set
was enriched with 220 GO terms whereas the selected
RNA-Seq gene set was enriched with 40 GO terms (See
Additional files 1 and 2). Analysis of the GO terms
enriched in the CNA gene set showed a significant
overrepresentation of the molecular function GO terms
related to hydrolase activity, oxidoreductase activity,
and ion binding. Analysis of the GO terms enriched in the
RNA-Seq gene set showed a significant over-representation
of the molecular function GO terms related to transmem-
brane and substrate-specific transporter activity. We also
used the Multi-GOEAST tool to compare the results of en-
richment analysis of CNA and RNA-Seq gene sets. The
graphical outputs of the Multi-GOEAST analysis results for
top selected genes in CNA and RNA-Seq in Biological
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Processes, Cellular Components and Molecular Function
categories are provided in Additional files 3, 4 and 5. In
these graphs, red and green boxes represent enriched GO
terms only found in CNA and RNA-Seq, respectively. Yel-
low boxes represent commonly enriched GO terms in both
sets of genes. The saturation degrees of all colors represent
the significance of enrichment for corresponding GO
terms. Interestingly, GO:0003777~microtubule motor activ-
ity term is only shared GO term between CNA and
RNA-Seq enriched terms (see Additional file 5). We con-
cluded that the CNA and RNA-Seq features selected by the
proposed multi-view feature selection algorithm are
non-redundant not only in terms of the genes selected from
the CNA and RNA-Seq views but also in terms of their sig-
nificantly overrepresented GO terms.

Discussion

We presented a two-stage feature selection framework
for multi-omics data integration. The proposed frame-
work can be customized in different ways to implement
a variety of data integration methods. We described a
novel instantiation of the proposed framework using
multi-view feature selection. We introduced MRMR-mv,
which extends MRMR, one of the state-of-the-art
single-view feature selection methods, to the multi-view
setting. We used the proposed two-stage framework to
conduct a set of experiments to compare the performance
of single-view and multi-view methods for predicting
ovarian cancer survival from multi-omics data. The results
of our experiments demonstrate the potential of the
two-stage feature selection framework in general, and the
MRMR-mv multi-view feature selection method in par-
ticular, in integrative analyses of and predictive modeling
from multi-omics data.

Evaluation of single-view models for predicting ovarian
cancer survival using methylation data alone showed very
poor predictive performance where as those trained using
CNA or RNA-Seq data showed substantially better pre-
dictive performance (with AUC between 0.64 and 0.66).
Multi-view models that integrate mult-omics data using
MRMR-mv, a multi-view feature selection method, were
able to outperform single-view models. For example,
multi-view models using the top 100 features selected by
MRMR-mv from CNA and RNA-Seq data were able to
achieve an AUC of 0.7. With the anticipated rapid in-
crease in the size of multi-omics data, we can expect the
predictive performance of such models to show corre-
sponding improvements.

Further improvements can be expected from better
techniques for coping with the ultra high-dimensionality
and sparsity of multi-omics data. Of particular interest in
this context are methods for pan-cancer analysis [45],
multi-task learning [46], and incomplete multi-view learn-
ing [47], and multi-view representation learning [23].
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MRMR-mv jointly selects (from multiple views) a
compact yet most relevant subset of non-redundant
features across multiple views for the prediction task
at hand. Interestingly, the gene-set enrichment ana-
lysis of the top 20 genes selected by MRMR-mv from
the CNA and RNA-Seq data shows that these genes
are also non-redundant with respect to the GO terms
that are significantly overrepresented in the CNA and
RNA-Seq gene sets. If this observation is validated
using other multi-omics datasets, MRMR-mv could be
used to uncover, from multi-omics data, the under-
lying functional sub-networks that collectively orches-
trate the biological processes that drive the onset and
progression of diseases such as cancer. Ultimately,
accurate and personalized prediction of clinical out-
comes of different interventions and promising thera-
peutic targets for different cancer types will require
advances in multi-view and multi-scale modeling that
bring together information from different complemen-
tary data sources into cohesive explanatory, predictive,
and causal models [48].

Conclusions

Developing multi-omics data-driven machine learning
models for predicting clinical outcome, including can-
cer survival, is a promising cost-effective computational
approach. However, the heterogeneity and extreme
high-dimensionality of omics data present significant
methodological challenges in applying the state-of-the
art machine learning algorithms to training such
models from multi-omics data. In this paper, we have
described, to the best of our knowledge, the first at-
tempt at applying multi-view feature selection to ad-
dress these challenges. We have introduced a two-stage
feature selection framework that can be easily custom-
ized to instantiate a variety of approaches to integrative
analyses and predictive modeling from multi-omics
data. We have proposed MRMR-mv, a novel maximum
relevance and minimum redundancy based multi-view
feature selection algorithm. We have applied the result-
ing framework and algorithm to build predictive
models for ovarian cancer survival using multi-omics
data derived from the Cancer Genome Atlas (TCGA).



EL-Manzalawy et al. BMC Medical Genomics 2018, 11(Suppl 3):71

We have demonstrated the potential of integrative ana-
lysis and predictive modeling of multi-view data in
ovarian cancer survival prediction. Work in progress is
aimed at further developing effective computational
and statistical methods and tools for integrative ana-
lyses and modeling of multi-omics data, with particular
emphasis on precision health applications.
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