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Abstract

Background: Reliable detection of genome variations, especially insertions and deletions (indels), from single
sample DNA sequencing data remains challenging, partially due to the inherent uncertainty involved in aligning
sequencing reads to the reference genome. In practice a variety of ad hoc quality filtering methods are employed to
produce more reliable lists of putative variants, but the resulting lists typically still include numerous false positives.
Thus it would be desirable to be able to rigorously evaluate the degree to which each putative variant is supported by
the data. Unfortunately, users who wish to do this, e.g. for the purpose of prioritizing validation experiments, have
been faced with limited options.

Results: Here we present EAGLE, a method for evaluating the degree to which sequencing data supports a given
candidate genome variant. EAGLE incorporates candidate variants into explicit hypotheses about the individual’s
genome, and then computes the probability of the observed data (the sequencing reads) under each hypothesis. In
comparison with methods which rely heavily on a particular alignment of the reads to the reference genome, EAGLE
readily accounts for uncertainties that may arise from multi-mapping or local misalignment and uses the entire length
of each read. We compared the scores assigned by several well-known variant callers to EAGLE for the task of ranking

true putative variants on both simulated data and real genome sequencing based benchmarks. For indels, EAGLE
obtained marked improvement on simulated data and a whole genome sequencing benchmark, and modest but
statistically significant improvement on an exome sequencing benchmark.

Conclusions: EAGLE ranked true variants higher than the scores reported by the callers and can used to improve
specificity in variant calling. EAGLE is freely available at https://github.com/tony-kuo/eagle.

Keywords: Next generation sequencing data analysis, Variant calling, Variant quality score, Genomic variants,

Generative probabilistic models

Background

Variant calling is an important task in genome analysis,
and one with many remaining challenges. Previous studies
have shown that different methods exhibit low concor-
dance between their variant calls [1, 2] and the repro-
ducibility of variant calling workflows has been thrown
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into question [3]. Insertion-deletions (indels) in particu-
lar pose many challenges [4, 5]. Yet, indel variants have
an especially strong impact on phenotype [6] and disease
[7, 8]. Thus, there is a strong need for accurate evalua-
tion of putative indel variants. For example, a ranked list
of putative variants can expedite experimental validation
of variants.

Many well-known variant callers can evaluate the like-
lihood of a candidate variant given multiple samples in
conjunction with population statistics or machine learn-
ing methods with fair accuracy [9-12]. However, these
method often require large amounts of samples and/or
population level data of known variants, such as dbSNP —
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a condition not met in many use cases. For example,
a database of common variants may not be available
for non-model organisms. Even for humans, mutations
involved in rare inherited diseases may be unique to a
patient or family. Thus, evaluating putative variants in a
single-sample calling setting is an important endeavor in
genomic research.

Here we present EAGLE, a method which explicitly
evaluates how well sequencing data fit the alternative
genome sequence implied by a putative variant using an
explicit probability model that handles uncertainty in a
well-principled manner. Our model uses read sequences
in their entirety, thus requiring the flanking regions
around the putative mutation to be supported by the data.
In addition, we account for the uncertainty that is inher-
ent in multi-mapped reads, ambiguous gap placements,
and potentially misaligned reads from paralogs outside
the reference genome. Earlier methods have previously
considered multi-mapped reads for SNPs [13], however
EAGLE is also applicable to indels and handles additional
sources of uncertainty, such as local gap placement. Using
both real and simulated benchmark data, we demonstrate
that EAGLE is better at ranking putative variants than
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other scores and conclude that EAGLE can improve the
specificity of variant callsets.

Methods

Generative probabilistic model of the read data

Our method is motivated by various uncertainties in the
variant calling process, which we handle probabilistically
(Fig. 1). At a high level, given sequencing data from a
sample genome, one would like to have a way to com-
pute which of two or more hypothetical sequences for the
sample genome is more likely.

In our application at least three hypotheses are consid-
ered; one is that the sample genome is (homozygously)
identical to the reference genome, and the other two are
that the sample genome differs from the reference genome
(homozygously or heterozygously respectively) to reflect
a putative variant reported by some variant caller. For
the heterozygous hypothesis, we assume that one allele is
identical to the reference genome sequence and the other
allele reflects the putative variant. Our method scores
putative variants based on the likelihood each hypothesis
given the data (more generally the posterior probability of
the data given each hypothesis).

Which Hypothesis Best Explains
The Read Sequence Data?

Uncertain alignment?
- multi-mapped

Estimate probability distribution
across whole genome

Unknown paralog?
- apparent high local diversity
- many mismatches

Estimate probability the data
comes from a paralog not in
the reference genome

5

P(data | alt) >> P(data | ref)

sources of read r) the more uncertain the explanation

Factor in
uncertainties

Fig. 1 The model aims to handle the various uncertainties inherent in the variant calling process in order to calculate and compare the probability
of the data given: the candidate variant sequence and the reference sequence. Simply, the more uncertain the data (g, representing other possible

Uncertain gap placement?
- insertion / deletion
- low sequence complexity

Estimate probability distribution
in alignment neighborhood

Haplotype / complex variants?
- other variants nearby

Calculate the marginal probability
over the set of nearby variants

P(rlalt) P(riref)

"

P(data|alt) = P(data | ref)
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As detailed in the supplementary text (Additional file 1),
our formulation makes some simplifying assumptions
to reduce the problem to computing the probability of
observing each read r given the hypothetical genome
sequence G (reference or alternative). G is assumed to be
diploid and is defined as a multiset of read length sub-
strings, where substring g can be selected from either
chromosome copy. We decompose this into the probabil-
ity that the genome segment sequenced to produce r was
g and the probability that (in the presence of sequencer
error) sequencing g would produce read r.

P[r|G] = ) Pl¢|G] Plrlg]

geG

o Y Plrig]

ge@G

assuming uniform coverage

4
x Z l_[ P[g;|r;] Bayes’ Law with uniform priors
geGi=1
1—e ifri=g
Ploilr] = ‘ i i i
[gilri] { % otherwise

where ¢ is the length of read r, g; is the ith base of g
and r; is the corresponding base in the read sequence
with base-call error probability e; (reflecting the quality
score). In the derivation we assume uniform priors on the
sequence genome segment g (i.e. uniform coverage) and
a uniform prior on reads (of equal length, see Additional
file 1). We also assume that there are no indel sequencing
errors. Though the model could theoretically be extended
to handle indel errors, the computational cost would be
significant.

As written above, computing P[r|G] entails summing
over all of the length ¢ segments of the genome, which
number ~ 3 x 10° x 2 strands x 2 alleles for a diploid
human genome; and this needs to be done for each read.
Clearly this intractable, so in the interest of speed we
invoke two approximations based on (multi)mapping of
the reads onto the reference genome:

1 We assume reads which are not mappable to the
neighborhood of (i.e. overlapping) the location of the
candidate variant(s) will not affect the probability
ratio of hypotheses, and can therefore be ignored.

2 When summing the probability of the remaining
reads, we only consider genome segments
overlapping the location(s) where each read maps.
Notably, the genome segments considered for each
read may differ.

Unfortunately, the initial step of this approximation
scheme suffers from reference bias. That caveat notwith-
standing, by summing over all locations a read maps to;
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and for each of those locations, summing over all overlap-
ping segments; we account for the main uncertainties that
arise in pileup-based variant calling methods — multi-
mapping and ambiguous gap placement.

Mini-haplotype hypotheses

Genome variants can occur together in the genome, often
within the span of a single read. Thus, we should consider
clusters of putative variants which occur within a thresh-
old distance of another putative variant. We conceptually
chain those together and explicitly consider combinatorial
genome hypotheses representing as many possible sub-
sets of those putative variants together as computational
resources allow. In the default parameter settings used for
this study, EAGLE chains putative variants within 10 bp
together and tries up to 1024 combinations of those puta-
tive variants; i.e. for up to ten neighboring variants, all
possible combinations are tried.

For simplicity we do not consider combinatorial
hypotheses of mixed zygosity, in which some putative
variants are heterozygous and others are homozygous.
Nevertheless in some cases we do consider a large num-
ber of hypotheses, which suggests that something akin to
multiple hypotheses testing correction might be appro-
priate. To address this we adjust the prior probability of
combinatorial hypotheses — always giving the reference
sequence a prior of 50% and dividing the remaining 50%
evenly among the alternative hypotheses for any given
cluster. Note this “prior” reflects the strength of our belief
in the variant genome hypothesis before EAGLE examines
the read data but after knowing that this candidate variant
caller was listed as a putative variant by the variant caller
used. Thus it is distinct from an estimation of the overall
frequency of genetic polymorphisms in the population.

The underlying EAGLE probabilistic model computes
the likelihood of individual genome hypotheses, treating
all hypotheses in a uniform way. EAGLE has an option
to output these raw likelihoods for users interested in
individual hypotheses which may include multiple nearby
putative variants. To rank individual putative variants,
EAGLE combines these likelihoods (weighted by their
priors) in the form of a marginal posterior probability
of the data given the variant. Summarizing the above in
mathematical notation yields:

PRIVl  2.geg, PIG] PIR|G]
P[Rnotv] Y ¢eq, PIG] PRIG]

05  ifG = Gref

P[G]= { 05 )
GorGa—T Otherwise

where R is the read data, Gy is the set of hypotheses

containing the putative variant v (in general combined

with other nearby putative variants), and Gy is the set of
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hypotheses not including v but possibly including nearby
putative variants.

Outside source of reads

The human genome is repetitive; paralogs and low com-
plexity regions often approximately match many other
locations in the genome. The possibility that a read map-
pable to a given genome segment actually derives from
a paralog recorded in the reference genome is naturally
covered by our formulation as described above. However,
the sequenced sample genome may have some additional
outside paralogs (e.g. extra copies of Alu or other repet-
itive elements) which are similar enough to copies in
the reference genome to make reads derived from them
mappable even though their true origin does not directly
correspond to any position in the reference genome.
Genome sequencing data is expected to contain many
such reference-external reads, albeit less so for exome
sequencing.

Reference-external reads pose a serious risk of gener-
ating false positive putative variants, because they may
appear in multiple read alignment pileups at genome
positions they are not derived from. Filtering out reads
based on minimum mapping quality score can allevi-
ate this risk [14] but no threshold can perfectly distin-
guish reference-external reads from other reads. Just as
reference-external reads may mislead pileup-based vari-
ant calling, they might also mislead the probabilistic
model of EAGLE if all reads were forced to be explained
as originating from inside the reference framework. With-
out an outside source of reads, the likelihood ratio would
be unduly influenced by reference-external reads which
map somewhat poorly (i.e. with more mismatches than
expected from their quality scores), to a genome segment
containing a putative variant; but even more poorly to the
reference sequence (or vice versa) — therefore mislead-
ingly appearing to support one hypothesis over another,
when in fact they support neither.

Considering the issues discussed above, we defined an
integrated model of inside and outside sources of reads as
follows:

P[r from paralog] + devariant segments P[r|g]

P[r|Gy] _ containing v
Plrlg]

P[r|G,] ~ P[r from paralog] + Y

corresponding
reference segments

P[r from paralog] = P[r from inside paralog]+P[r from outside paralog]

Ly
= > Pig +mh Y T[rlin]
f i=1

< paralogous :
& neighborhoods HD(f,r*)gl

where m, is the number of places read r maps to in the
reference genome; r* is the sequence called by the read
(i.e. the sequence given by the read assuming no errors);
HD(f, r*) denotes the Hamming distance between f and
r*; and & is a parameter of EAGLE. All results reported
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here use a value of # = 1074, a value we derived empiri-
cally based on preliminary simulation studies. The outside
paralog term contains a multiplicative factor of m, to
model our expectation that genome segments with many
paralogs in the inside genome are more likely to have par-
alogs outside of the reference framework as well. Thus, the
outside paralog term serves to down-weight false evidence
based on reference-external reads. In the supplementary
text (Additional file 1) we provide a derivation of the out-
side paralog term as an approximation of the probability of
r being generated under a probabilistic source of outside
paralogs. However, if read length does not vary, a con-
stant outside paralog term may suffice (Additional file 1:
Figure S1).

EAGLE software

We implemented the ideas above as a C program named
EAGLE, available at https://github.com/tony-kuo/eagle.
EAGLE uses standard file formats and can easily be added
to existing variant calling pipelines. Figure 2 gives an
overview of the workflow we used for this paper.

Results

In this section we describe two tests of EAGLE’s perfor-
mance; one using simulated reads generated from an in
silico alternative human genome (based on the NS12911
genome), and one using real reads from the NA12878
benchmark dataset.

NS12911 variants with simulated reads

We conducted a simulation study where we know
the entire ground truth by reconstructing the diploid
sequence of chromosome 22 of an individual (the
NS12911 human genome), using a list of phased variants
against the human reference genome (hg19) provided by

Genome
+ Reference
FASTQ ( \ BAM FASTA
‘ Alignment }—
‘/ Sequencing ‘ /EAGLE
Reads

A

‘ Preprocessing ‘

Scored variants
(log likelihood ratio)

A

7'7 VCF -

‘ Variant Tab-delimited text
Caling |

Fig. 2 A high level overview of the EAGLE workflow. EAGLE requires:
read alignments in BAM format, a set of candidate variants in VCF
format, and the reference genome as a FASTA file. Preprocessing in
this study refers to preprocessing steps described in GATK best
practices
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a Sanger sequencing based assessment [15]. We then sim-
ulated paired-end reads of length 100 bp, with insert size
500430 bp at ~30x coverage, using DNemulator [16].

The variants from NS12911 capture the challenge of
evaluating putative variants in mutational hotspots and in
low complexity and other repetitive regions. Notably, real
indels often occur in repetitive regions [6] which intro-
duces more uncertainty in calling and makes evaluation
more difficult.

For this benchmark, we mapped reads to the hgl9
reference genome using BWA MEM [17]; and per-
formed duplicate sequence removal, indel realignment,
and base recalibration according to the pre-processing
steps from GATK ‘best practices’ [14] (see Additional
file 1 for details). We used the resulting BAM format
alignment data to call variants with: GATK Haplotype-
Caller (3.3.0) [9, 18], SAMtools mpileup (1.3) [19], Free-
Bayes (1.0.2) [11], and Platypus (0.8.1) [12]. Each callset
was normalized using vt normalize [20] and the
vefallelicprimitives module in vcflib (https://
github.com/ekg/vcflib) to deconstruct complex variants.

From the known NS12911 variants, we determined the
number of true positive (TP) and false positive (FP) calls
(Additional file 1: Table S1). For simplicity of evaluation,
here and in the other benchmarks, we considered a called
variant correct if it matches the gold standard in sequence
and position, regardless of zygosity.

We calculated the marginal posterior probabilities for
variants in each callset and compared them to each caller’s
quality scores for their ability to evaluate candidate vari-
ants (Fig. 3). The results show a dramatic improvement in
precision when using our model to rank both indels and
SNPs. We obtained consistent results when we reduced
the sequencing coverage to ~10x fold (Additional file 1:
Figure S2); EAGLE varied only slightly from ~30x cov-
erage results, the variant callers scores changed more
but the increase in precision gained by using EAGLE
remained.

Since we only simulated reads from chromosome 22,
all variant calls located on other chromosomes must have
been due to spurious read mappings. For GATK indels,
only 14 out of 174 variant calls at other chromosomes had
likelihood ratios that favored the alternative hypothesis,
with a top rank of 5856. Similarly for SNPs, only 159 out of
1584 variant calls had likelihood ratios that favor the alter-
native hypothesis, with a top rank of 21913. In comparison
to variants called in chromosome 22, 8792 out of 9436
indels and 35031 out of 37794 SNPs had likelihood ratios
that favored the alternative hypothesis. These results show
that our formulation for outside paralogs is effective.

Although we observed that some indel false positives
were highly ranked, manual examination of these vari-
ants revealed that these calls were in the correct position
but not completely correct in sequence or length due to
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Fig. 3 Precision vs Recall of NS12911 based ~30x fold coverage
simulated reads is shown for Indels (top) and SNPs (bottom). Solid
lines represent EAGLE's likelihood. Dotted lines represent the caller's
quality score. Recall levels are shown in increments of 50 variant calls
with the maximum level based on the number of variants in the
NS12911 benchmark set. The variant calls were ranked based on our
model’s marginal posterior probability or each caller’s quality score
respectively. Precision is the fraction of high ranking variants which
are correct, plotted over a wide range of thresholds

repetitive sequences. In these cases, the called variant is
often still better supported than the reference genome
hypothesis. It is up for debate whether these variants
should be considered false positives or whether positional
correctness is sufficient. However, inferring the effect of
a mutation (e.g. amino acid substitution, frameshift, etc.)
generally requires the exact mutation sequence; and in this
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study we required calls to be correct in sequence as well
as position.

As can be observed at the high recall levels in Fig. 3,
our model ranked some true SNPs very low. We exam-
ined these cases and observed that almost all of them are
regions of high diversity where some variants are spaced
just far enough apart that we did not combine them in
mini-haplotype hypotheses. Thus it may be beneficial to
explore using a larger distance threshold, albeit at the cost
of longer computation time.

NA12878 benchmark variant calls

We tested our model on real sequencing data from
NA12878 (cell line of an individual from a CEPH
pedigree), using an exome sequencing dataset (Garvan
HGO001) from Genome-In-A-Bottle (GIAB) [21] and a
200x whole genome sequencing dataset from Illumina
Platinum Genomes (IPG). The benchmark from IPG con-
sists of a high confidence callset for the GRCh38 human
reference genome constructed using FreeBayes, Platypus,
and GATK variant callers. The benchmark from GIAB
consists of a high confidence callset for hgl9 which was
constructed using FreeBayes, Samtools, and GATK using
a number of sequencing libraries from different sequenc-
ing technologies, which were then integrated. Because the
benchmarks were constructed from variant calls made by
the same tools we are comparing against, there may be
some bias in the following results.

We performed variant calling, normalization, and cal-
culated variant probabilities as described above for the
GIAB exome sequencing data and the IPG whole genome
sequencing data separately (Additional file 1: Table S2),
The IPG workflow was conducted on the GRCh38 human
reference genome. The EAGLE computation time non-
negligible, but generally requires less time than the
variant calling step used to generate candidate variants
(Additional file 1: Table S3).

We evaluated our model using precision versus recall as
described above and evaluated EAGLE for GIAB (Fig. 4)
and IPG (Fig. 5). The IPG results show that EAGLE
generally has better precision for both SNPs and indels,
especially at low recall.

In general, there is a statistically significant improve-
ment in the ranking of variants when using the
EAGLE likelihood over the caller’s native scoring sys-
tem (for all callers, the p-value is less than the R
language Mann-Whitney-Wilcoxon test reporting limit
of 10716). We also tested the Variant Quality Score
Recalibration (VQSR) method (see Additional file 1),
though due to technical limitations, we were only able
to apply it to the GATK callset for the NA12878
benchmark.

We examined the set of false negatives in the GIAB
tests (variants in the benchmark given low probability by
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our model) and observed that low read depth accounted
for the majority. As we only utilized one exome sequenc-
ing dataset, compared to the many libraries used to
generate the benchmark, the low sensitivity overall and
uncertainty in low read coverage regions is reason-
able for both the callers and our model. This is cor-
roborated by the much higher precision seen in the
IPG tests, where the results and degree of improve-
ment obtained by using our model was more similar to
what we observed with simulated reads. We also com-
pared EAGLE’s likelihood ratio with VQSR on the GATK
callset (Additional file 1: Figure S3) and observed that
EAGLE has better performance for all but IPG SNPs, even
though VQSR requires a large external training dataset to
function.

Examining the set of false positives, especially at low
recall, we saw that almost all putative variants had abnor-
mally high read depth (> 1000 for indels, > 10000 for
SNPs) which affected all callers, as well as EAGLE,
and likely indicates copy number variations. Indeed, the
top 10 false positive GIAB SNPs (in terms of likeli-
hood ratio) had very high read depths and are all copy
number variations listed in the Database of Genomic
Variants [22].

Finally, we note that the issue of alternative repre-
sentations of equivalent complex variants complicated
the analysis. In the standard variant calling format
(VCF) one entry describes a single SNP, insertion,
or deletion event with only one nucleotide used as
the context sequence. Thus complex variants such as
ACACCACCACC to AA must be split into at least two
VCEF entries, and unfortunately different variant callers
sometimes differ in how they do this (Additional file 1:
Table S4).

Discussion

As described above we measured the performance of
EAGLE using both real and simulated sources of bench-
mark variants, each with their strengths and weaknesses.
For real data, the absolute ground truth is not available,
so we followed the typical practice of comparing against
a conservative benchmark of high confidence calls that
are considered to be a subset of all true variants in a
genome. Ranking putative variants with EAGLE consis-
tently improved precision compared to ranking by the
callers’ variant quality scores on both exome (Fig. 4)
and whole genome sequencing (Fig. 5); and in particular
for the GIAB exome dataset indels, the Samtools callset
ranked by EAGLE yielded a marked improvement in pre-
cision over a wide range of recall values (Fig. 4b). We
note that some of the PR curves are unusual in the sense
that precision of the best ranking putative variants (i.e.
the far left-hand side of the PR curve) is relatively low,
going against the usual expectation of an approximately
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Fig. 4 Precision vs Recall for NA12878 using benchmarks from exome sequencing GIAB Indels (a, €) and SNPs (b,d). Plots a) and b) show the full
precision vs recall for each method. Solid lines represent EAGLE's likelihood. Dotted lines represent the caller's quality score. Recall levels are shown
in increments of 50 variant calls with the maximum level based on the number of variants in the GIAB benchmark set. The variant calls were ranked
based on our model's marginal posterior probability or each caller’s quality score respectively. Precision is the fraction of high ranking variants which
are correct, plotted over a range of thresholds. Plots €) and d) show the best precision at a given recall among all methods with EAGLE versus

monotonic transition from high to low precision as the
acceptance cut-off is lowered to increase recall. This may
be partially explained by a limitation of this type of real
data benchmark, namely the fact that variants not in the
benchmark set are always treated as false positives, even
though some of them may be true. Notably, since by def-
inition such “false false positives” are the true variants
overlooked by the variant callers used to construct the
benchmark data, treating them as false positives may sys-
tematically bias performance evaluation in favor of those
variant callers.

Simulated read data generated from a known genome
has the advantage that we know the absolute ground truth.
On the other hand, simulated reads are not a perfect
model of real sequencing data as the simulation software
cannot fully account for the various sources of noise and
systematic error which exist in practice. In any case, on

simulated data, as in real data, ranking by EAGLE also
consistently improved variant calling precision (Fig. 3).
What enables EAGLE to improve the precision of vari-
ant calling vis-a-vis the variant quality score of the callers?
Conceptually, EAGLE is nearly unique in its use of explicit
alternative hypotheses and its computation of genotype
likelihoods in a manner which is independent of the
details of the pileup, in contrast with the base pileup
model employed by nearly all variant callers. Of course
many concepts employed by EAGLE are not completely
novel. Numerous previous methods apply probabilistic
reasoning to variant calling [9-13, 23] and some meth-
ods also perform haplotype inference to improve accuracy
[11, 12]. Principled methods to handle reads likely to
derive from paralogs have been described as well [13, 23].
Practically speaking, to the best of our knowledge there
is no tool available which evaluates candidate variants
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Fig. 5 Precision vs Recall for NA12878 using benchmarks from whole genome sequencing lllumina Platinum Genome Indels (a, €) and SNPs (b,d).
Plots a) and b) show the precision vs recall for each method. Solid lines represent EAGLE's likelihood. Dotted lines represent the caller’s quality score.
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variant calls were ranked based on our model’s marginal posterior probability or each caller's quality score respectively. Precision is the fraction of
high ranking variants which are correct, plotted over a wide range of thresholds. Plots €) and d) show the best precision at a given recall among all
methods with EAGLE versus among all methods without EAGLE, for indels and SNPs respectively

in the manner that EAGLE does. The closest analog is
VQSR, a machine learning method acting on variant call-
ing summary statistics and is not broadly applicable to
non-model organisms. In summary, although defined by a
relatively simple, explicit model, EAGLE combines many
advantages of previous methods to effectively address the
uncertainties depicted in Fig. 1.

On the other hand, many variant calling methods offer
features that we have not explored for EAGLE. For exam-
ple, variant calling from multiple samples [9-11], and
supervised learning based post-processing to improve
accuracy by incorporating additional information such as
strand bias and unusual read depth [14, 24]. In principle
this approach can improve performance when a suffi-
cient number of known variants is available for training.
Although EAGLE performed competitively in the lim-
ited comparison we were able to make between it and
VQSR, one future direction would be to try combin-
ing EAGLE with machine learning techniques to further

improve performance. Another direction we are consider-
ing is extending the probabilistic model to better handle
copy number variations, as our results indicate room for
improvement in that area. Finally we note that cancer
related somatic variant calling is typically performed in a
single sample framework and calling of short indels has
been shown to be difficult [25]. We speculate that it may
be possible to beneficially integrate the posterior proba-
bilities computed by EAGLE into procedures for somatic
variant calling.

Conclusion

We developed EAGLE, a method for evaluating candidate
genome variants based on an explicit, probabilistic gen-
erative model of read data given a hypothetical genome
sequence. Using both simulation and real benchmark
data, we compared EAGLE with several well-known vari-
ant callers and demonstrate that our model is able to rank
putative variants better than current methods, leading to
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marked improvement in precision at comparable recall
levels.

Additional file

Additional file 1: We provide one additional file holding supplementary
text. The document includes: a detailed mathematical derivation of the
EAGLE probabilistic model outlined here, empirical evaluation of the effect
of varying the outside paralog term (Fig. S1), a measurement of
performance with reduced sequence coverage (Fig. S2), additional
performance comparison between EAGLE and VQSR (Fig. $3), summary
statistics of variant calls made by various callers on NS12911 (Table S1) and
on GIAB and IPG benchmarks (Table S2), running time of EAGLE on some
representative tasks (Table $3), an example variant which GATK, Platypus
and FreeBayes represent with distinct VCF output (Table S4); and a
description of a simple mutation planting based evaluation of EAGLE and
the results (Fig. S4, Table S5). (PDF 1945 kb)
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