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Abstract

Background: Survival analysis methods have been widely applied in different areas of health and medicine,
spanning over varying events of interest and target diseases. They can be utilized to provide relationships between
the survival time of individuals and factors of interest, rendering them useful in searching for biomarkers in diseases
such as cancer. However, some disease progression can be very unpredictable because the conventional approaches
have failed to consider multiple-marker interactions. An exponential increase in the number of candidate markers
requires large correction factor in the multiple-testing correction and hide the significance.

Methods: We address the issue of testing marker combinations that affect survival by adapting the recently
developed Limitless Arity Multiple-testing Procedure (LAMP), a p-value correction technique for statistical tests for
combination of markers. LAMP cannot handle survival data statistics, and hence we extended LAMP for the log-rank
test, making it more appropriate for clinical data, with newly introduced theoretical lower bound of the p-value.

Results: We applied the proposed method to gene combination detection for cancer and obtained gene
interactions with statistically significant log-rank p-values. Gene combinations with orders of up to 32 genes were
detected by our algorithm, and effects of some genes in these combinations are also supported by existing literature.

Conclusion: The novel approach for detecting prognostic markers presented here can identify statistically significant
markers with no limitations on the order of interaction. Furthermore, it can be applied to different types of genomic

data, provided that binarization is possible.
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Background

Survival analysis is generally used in studies whose pri-
mary interest is the time of occurrence of an event. For
instance, one may be interested in the time from first
treatment of leukemia patients to time of remission, the
time from first heart attack until death, or the time from
being cancer-free to time of recurrence. Unlike ordinary
regression models, survival analysis methods can incor-
porate censorship and time information which are usually
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present in clinical data. They can also be used to estimate
survival, or the probability of surviving up to a certain
time, and hazard, or the instantaneous rate of occurrence
of the event. In addition, they can be utilized to describe
the effects of important factors on the survival of the
individual, such as age, gender, or treatment. In a similar
manner, we can take advantage of these methods to help
identify significant biomarkers for survival.

Prognostic biomarkers for diseases like cancer are com-
monly identified using genomic data such as genome-wide
expression profiles [1-6]. Recent technologies have led to
the increase in the number of biomarkers, and discovery
of combinatorial effects of markers has been anticipated,
especially in complex diseases where gene interactions
may play important roles in regulatory pathways. Various

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-018-0346-x&domain=pdf
mailto: sese.jun@aist.go.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Relator et al. BMC Medical Genomics 2018, 11(Suppl 2):31

algorithms and techniques have already been developed
for marker detection, with strategies ranging from vari-
able selection to Cox score ranking [2] and log-rank test.
However, owing to the high dimension of data leading to
combinatorial explosion, most existing methods can only
exhaustively inspect individual candidate markers, failing
to consider high order interactions. In addition, multiple
hypothesis testing has also complicated the evaluation of
statistical significance of detected markers, even in indi-
vidual inspections, as the large correction factor limits
novel discovery from data.

If only single markers or pair markers were considered
for statistical assessment, it would be computationally fea-
sible to exhaustively test each candidate. But given the size
of standard genomic data and that the size of the combi-
nation is arbitrary, the number of tests can be exceedingly
large, leading conventional methods for identifying prog-
nostic markers to perform statistical assessment on indi-
vidual genes or individual SNPs only. This leaves several
prospective markers, such as those of high order combina-
torial interactions, untested for significant effects. Other
approaches try to perform a screening step to narrow
down candidates involved in combinations. For example, a
subset of the original set of markers may be retained based
on their individual statistical significance after perform-
ing some initial evaluation. Then, higher order candidate
combination markers are generated by considering inter-
actions of the markers retained in this subset and assessed
for significant associations. Wang et al. adopted this strat-
egy by restricting the set to the top significantly differen-
tially expressed genes first before generating and selecting
candidate combinations using a robust likelihood-based
procedure [5]. In a similar manner, Li et al. also initially
screened genes by performing survival analysis and retain-
ing those whose expressions are correlated with patient
survival for further analyses [1]. The work of van’t Veer
et al. implemented the same technique and used the cor-
relation coefficient values to select significantly associated
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genes and generated marker combination for accurate
prognosis classification using the ranked coefficients [6].
Though feasible, screening strategies disregard the pos-
sibility of significant combinations of individual markers
with insignificant effects, as illustrated in Fig. 1. In the
illustration, suppose X in Fig. 1b is a combination of three
genes: genel, gene2, and gene3 in Fig. 1a. Depending on
the correction factor used, gene 1, 2, or 3 may not be iden-
tified as significant, therefore X may not be discovered as
a candidate marker. All the while, X shows noteworthy
effect on the survival of individuals in Fig. 1b.

To overcome the dilemma occurring in statistical
assessment of multiple hypotheses, the Limitless Arity
Multiple-testing Procedure (LAMP) was proposed by
Terada et al. for finding significant motif combinations
that regulate gene expressions [7]. Using frequent pattern
mining [8], the method can enumerate all combinations
of transcription factors that are statistically significantly
associated with the up-regulation of genes. Furthermore,
the probability of at least one false discovery occurring
is guaranteed to be less than the predefined threshold «,
usually 0.05 or 0.01 in value, by excluding infrequent com-
binations that will never be significant, and hence do not
contribute to the family-wise error rate (FWER), or the
probability of making at least one false discovery [9]. How-
ever, the theory of LAMP is only valid for Fisher’s exact
test, chi-square test and Mann Whitney U test, and is not
directly applicable to survival analysis.

In this research, we propose an extension of LAMP
for log-rank test to detect prognostic gene combina-
tions. Log-rank test is commonly used for differentiating
chances of survival between groups. It can also be inter-
preted as a time-stratified Cochran-Mantel-Haenszel test
(CMH) [10]. The CMH test is used to test for associa-
tion between a binary predictor, such as treatment, and a
binary outcome, like case or control, while taking strati-
fication into consideration. For log-rank, we can assume
that the binary predictor is given by the categories of
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Fig. 1 Example of a statistically significant combination marker X with some non-significant gene components. a P; (gene) denotes samples with
over-expression of the corresponding gene and Py(gene) denotes samples with no over-expression of the gene. Under & = 0.05, gene3 is not
significant, and under @ = 0.01, only gene 1 will be significant. b The gene combination X is comprised of the three genes in (a). P; (X) denotes the
samples with over-expression of all 3 genes in X and Py (X) represents the samples with no over-expression in at least one of the 3 genes. The
combination of the three genes results to a marker with significantly low p-value even if not all three are evaluated as significant. With a
conventional filtering approach, this combination marker may never be detected
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the two populations, such as presence of marker, and
the binary outcome is the occurrence of the event at
the given failure time. With this setting, we can test
for association between the failure of samples and the
grouping of samples. Most existing methods support their
results with p-values computed using log-rank, like in the
work of duVerle et al. [11]. To find marker combinations,
their method treats combinations as covariates and inte-
grates penalized Cox regression analysis with significant
pattern mining to find combinatorial interactions. Their
algorithm runs for several iterations to find candidate
combinations with significant likelihood ratio test p-value,
and later test them using the log-rank p-value. Statis-
tical significance of their detected combinations is not
necessarily guaranteed. On the other hand, our approach
directly exploits the log-rank p-value to identify meaning-
ful individual markers and multiple-marker interactions.
By modifying LAMP, the procedure becomes more suit-
able for survival data, which generally involves censored
information, while enabling us to identify high order com-
binations without dealing with issues raised by test mul-
tiplicity. Similar to [11], our approach sets no limit on
the order of the detected interactions. But unlike them, it
does not require training of algorithm that causes possible
overfitting of data.

We applied our algorithm to datasets of mRNA expres-
sion profiles from The Cancer Genome Atlas (TCGA).
Cancer is a complex disease whose course and progno-
sis is highly variable, and some cancer types cause more
deaths than others, such as lung, liver, stomach and breast
cancers.Therefore, treatment options differ for each indi-
vidual, and it has been essential to establish prognosis
of patients. Aside from early detection before the spread
of the disease being crucial, prognostic and predictive
markers have also become highly relevant in personaliz-
ing medical care and improving the quality of treatment.
Our method identified combinatorial interactions with
orders of up to 32 genes, and existing studies can confirm
the effects of some these genes included in these combi-
nations. Additionally, the method presented here is not
restricted to gene expression data, but can also be applied
to other types of genomic data such as copy number vari-
ations, or single-nucleotide polymorphisms, as long as
binarization of values can be performed. This makes our
strategy more flexible than other data-defined methods
for marker identification.

Methods

Overview

In this study, we will focus on the following problem set-
ting. Suppose we have a survival dataset composed of a
set of markers G = {gi}f\i , and a set of individuals {s(}?[=1
with their corresponding survival times {1:[}12[:1. Here, we
will assume that there is only one level of expression of
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the marker i for each sample ¢, i.e. gi(s;) € {0,1}{i =
1,2,...,M},{€ = 1,2,...,N}. For example, g; may repre-
sent a single gene, highly expressed genes are denoted by
1 and not highly expressed genes are denoted by 0. When
gi is assumed as a SNP, 1 and 0 mean minor homozy-
gous SNP and non minor homozygous SNP, respectively.
In addition, let {y(s;g)}]giz1 be the corresponding labels of
each individual such that y(s;) = 1 if the event of interest
occurred for the individual, which we refer to as a failure
or failed sample, and y(s;) = 0 if the information on the
sample is censored. Let X be a pattern of m markers {g;}/”
drawn from the powerset of G, and {1.‘,'}11{:1 C {fg}fz‘lzl be
the unique failure times, that is, there is at least one sam-
ple s¢ such that 7, = ; and y(s¢) = 1. Then for any failure
time ¢;, we can also subdivide the N individuals into two
groups: P1 = {s¢|gi(s¢) = 1Vg; € X and 7y > ¢;} or the set
of samples containing pattern X who survived to at least
until £, and Py = P; = {s¢| dg; € X, gi(s¢) =0and tp > t)
or the set of samples not containing X who also survived to
at least until ¢. Our goal is to detect combinations X such
that survival times of individuals from the two groups P;
and Pp are statistically significantly different, while tak-
ing censored information into account. Thus, we can say
that X is associated to survival, making it a promising
candidate marker.

A statistical test for survival analysis, such as the log-
rank test, is useful to evaluate statistical significance
of a combination like X. But to use it to exhaustively
investigate the effects of combination markers, statis-
tical assessment must be performed for every possi-
ble combination, i.e., 2Y — 1 statistical tests are per-
formed. Such approach does not only cause computa-
tional complexity problems, but also yields a serious num-
ber of false discoveries. To overcome these problems, we
present an algorithm for finding combinatorial interac-
tions significantly associated with the survival of individ-
uals while controlling FWER and correcting for multiple
hypotheses. To achieve this goal, the proposed method
integrated the statistical evaluation capability of the log-
rank test with the multiple testing correction power
of LAMP.

The Log-rank Test
The log-rank test is used to determine statistical differ-
ence in the time-to-event for any given time between the
two populations. For example, one might be interested in
the time before death between treatment and placebo for
a complex disease in a clinical trial. The test assumes that
occurrence of event is not dependent on censoring, and
that event probabilities are unaffected by the start times of
the individuals in the study [12].

Given a combination of markers X C §, we construct
sequential contingency tables to calculate the p-value with
the log-rank test. Table 1 shows a contingency table for
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Table 1 Contingency table at jth failure time ;

y=1laty y#Elatl, >4 Row totals
Py myj Aj—nyj Aj
Po nj —nij Vi =% = nj+m; V=%
Col totals n Yi—n; Y

time ¢;, where t; < --- < t; < --- < tg are the ordered
failure times. Let Y; and #; be the numbers of individuals
satisfying 7, > ¢; and failed individuals satisfying 7, = ¢,
respectively. And let A; be the number of individuals in P;
at tj and ny; be the number of individuals in Py such that
g =tandy=1.

For the jth failure time, the observed number of failures
in Pj is given by n1; and the expected number of failures
equal to

Ei=nj—.
j =1
Y
The log-rank statistic Z measures the ratio between the
summed deviation between the observed failures and
the expected failures for each failure time, normalized by
the square root of the summed variance for each failure
time:
K
> e mj — Ej
7 = J (1 I’
K
j=1 Y
where the variance at ¢; is given by

v M = A =+ mm (G — )
J Y}2(Y1— 1)

The test statistic Z2 has a chi-square distribution with
1 degree of freedom, which can be used for statistical
assessment of survival curves of the two groups P; and
Py via chi-square test. That being the case, we can explic-
itly use the test to find statistically significant markers that
influence the survival of the individuals.

LAMP

Multiple hypothesis testing is one of the many challenges
in finding significantly associated markers in disease sur-
vival and disease incidence. Several methods have been
proposed to address this problem, with Bonferroni correc-
tion as one of the most highly utilized approaches. This
is easily performed by dividing the predetermined signif-
icance level o (generally 0.05 or 0.01) by the total num-
ber of hypotheses to be tested, &, to obtain the adjusted
p-value threshold §. However, this method is known to
be conservative. Especially when considering higher order
interactions, the number of tests easily increases exponen-
tially, causing the adjusted threshold to be very small and
discouraging new findings from the data.
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Algorithm 1 LAMP

1: A := maximum frequency(X), VX
2. if A > nj then A := 3
3: end if
4: call LCM:
find all testable items and number of testable items
k=k(\)
5 if f(A—1) <a/kand A > 2then X = A — 1;go to 4
6: end if
7. output (A, k)

As a workaround on the drawback of Bonferroni correc-
tion, one strategy is to determine which tests are “testable”
and “untestable” [9]. This is the technique used by Terada
et al. for controlling the FWER in statistical tests such as
Fisher’s exact test and chi-squared test [7]. For a test with
contingency table marginals given by n1,A,N — n; and
N — 2, where n; is the total number of samples with label 1,
and X is the the total number of occurrences of a pattern
of markers X, the minimum raw p-value is obtained when
the table is most biased and so cannot be less than

(%)

S = ) (1)
Therefore, if for some A, f(L) is greater than the adjusted
p-value §, then the corresponding pattern of markers can
never be significant and is therefore untestable.

To apply the above method to finding high order com-
binations of transcription factors regulating gene expres-
sion, Terada et al. used the linear-time closed itemset
miner (LCM) [8]. LCM can enumerate patterns whose
frequency of appearance in the data is at least equal
to A. When the minimum p-value bound f() is used
with LCM, significant patterns can be identified by using
the anti-monotonic property of f. The LAMP algorithm
[7, 13] is outlined in Algorithm 1. First, A is set to the min-
imum between the maximum frequency over all patterns
X in the data and the total number of positive labels 77 in
the data. Then, the LCM algorithm is called to list all pat-
terns with frequencies no less than X, with k equal to the
order of this set. If f(A — 1) < a/k using Eq. 1, then A is
decremented by 1, and LCM is called again to find all cor-
responding patterns and compute for the new k. The last
two steps are repeated until f (A — 1) < a/k or until A = 2.
The algorithm outputs the optimal A*, an exhaustive list
of the testable patterns, and the total number of testable
patterns corresponding to A*.

LAMP for survival analysis

LAMP can be used to find associations using statistical
tests, but it cannot be directly applied to survival data.
Therefore, it is necessary to extend the algorithm to incor-
porate censorship and time information. An attractive
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point of the approach is that it is easily applicable to meth-
ods provided we can find a non-zero bounding function
for the minimum p-value that is monotonically decreas-
ing [7]. To this end, we define such function for the
log-rank test.

Proposition Let A, nij, nj, and Y; be contingency table
values and marginals previously defined. The minimum
p-value of the log-rank test is bounded below by the
monotonically decreasing function

K
fo =TTsm, 2)

j=1
nj / YI , )\’ < n;
ey — | /0 2=
1/(}41’/) , A > nj.

Proof Let XI%R be the the log-rank chi-square statistic
and p; be the corresponding p-value for the 2 x 2 contin-
gency table at the jth failure time , j = 1,2,...,K. We
consider Fisher’s method and the unified statistic given by

K

Xe(2K) ~ =2 "Inp;.
j=1

This statistic is sensitive to small values of p; and tends to
be large if at least one null hypothesis H; is not true. Thus,
for values at the right tail of the distribution, given that
the degree of freedom 2K of x2 is greater than the degree
of freedom of x7 (df = 1) but x?2 is large enough to also
reject the null hypothesis as XER, then XER < x2. Inasim-
ilar manner, this also holds when all null hypotheses are
true. If XER is small and null hypothesis is true, then p;’s
also tend to be large. However, the log-rank p-value py R is
only large for extreme values of x7;. Therefore to achieve
comparable probability as log-rank at a higher degree of
freedom, the combined statistic Xf is still greater than
XL2R~ Moreover, for nontrivial values of K, XL2R < X&, so the
corresponding p-values pir = p (XI%R(I)) > p(x&(Z)),
ie,if p (XfR(l)) > p (Xg(l)), the X& is sufficiently large
such that inequality still holds when its df is increased
by 1. We choose df = 2 to take advantage of the equivalent
distribution of x2(2), and rewrite

K

K
PR > p (x3(2) = exp <1n (HP})) =[1»
j=1

j=1

Thus, we can bound the log-rank p-value by the product
of respective p-values of each table.

Note that as the failure time ¢; becomes longer, entries of
the jth contingency table and sample size becomes smaller.
Therefore, it is preferable to use Fisher’s exact test to com-
pute for the corresponding p-value of the table instead of
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chi-square test. Under the null hypothesis, the probability
of generating a contingency table such as in Table 1 at each
failure time is equal to the probability for a single 2 x 2
table in Fisher’s exact test [14]. The corresponding p-value
of the table at ¢ is given by

1\ ( Yi—n;
(Vll,,) ()L/'lfnllj)
Y; :
()
Moreover, this achieves its minimum when the table is
most biased [7]. Therefore, f;(};) = (;”)/(f’) if 4 < nj
] ]

JiGy) =

and fi(1)) = 1/(”)/1’/) if A; > nj. Fixing A; = A for all j, we
get the bounding function defined in Eq. 2.

To show that f is monotonically decreasing, observe that
when A < nj:

n,

(}:ﬁl) nj— A ( /)
S+ = 25 = T
' (Aﬁl) Yj—A (?)

nj —A )
7

And since #; < Y}, then (n; — 1)/(¥; — 1) < 1. On the
other hand, when A > #;, fj(}) is independent of A. There-
fore, f;(1) decreases with respect to 1, and the conclusion
follows. O

Algorithm

To find statistically significant interactions using log-rank
test, we implemented the following algorithm tailored
from the original LAMP algorithm [13]. Briefly, the differ-
ences of the two algorithms are the initialization of A and
the computation of the minimum p-value bound.

Similar to LAMP, A is initially set to the maximum fre-
quency over all patterns X in the data. If this value is larger
than the minimum number of samples at risk Y; over all
failure times, A is set to this value in line 2. Lines 4-5 call
the LCM algorithm while decreasing the value of A by 1
for each iteration to find all patterns X whose number of
occurrences is at least A, until the value f(A — 1) < a/k, k
equal to the number of such patterns X. The value of f is
computed using the bound defined in Eq. 2. The p-value
for the corresponding A is computed in each failure time,
and the product across all failure times is obtained. When
the condition in line 5 is not met, or if the current A is
already equal to 2, then algorithm finally outputs the opti-
mal value of X, an exhaustive list of all testable patterns
corresponding to this value, and the total number of these
patterns, k.

Data
To test our approach, the algorithm was applied to
two publicly available datasets with clinical data from
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Algorithm 2 LAMP4LogRank

1: A := maximum frequency(X), VX

2. if A > min(Y}) then A := min(Y))

3: end if

4: call LCM:

find all testable items and number of testable items
k=k(A)
if flh—1) <a/kand i > 2theni =1 —1;goto4
else

output (A, k)

end if

*® N > U

The Cancer Genome Atlas (TCGA) Database: samples
from breast invasive carcinoma (TCGA-BRCA) [15] data
and samples from ovarian serous cystadenocarcinoma
(TCGA-OV) [16] data. The TCGA-BRCA data contains
14688 mRNA gene expression profiles from 526 sam-
ples, while the TCGA-OV data has from 17578 mRNA
gene expression profiles from 485 samples. The event of
interest is death of the individual, with overall survival
time (in months, from time of enrollment in study until
death) given. TCGA-BRCA contains 419 distinct survival
times, with 65 distinct failure times, while TCGA-OV has
433 unique survival times and 252 unique failure times.
The z-scores of median-centered per gene data were pro-
vided, and we used this to binarize the expression values
such that z-scores greater than 2 are classified as highly
expressed. The average number of highly expressed sam-
ples per gene was around 21 samples for both data. To
finish the computations within three days, we opted to
divide the data into sets with 250 genes per set (directly as
given in order of the data; last set may have < 250 genes)
and implemented the algorithm per set. This yielded 59
sets for the TCGA-BRCA data and 79 sets for the TCGA-
OV data. We aggregated the results for all experiments
and used the total correction factor for all analyses as the
significance threshold correction factor. We filtered the
significant gene interactions detected by our algorithm by
selecting those whose raw p-value multiplied by the total
correction factor is still less than the threshold «, set here
to 0.05. We performed all our experiments in a machine
with two Intel Xeon E5-2650 v3 (2.30GHz) processors
with 128 GB memory.

Results and discussion

Analysis of TCGA breast invasive carcinoma data

We obtained a total of 9634 statistically significant com-
binations from TCGA-BRCA, and the average correction
factor per analysis is 9428. We used the total correc-
tion factor k = 556284 to retain statistically significant
combinations across all analyses, reducing the number of
significant interactions to 5836 with the largest size of
gene combinations is 32. Due to some unexpected bias
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that may be presented when detected significant mark-
ers only affect one or very few samples in the whole the
data, we sorted the combinations in decreasing number of
occurrences of the marker combination. Table 2 gives the
first 5 of the sorted interactions found to be statistically
significantly associated to breast cancer prognosis by our
method.

The combinations yielded by our analysis involve genes
that have been previously implicated in disease incidence
or associated with disease prognosis. These include the
PIK3CA gene (part of a combination of 28 genes, raw
p = 1.9545e — 09, adjusted p = 0.00109), which is one
of the three genes whose occurrence of somatic muta-
tions are greater than 10% among all breast cancers [15],
and BRCA2 (first combination has size 22, raw p =
1.9545e — 09, adj. p = 0.00109; second combination has
size 8, raw p = 3.3648e — 08, adj. p = 0.01871). From
the table, the frequently appearing TIMM17A gene is a
known breast cancer marker [17], and have been previ-
ously shown to affect the aggressiveness of tumor cells in
breast cancer [18, 19]. High expressions of this gene have
been linked to the more progressive type of the disease,
resulting to unfavorable survival outcomes for affected
patients.

The other genes, while not directly associated to breast
cancer survival, have also been studied for associations
with breast cancer, other cancer types, or cancer risk.
For instance, Clorf55 (SDE2) gene in the first and fourth
combination in Table 2 has been recently shown to help
cells in replication stress relief [20], and replication stress
is known to correlate with the formation of tumors or
tumorigenesis [21]. Another example is the OTUD6B
gene in the second and fourth combinations, which is a
gene belonging to a subfamily of ovarian tumor domain,
and a potential biomarker for non-small cell lung cancer
[22]. Additionally, gene expression of ZNF703 in combi-
nation three has been shown to activate gene expression
that lead to increase in cancer stem cells, which promote
tumorigenesis, in breast cancer [23]. From the aggregated
results in the analyses, we obtained a total of 5930 unique
genes included in the combinations.

To illustrate the effects of interactions vs single gene
on patient survival, Kaplan-Meier plots of the first 3

Table 2 Significant markers with the most number of occurrences
in the breast invasive carcinoma data

Gene combination Adj. Log-rank p-value  No. of occurrences

Clorf55TIMM17A 0.0185 23
TIMM17A,0TUD6B 0.0025 14
MRPS14,ZNF707,TTC35 0.0002 12
Clorf55,TIMM17A,0TUD6EB  0.0007 11
C8orf38,ZC3HT1A 0.0015 11




Relator et al. BMC Medical Genomics 2018, 11(Suppl 2):31 Page 51 0f 116

C1orf55,TIMM17A b TIMM17A,0TUD6B
a ° corrected p = 0.0185 ° corrected p = 0.0025
= —— not highly expressed = —— not highly expressed
2 ® | — highly expressed 2 o | — highly expressed
8o 8o
S o o o
a a c
s h R MRPS14,ZNF707,TTC35 MRPS14
2 o 2 corrected p = 0.0002 corrected p =1.00
@ S| @ o 2 4 Q 4
- — not highly expressed - — not highly expressed
g - g - > o | — highly expressed 2> o | — highly expressed
T T T T T T T T £ £
0 50 100 150 200 0 50 100 150 200 5 ° 5°
8« 8 o
Time (months) Time (months) S o S o
< =
o o
Clorf55 TIMM17A 2 N H N
o corrected p = 1.00 o corrected p = 1.00 @ o @ o
=1 —— not highly expressed - —— not highly expressed 24 : : : : 24 : : : :
z 2 —— highly expressed z2 — highly expressed 0 50 100 150 200 0 50 100 150 200
§ © § © Time (months) Time (months)
S S S oS
o o
g =
£° £° ZNF707 TTC35
@ o @ o N corrected p = 1.00 o corrected p = 1.00
24 2 = —— not highly expressed = —— not highly expressed
y : : i d ' : . : > — highly expressed > —— highly expressed
0 50 100 150 200 0 50 100 150 200 = o4 9Ty oxp = 24 9nly oxp
Time (months) Time (months) g o | g o |
S o S o
o o
TIMM17A OTUD6B 3 3 3 3 T ——
° corrected p = 1.00 o corrected p = 1.00 2 o 2 o
) > 4 » o @ o
- — not highly expressed - — not highly expressed
> o | —— highly expressed > o | —— highly expressed 24 24
£ £ T T T T T T T T
5 ° 5 ° 0 50 100 150 200 0 50 100 150 200
8o 8o
S o o o Time (months) Time (months)
o o
g 3+ g 3
2 2
> N S N
n o w o
< | =
o T T T T o T T T T
0 50 100 150 200 0 50 100 150 200
Time (months) Time (months)

Fig. 2 Kaplan-Meier plots for the top three markers in Table 2, and the corresponding KM plots for individual genes in combination markers. In the
combinations, all genes involved are assumed to have high expressions. For all figures, the red curves represent the survival probability of
individuals with highly expressed genes/gene combinations, while the blue curves represent the survival probability of individuals with non-highly
expressed genes/gene combinations. Indicated p-values are the adjusted log-rank p-values using the total correction factor k = 556284. If the
adjusted p-values exceed 1.0, p = 1.0 is used. a The 2-gene combination C1orf55,TIMM17A (uppermost) and the respective individual KM plots for
Clorf55 (middle) and TIMM17A (lowermost); b The 2-gene combination TIMM17A,0TUD6B (uppermost) and the respective KM plots for the two
genes in the combination; € The KM plot for the 3-gene combination MRPS14,ZNF707,TTC35 (top left), and the succeeding respective plots for the
individual genes

gene combinations from Table 2 are given in Fig. 2. It  be observed. Moreover, the impact of these combinations
is worth noting that the individual genes will never be  of highly expressed genes can potentially severely aggra-
statistically significant for « = 0.05 and k = 556284  vate patient survival, with median survival time from as
(adjusted p-value is large so we set p = 1.0 in the early as around 25 months. This is also supported by evi-
figures), but their combinations yield statistically signif-  dence of the cumulative hazard for the combination, such
icant results, e.g. Clorf55 and TIMMI17A in Fig. 2a. as that for Clorf55,TIMM17A rapidly increasing before
Notable difference between the divergence patterns of the  reaching t = 50 months, compared to the individual gene
survival curves of combinations vs individual genes can  cumulative hazards, as shown in Fig. 3.
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Fig. 3 Cumulative hazard plots for the top combination marker C1orf55TIMM17A (left-most) in Table 2, and the corresponding individual genes
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Table 3 Significant markers with the most number of
occurrences in the ovarian serous cystadenocarcinoma data

Gene combination Adj. Log-rank p-value  No. of occurrences

GGCX 0.0061 33
MTF1,NBN 0.0068 13
ANTXR2 0.0029 12
GALNT10 0.0092 10
RTEL1,RTFDC1,CDK5RAP1 0.0115 10
KXD1,DDA1,C190rf43 0.0295 10

Analysis of TCGA ovarian serous cystadenocarcinoma data
For the TCGA-OV data, we obtained a total of 5193
candidate combinations from the 79 sets, with average
correction factor of 12962 per set and a total correc-
tion factor of k = 920351. After correction on the raw
p-values, 2849 combinations with size of at most 28, and
where 1893 combinations are present in more than one
sample, are retained. Top interactions with the most num-
ber of occurrences in the data samples are enumerated in
Table 3.

Similar to the TCGA-BRCA results, genes in the inter-
actions potentially affecting the ovarian cancer survival
include known oncogenes and novel candidates. As an
example, high expressions of GGCX, the top gene in
Table 3, has been observed in bladder cancer [24] and
has been linked to a susceptibility locus in prostate cancer
[25], encouraging subsequent studies of this gene and its
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role in cancer. Also, MTF1 and NBN genes in combination
two have evidence of high gene expressions in lung, breast,
and cervical cancer tumors [26], and mutations associ-
ated with cancer occurrence, such as breast, prostate and
stomach cancers [27, 28], respectively. Further, studies
suggest that the ANTXR2 (CMG2) gene plays a signif-
icant role in angiogenesis and promotes proliferation of
endothelial cells and form and structure development dur-
ing angiogenesis in cancers such as breast cancer [29, 30].
All of these imply potential effects of detected interac-
tions in cancer risk and survival. Kaplan-Meier plots in
Fig. 4 for the first three interactions in Table 3 also pro-
vide validation on the effects of these genes on patient
prognosis, with effects of MTF1 and NBN genes signifi-
cantly stronger when considering interactions, compared
to individual effects (Fig. 4c). The rapid decrease in the
survival curves corresponding to high expression of the
markers are also noticeable, with median survival time
also attained as early as two years. As expected, there is
severe rapid increase in the cumulative force of mortality
for such markers, which can be seen for the GGCX gene
in Fig. 5.

Validation of results

As further support to the resulting combinations detected
by the proposed algorithm, we used separate breast and
ovarian cancer data sets to check if these combinations
are also statistically significant survival markers for these
data. Gene expression and clinical data for breast and
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Fig. 4 Kaplan-Meier plots for the top three markers in Table 3, and the corresponding KM plots for the individual genes in combination markers. In
the combinations, all genes involved are assumed to have high expressions. For all figures, the red curves represent the survival probability of
individuals with highly expressed genes/gene combinations, while the blue curves represent the survival probability of individuals with non-highly
expressed genes/gene combinations. Indicated p-values are the adjusted log-rank p-values using the total correction factor k = 920351. If the
adjusted p-values exceed 1.0, p = 1.0 is used. a The KM plot for the single gene GGCX, which is the top marker in Table 3 (most number of
occurrences); b The KM plot for the single gene ANTXR2, the third marker with most number of occurrences; € The KM plot for the 2-gene
combination MTF1,NBN (left-most), and the respective plots for the individual genes
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Fig. 5 Cumulative hazard plot for GGCX, the top gene marker in
Table 3

ovarian cancers were obtained from the National Center
for Biotechnology Information Gene Expression Omnibus
with accession numbers GSE2034 [31], GSE25066 [32]
and GSE3494 [33] for breast cancer, and GSE13876 [34]
and GSE49997 [35] for ovarian cancer. Raw values given
in GSE2034 and GSE13876 were log 2-transformed and
then median-centered. On the other hand, data values
given in the other data sets were already log-transformed
and normalized, respectively (see [32, 33, 35]). Modified
z-scores were computed using the normalized values, and
two types of binarization were applied thereafter. The
first one is similar to our experiment settings focusing on
high expressions of the genes of interest included in the
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combinations: z-scores greater than 2 were set to 1, oth-
erwise, set to 0. The second one considers the case when
the genes of interest have low expressions, for which we
set entries with z-scores less than — 0.5 to 1, otherwise,
set to 0. Probes were mapped to genes using their Gene
Entrez IDs, with some genes mapped to multiple probes
in the data. Therefore, we checked all possible probe
combinations of each respective gene combination, pro-
vided all genes in the combination have a corresponding
probe in the data. Otherwise, such combinations can-
not be assessed. Survival with various events of interest
were analyzed using the validation data, namely: relapse
with time to relapse or last follow-up (GSE2034), distant
recurrence-free survival with time from operation to the
first distant recurrence (GSE25066), disease-specific sur-
vival with DSS time (GSE3494), overall survival with time
from primary surgery (GSE13876), and progression free
survival (PFS) with survival time that the disease does not
get worse during or post-surgery. The summary of pro-
portions of statistically significant combinations found in
the validation data sets, i.e., their raw p-value is less than
0.05, is given in Table 4. For combinations with multiple
corresponding probe sets, the combination is statistically
significant if at least one of the matching probe sets is
statistically significant.

Extensions and limitations of the model

An advantage of the algorithm presented here over other
methods is its flexibility on the type of data used for
analysis. It can easily deal with other genomic data such
as SNPs or copy number variations provided values can
be binarized. Moreover, scope of the application can be
expanded to any type of disease (i.e., non-cancer diseases)

Table 4 Number of combinations that are also statistically significant using the validation data

(a) Validated BRCA results

404/2073 (19.49%)
428/2073 (20.65%)

140/1444 (9.70%)

Expression GSE2034 GSE25066
High 54/239 (22.59%) 37/172 (21.51%)
Low 466/2092 (22.28%)

Total 509/2092 (24.33%)

(b) Validated OV results

Expression GSE13876 GSE49997
High 15/300 (5.00%) 15/108 (13.89%)
Low 195/1526 (12.78%)
Total 209/1526 (13.70%)

155/1444 (10.73%)

GSE3494-GPL9%
74/286 (25.87%)
421/2079 (20.25%)
485/2079 (23.33%)

GSE3494-GPL97
23/106 (21.70%)
105/670 (15.67%)
123/670 (18.36%)

Percentage values indicate the portion of statistically significant combinations from all combinations that can be matched in the data set. ‘High' results use the binarization
similar to our experiment settings where z-scores greater than 2 were set to 1, otherwise, 0. Low’ results consider the case when the genes of interest are all lowly expressed
and entries with z-scores less than — 0.5 are set to 1, otherwise, 0. All combinations were tested using these two binarizations, hence, the respective lists of statistically
significant combinations found in the validation data may overlap. The Total" indicates the total number of unique combinations (high or low)that can be matched in the
data and the portion of which are statistically significant
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and event of interest (e.g. cancer recurrence, remission,
effectivity of treatment). The method can also be extended
to continuous values, as techniques for significant pat-
tern mining dealing with real-valued data have also been
proposed [36].

While the proposed method can detect high order inter-
actions without any theoretical limitations to the order
of interaction, it is not without cost. One caveat of the
algorithm is the calling of LCM multiple times, making
it very time-consuming, especially for large-scale data,
hence the data division performed in the analyses. A faster
version for LAMP has been proposed [13], invoking the
LCM algorithm only once with depth-first search, making
it 10 to 100 times faster than the original. To utilize this
approach, certain adjustments on the current algorithm
must be applied.

Another shortcoming of the method is the relaxed min-
imum p-value bound, which returns very small p-values.
This also causes the algorithm to run longer, due to the
longer time it takes to terminate pruning in the LCM algo-
rithm. The value of A decreases unnecessarily, therefore
increasing the number of testable items. While the cor-
rection factor is still significantly smaller than what would
have been if Bonferroni correction is used, a tighter bound
is still preferred.

Conclusion

In this study, we presented a novel approach to find-
ing potentially relevant high order gene markers that
affect disease prognosis. By utilizing existing significant
pattern mining techniques, our method can find mul-
tiple order combinations associated with the survival
probabilities of affected and unaffected individuals while
controlling the FWER and not being computationally
expensive. Applying our algorithm to existing cancer
survival study data yielded interactions involving genes
already associated with cancer prognosis from existing lit-
eratures, as well us genes whose roles in cancer are still
unknown.
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