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Abstract

Background: Automatic disease named entity recognition (DNER) is of utmost importance for development of more
sophisticated BioNLP tools. However, most conventional CRF based DNER systems rely on well-designed features whose
selection is labor intensive and time-consuming. Though most deep learning methods can solve NER problems with
little feature engineering, they employ additional CRF layer to capture the correlation information between labels in

neighborhoods which makes them much complicated.

Methods: In this paper, we propose a novel multiple label convolutional neural network (MCNN) based disease NER
approach. In this approach, instead of the CRF layer, a multiple label strategy (MLS) first introduced by us, is employed.
First, the character-level embedding, word-level embedding and lexicon feature embedding are concatenated. Then
several convolutional layers are stacked over the concatenated embedding. Finally, MLS strategy is applied to the output
layer to capture the correlation information between neighboring labels.

Results: As shown by the experimental results, MCNN can achieve the state-of-the-art performance on both

NCBI and CDR corpora.

Conclusions: The proposed MCNN based disease NER method achieves the state-of-the-art performance with
little feature engineering. And the experimental results show the MLS strategy's effectiveness of capturing the
correlation information between labels in the neighborhood.

Keywords: Disease, Named entity recognition, Convolutional neural network, Deep learning multiple label strategy

Background

The recognition of disease named entities automatically
from biomedical literature is of utmost importance as it is
the foundation of other more sophisticated NLP tools
such as information extraction, question answering, text
summarization etc. [1]. As reported in [2], complicate and
inconsistent terminologies, new disease names, multiple
names for the same disease, complex syntactic structure
referring to multiple related names or mentions are some
of the major reasons for making automatic disease named
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entity recognition (DNER) task challenging. Therefore,
most state-of-the-art conventional CRF based DNER
systems [3-6] have to design much complicate features
(lexical features, syntactic features, semantic features,
morphological features, dictionary features, embedding
features, terminology features, vowel features, etc.)
manually which not only requires linguistic and domain
insight but also is time consuming.

Recently, many deep learning based methods were
proposed to solve the NER problems of general field and
they achieved the state-of-the-art performance with little
feature engineering. Collobert et al. [7] proposed a simple
but effective feed-forward neutral network method to
solve the sequence tagging problem. They introduced a
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sentence level log-likelihood to consider the correlation
information between labels in neighborhoods. Later,
Santos and Guimaraes [8] extended Collobert et al’s
method with character-level representation to extract the
morphological information (like the prefix or suffix of a
word) from characters of words. The character-level
representation was obtained using convolutional neural
network (CNN) [9]. Chiu and Nichols [10] proposed a
hybrid of bidirectional LSTM (BLSTM) [11] and CNN to
model both word-level and character-level representa-
tions. Similar to [8], CNN was employed to encode
character-level information of a word into its character-
level representation. Then the word-level and character-
level representations were combined and fed into a
BLSTM. They also utilized the sentence level log-
likelihood, reported in [7], to decode the labels of a
sentence jointly. Ma and Hovy proposed LSTM-CNN-
CRF approach to solve sequence labeling problems end-
to-end [12]. This approach is almost the same as the
approach represented in [10] except the labels’ decoding
process in which a sequential CRF is utilized to jointly
decode labels for the whole sentence. Different with the
deep learning methods above, Lample et al. [13] proposed
a BLSTM-CRF model in which the character-level repre-
sentation was extracted using BLSTM instead of CNN.

Compared with the deep learning based methods in the
general field, few deep learning methods were applied to
the disease NER problems. Sahu and Anand [14] proposed
the various recurrent neural networks (RNNs) [15] based
disease name recognition model which achieved the state-
of-the-art performance on NCBI disease corpus [4]. Their
approach is similar to that of [11] and the main difference
between them is that additional features (i.e., character-
type, capitalization and lexicon features) are used in latter
but not in the former.

Currently, the following two problems exist in the disease
NER research. First, most of the state-of-the-art conven-
tional CRF based methods rely heavily on task-specific
feature engineering that limits their generalization ability.
Second, most deep learning methods treat NER as a
sentence level sequence tagging problem. Thus, frequently,
a decoding layer (like CRF) is adopted to decode the labels
of a sentence jointly which makes it more complicate than
it should be. Since, the transition probability matrix
(parameters of the decoding layer) should be learned
additionally and another decoding process (searching for
the optimal label sequence using Viterbi algorithm [16])
should be conducted.

To solve the above problems, a novel deep learning
based disease NER architecture, i.e.,, multiple label
convolutional neural network (MCNN), is introduced
in our method. We assume that the context informa-
tion of the target word is enough for predicting the
target word’s label correctly. Therefore, MCNN treats
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NER as a word level classification problem in which
only the information of words to a fixed-size window
around the target word is fed into MCNN. Then, the
target word is classified into one of the three labels
including “B”, “I” and “O”, as the BIO tagging scheme
is employed in our experiments. Similar to the other
state-of-the-art deep learning methods, MCNN needs
little feature engineering. What’s more, compared with

other deep learning methods, it is easier to
implement.
First, MCNN needs little feature engineering.

Besides the word-level and character-level embed-
dings, only the lexicon feature embedding is employed
as input. Among them, the character-level embedding
and the lexicon feature embedding are initialized ran-
domly and the word-level embedding is initialized
with the pre-trained embedding using Word2vec [17].
Then these embeddings will be tuned automatically
through the training process. Therefore, MCNN needs
no hand-crafted features except the lexicon feature.
Second, instead of the CRF layer, multiple label strat-
egy (MLS) is first introduced to capture the correl-
ation information between labels in neighborhoods by
predicting the previous and the next words’ labels in
auxiliary. MLS is implemented by enlarging the out-
put layer’s size which is much easier than the imple-
mentation of a CRF layer. Finally, with little feature
engineering and simple implementation, MCNN
achieves the state-of-the-art performance on both
NCBI corpus [4] and CDR corpus [18].

Methods
MCNN contains four processing steps as shown in
Fig. 1.

1. Preprocessing step which constructs an easily
understood corpus for MCNN.

2. Embeddings learning step that initializes various
embeddings using Word2vec and MEDIC [19].

3. Training MCNN model step that learns a classifier
based on the above initialized embeddings.

4. Post-processing step that regulates the predicted
results to improve the final performance.

The details are described in the following sections.

Preprocessing

Appropriate preprocessing can boost the final
performance significantly. Therefore, in our method,
two preprocessing operations (i.e. tokenization and
transforming the numbers to uniform form) are
conducted.



Zhao et al. BMC Medical Genomics 2017, 10(Suppl 5):73

Page 77 of 83

Training set Test set

MedLines

Preprocessing

A

Embeddings Learning

e Word-level
e Char-level
e Lexicon

{ Word2vec )

MEDIC ’

Training
MCNN {M“'GD"

Post-processing

Fig. 1 The processing flow of our method

Annotated

test set

Tokenization

Since tokenization process is one of the standard
preprocessing steps, it is performed in our method as
well. The aim of tokenization is to split the sentence
into atomic units and we simply tokenize each
sentence using space and characters in “/-->
<2130 @#$% N &* - +7.

Transforming the numbers to uniform form

Numbers (integers and decimals) occur frequently in
the biomedical literature. For example, in the sen-
tence “164 patients (mean age +/- standard deviation
[SD] 81.6 +/- 6.8 years) were admitted”, there are one
integer (164) and two decimals (“16.6” and “49.1").
Transforming them to a uniform form (“num”) won’t
change the sentence’s semantic expression. Therefore,
the sentence becomes “num patients (mean age +/-
standard deviation [SD] num +/- num vyears) were
admitted”. Then we train a word embedding on the
processed sentence with Word2vec and it will gener-
ate an embedding for “num” instead of for “164”,
“81.6” and “6.8”. Since Word2vec trains a sentence
based on sliding window mechanism, the “num” will
be trained three times while “164”, “81.6” and “6.8”
are trained once only. As more training times will
generate more accurate embedding, replacing all the

integers and decimals with “num” will provide more
powerful embedding for “num”. In addition, it will
significantly reduce the size of the vocabulary and
make the embedding more compact.

Embeddings learning

In our method, each word is represented as a real vector
which is generated by concatenating corresponding
word-level embedding, character-level representation
and lexicon feature embedding. Later, these three
embeddings will be described in details in the following
sections. In addition, a dropout layer [20] is adopted
after the concatenation process.

Word-level embedding

A word embedding is a parameterized function that
maps words to high-dimensional vectors. Word
embedding was firstly introduced in [21] to fight the
curse of dimensionality in the process of learning
language model using neural network. Most deep
learning based NER methods take the word embed-
dings as the fundamental input [7, 8, 10, 12-14].
Since the larger corpus will generate the better embedding
[22], besides the original CDR and NCBI corpora, a total
of 2,008,726 Medline abstracts were downloaded from
PubMed website (http://www.ncbi.nlm.nih.gov/pubmed/)
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to learn the word embedding with a query string “disease”.
After the preprocessing step, these processed Medline
abstracts and the disease corpora are fed into Word2vec
to learn the initial values of the word-level embedding.

Charactor-level representation

It has been proved [8, 10, 12, 14] that CNN is an
effective method to extract morphological information
(like the prefix or suffix of a word) from characters
of a word. It also could be useful with rare words
whose embedding values are poorly trained. There-
fore, we also employ a CNN to extract the character-
level representation of a given word, which is shown
in Fig. 2. First, each character of a word is projected
to a real vector using the character lookup table.
Then, a convolutional layer and a max-pooling layer
are adopted orderly. In addition, a dropout layer [20]
is applied after the projecting process. The character
lookup table is initialized randomly to output a vector
of 20 dimensions and the character set includes all
unique characters in the CDR and NCBI corpora.

Lexicon feature embedding

Most state-of-the-art disease NER systems [5, 6, 14] bene-
fit from integrating domain resources as a form of external
knowledge. In our method, MEDIC [19] is employed to
extract the lexicon feature embedding. MEDIC [19] is
both a deep and broad vocabulary, composed of 9700
unique diseases described by more than 67,000 terms
(including synonyms), which is created by merging and
combining the best two disease sources (OMIM [23] and
MeSH’s “Disease” branch [24]).

In MCNN, the lexicon feature embedding is
learned by following two steps: First, dictionary
matching process is conducted using MEDIC on
both training and test sets. Then, each word will be
tagged as one of the labels (“B”, “I”, and “O”). Sec-
ond, the tagged labels are projected to the corre-
sponding real vectors using the lexicon lookup table
that is initialized randomly.
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Training MCNN

Different from other state-of-the-art deep learning
methods which regard NER as a sentence level sequence
tagging problem, MCNN treats NER as a simple word-
level classification problem. We assume that the label of a
word depends mainly on the neighboring words instead of
the whole sentence. Therefore, multiple convolutional
layers, instead of the RNNs (e.g. LSTM) that are more
suitable for sequence labeling problems, are employed to
capture the context information. However, predicting each
word'’s label independently will miss the dependency infor-
mation between labels (e.g. the label “O” should never be
followed by a label “I”). This problem used to be solved by
adding additional decoding layer (e.g. CRF), which makes
it more complex and inefficient. Since the transition prob-
ability matrix (parameters of the decoding layer) should
be learned additionally and another decoding process
using Viterbi algorithm is needed. Therefore, instead of
the CRF layer, MLS, first introduced in our method, is
adopted in MCNN. MLS captures the correlations be-
tween labels in neighborhoods easily by predicting the
neighboring words’ labels in auxiliary (i.e. predicting the
current, the previous and the next words’ labels simultan-
eously). MLS is implemented by enlarging the output
layer’s size which is much easier than the implementation
of the CRF that needs learning additional parameters
and decoding the whole sentence labels jointly with
Viterbi algorithm.

The details of the MCNN architecture are shown
in Fig. 3. Given a word (Xi), the fixed-size window
of words around it are input into the MCNN model.
First, each word is represented as a real vector by
concatenating the corresponding word-level embed-
ding, character-level representation and lexicon fea-
ture embedding. Then, several convolutional layers
are stacked over the real vector to extract the higher
level features. After the last convolutional layer, a
flatten layer is followed with which all the vectors
(outputs of the last convolutional layer) are
concatenated to generate a larger one. Finally, the

-
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Fig. 2 Generation of the character-level representation using convolutional neural network
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full-connected output layer is stacked over the

flatten layer and obtains the output vectors: out™ain
out™™ =
[out], out3,...,out?| where out™ and out? stand for
the confidence scores of the corresponding labels for
the main and auxiliary outputs, respectively.

As can be seen from Fig. 3, there is no pooling layer
(e.g., max-pooling, average-pooling) in the MCNN
architecture, while the convolutional layer is usually
employed together with a pooling layer [9, 25-28]. The
pooling layer mainly aims to achieve shift-invariance by
reducing the resolution of the feature maps and also can
lower the computational burden by reducing the number
of connections between convolutional layers [29]. How-
ever, the shift-invariance property is vital for the image-
relevant tasks but not for the text-relevant problems. And
our method’s computation complexity is much lower than
that of other deep learning methods, as only a limited con-
text is considered as input instead of the whole sentence.

= [out], outd, ..., out™] and

What's more, pooling layers likely lead to the loss of infor-
mation [30]. Therefore, no pooling layer is adopted in
MCNN.

We define fas all the parameters of our model.
Then the probability value of each label is obtained
through the following softmax operation over all
possible labels.

eoutt'."
Pnain(ilx,0) = S (1)
j=1
eoutf
Paucli%,6) = @)

> 1€

Then the log likelihood of the parameters is calculated

as follows when all training instances ( 7T =

{x(i)a ay(i)ayaux(i) }) are given:
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Post-processing

After the disease mentions are recognized with MCNN,
two simple post-processing steps are carried out to boost
the final performance. First, when the tagged label sequence
is ill-legal (which is defined in Table 1), the corresponding
labels will be set to “O”. Second, if the full name of an
abbreviation is recognized as a disease mention, all the
abbreviation will be also labeled as a disease. The full names
and the corresponding abbreviations were extracted from
the test set using an in-house tool. Since both post-
processing strategies are not task-specific, they can be
applied to other NER problems easily.

Experimental results and discussion

Experimental datasets and settings

MCNN model was implemented using Keras (https://
keras.io/) that is a minimalist, highly modular neural
networks library written in Python. We trained and
tested our model on a GPU of Nvidia Tesla k20. Using
the settings discussed in this section, the model training
cost about 1.5 h for the NCBI corpus and 2 h for the
CDR corpus.

We validated the effectiveness of MCNN by applying
it to two corpora containing both mention-level and
concept-level annotations: the NCBI Disease corpus [4]
and the BioCreative V Chemical Disease Relation task
(CDR) corpus [18]. Overall statistics for each dataset are
provided in Table 2. The NCBI Disease corpus consists
of 793 Medline abstracts separated into training (593),
development (100) and test (100) subsets. The NCBI
Disease corpus is annotated with disease mentions, using
concept identifiers from either MeSH or OMIM.

The BioCreative V Chemical Disease Relation (CDR)
corpus consists of 1500 Medline abstracts, separated
into training (500), development (500) and test (500)
sets. We reconstructed a development set by separating
100 abstracts from the original development set and put

Table 1 The legal and ill-legal sequences

Sequence Legal ll-legal
B O, ... *

BBO, ... *

B 1O, ... *

B 1B 10O,... *

O 10, ... *

O, 1,BO, ... *
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Table 2 The statistics of CDR and NCBI corpora

Corpus Training Development Test

CDR Abstract 500 500 500
Mention 4182 4244 4424

NCBI Abstract 593 100 100
Mention 5145 787 960

the rest 400 abstracts into the training set. The CDR
corpus is annotated with concept identifiers from MeSH.

In addition, several hyper-parameters need to be deter-
mined in MCNN. The hyper-parameters and their values
used in our experiments are shown in Table 3. Due to
time constrains it is infeasible to do a grid-search across
the full hyper-parameter space. Therefore, the hyper-
parameters were tuned on the development sets by
random search. In addition, the learning rates were de-
termined using the default value of the SGD strategy
provided by Keras (https://keras.io/optimizers), as it can
achieve pretty excellent performance. For the NER tasks
on NCBI corpus and CDR corpus, the hyper-parameter
values are almost the same, except the number of
stacked convolutional layers.

“BIO” tagging scheme was adopted in our experi-
ments, where “B” stands for beginning, “I” for intermedi-
ate and “O” for outsider or other. Similar to other
systems, MCNN was evaluated using the balanced F-
score = (2PR)/(P + R), where P denotes the precision and
R denotes the recall. The NER measure is mention level
which requires the predicted span to exactly match the
annotated span.

Performance comparison with other methods
The performance comparison between our MCNN
method and other state-of-the-art methods is shown in
Table 4. As can be seen from Table 4, MCNN achieves
the state-of-the-art performance on both NCBI and
CDR corpora.

On the NCBI corpus, we compared the performance
of MCNN with that of BANNER [4] and Bi-LSTM + WE

Table 3 The hyper-parameters and corresponding values

Hyper-parameter Value

Input context window size 13 (NCBI = CDR)
Word-level embedding dimension 200 (NCBI=CDR)
Character-level embedding dimension 20 (NCBI= CDR)
Lexicon feature embedding dimension 5 (NCBI=CDR)
Character-level CNN's window size 3 (NCBI=CDR)
Character-level CNN's filters number 20 (NCBI'= CDR)
Word-level CNN's window size 3 (NCBI=CDR)
Word-level CNN's filters number 100 (NCBI=CDR)
Word-level Convolutional layers size 3 (NCBI); 4 (CDR)
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Table 4 Performance comparisons on NCBI and CDR corpora

Corpus Method P R F

NCBI BANNER [4] 83.80 80.00 81.80
Bi-LSTM + WE [14] 84.87 7411 79.13
MCNN 85.08 85.26 85.17
MCNN* 83.74 83.03 83.39

CDR HITSZ_CDR [5] 8868 85.23 86.93
Lee et al’s [6] 87.34 83.75 85.51
CRD-DNER [31] 79.49 73.58 7642
MCNN 88.20 87.46 87.83

Note. MCNN* is the version of removing the lexicon feature embedding and
the post-processing step

[14]. BANNER is a CRF based bio-entity recognition
model, which utilizes the general linguistic, ortho-
graphic, syntactic dependency features, etc. It achieves
the state-of-the-art result on NCBI corpus. Compared
with  BANNER, our method obtains higher F-score
(85.17 vs. 81.80) with much less feature engineering.
Besides the word-level and the character-level embed-
dings, in our method, only the lexical feature embedding
is extracted using MEDIC. It indicates that the MCNN
can learn useful features automatically while the conven-
tional CRF based methods rely heavily on task-specific
feature engineering. Similar to our method, Bi-LSTM +
WE, which was reported in ACL 2016, also utilizes a
deep learning method to solve the disease NER problem.
Bi-directional LSTM (BLSTM) is employed in Bi-LSTM
+ WE while our method employs the CNNs and a CRF
layer is stacked on top of the BLSTM in Bi-LSTM + WE
to decode labels of a sentence jointly while our method
utilizes MLS to capture the correlation information.
Besides the current word, using MLS, the previous and
the next words’ labels are predicted simultaneously. In
addition, MCNN utilizes lexicon feature embedding and
post-processing strategy to improve the final perform-
ance. To make it more comparable, the lexicon feature
embedding and the post-processing step are removed
from our method (the method is called MCNN*) before
comparing with Bi-LSTM + WE. Then it is found that
MCNN?#, the removed version, still performs better than
Bi-LSTM + WE (F-scores of 83.39 vs. 79.13). The reason
may be that Bi-LSTM + WE treats NER as a sentence
level sequence tagging problem while NER is not a
complex sentence level problem but a simple word level
classification problem. As known to all, using a compli-
cated model to learn an easy problem will over-fit easily.
Thus, MCNN may handle the NCBI disease NER prob-
lem better than Bi-LSTM + WE as it treats NER as a
simple word level problem which can avoid the over-
fitting problem.

On the CDR corpus, the performance of HITSZ_CDR
[5], Lee et al’s [6] and CRD-DNER [31] were compared
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with that of MCNN. CDR corpus [18] was created for
automatic chemical disease relation (CDR) extraction
challenge which includes two subtasks: disease named
entity recognition (DNER) and chemical-induced disease
(CID) relation extraction. We compared our method with
HITSZ_CDR and Lee et al’s, as their results rank first and
second, respectively, in the DNER subtask. HITSZ_CDR
[5] employs two sequence labeling methods (CRF and
structure support vector machine) to tag an input sequence
separately. Then, a linear SVM, as the meta-classifier, is
used to check whether a mention recognized by any one of
the two previous methods is correct or not. HITSZ_CDR
extracts rich hand-crafted features: n-gram words, n-gram
POSs, sentence length, words’ affixes, words’ shapes, words’
orthographical information, dictionary feature, word
embedding feature, etc. Lee et al. also proposed a CRF
based method that needs multiple well-designed features.
Besides the normal features like linguistic, orthographic,
etc., terminology and vowel features were extracted. As can
be seen, mass of feature engineering is employed in both
HITSZ_CDR and Lee et al.s approach to achieve the higher
performance. On the contrast, the MCNN method needs
little feature engineering where all the three embeddings
are tuned automatically during the training process. Finally,
the MCNN approach outperforms HITSZ CDR and Lee et
al’s (F-scores of 87.83 vs. 86.93 and 85.51), which proves
again that MCNN can learn useful features automatically.

We also compared the MCNN with CRD-DNER [31] as
it employs a deep learning method (RNN) as well. As
shown in Table 4, CRD-DNER performs poor compared
with MCNN. The reason may be that it only employs the
simple RNN but not the LSTM which has been proved to
be more effective than simple RNN [14]. And it does not
take into consideration the correlations between neighbor-
ing labels. What’s more, it doesn’t integrate character-level
representation that is widely used to model a word’s
morphological information.

The effect analysis of each feature/strategy

Besides the fundamental word embedding based CNN
model, following four features/strategies are adopted in
our method to boost our final performance. 1) Character-
level: character-level representation is employed to extract
morphological information (like the prefix or suffix infor-
mation) of a word. 2) Lexicon: MEDIC resource is utilized
to extract lexicon feature embedding. 3) MLS: besides the
target label, the previous and the next labels are predicted
in auxiliary through the training process to capture the
correlation information between neighboring labels. 4)
Post-processing: the illegal label sequences (defined in
Table 1) and the missed disease mentions (represented as
abbreviations) are regulated in the post-processing step.
To evaluate the effectiveness of these features/strategies,
the corresponding experiments were conducted with
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Table 5 The effect analysis of each feature/strategy

Corpus Feature/strategy p R F-score A

NCBI None 85.08 85.26 85.17 -
Character-level 84.50 8441 84.46 0.71
Lexicon 83.53 8335 83.44 1.73
MLS 83.97 84.41 84.19 0.98
Post-processing 84.84 84.84 84.84 033

CDR None 88.20 8746 87.83 -
Character-level 87.25 87.35 87.30 0.53
Lexicon 8548 84.90 85.19 264
MLS 87.18 86.17 86.67 1.16
Post-processing 86.67 86.69 86.68 1.15

Notes. Adenotes the corresponding F-score decrease when a strategy or a
feature is removed

MCNN: we remove a feature or a strategy each time and
then calculate the F-score and the corresponding decrease
compared with the one before it is removed.

As can be seen from Table 5, the lexicon feature
embedding contributes most to our method on both
NCBI and CDR corpora, as removing the lexicon
feature embedding decreases the F-scores on two
corpora by 1.73 and 2.64, respectively. Since MEDIC
is a complete disease vocabulary, it may help to recall
many disease mentions that are not covered by the
training set. In addition, the MLS strategy also plays
a key role in our method (decreasing the F-scores by
0.98 and 1.16 on NCBI and CDR corpora, respect-
ively). MLS strategy must has avoided generating
many ill-legal label sequences. However, some ill-legal
label sequences are still remained, and they will be
removed in the post-processing step. In addition, the
missed disease mentions’ abbreviations will be re-
trieved in post-processing step as well. Finally, remov-
ing the whole post-processing step causes the
decrease of F-scores by 0.33 and 1.15 on NCBI and
CDR corpora, respectively. Compared with the fea-
tures/strategies above, char-level representation con-
tributes least to MCNN, as the F-scores are decreased
by 0.71 and 0.53 on NCBI and CDR corpora, respect-
ively, after removing it. The disease mentions’ simple
word-formation may restrict the character-level represen-
tation’s ability which is created to extract word’s morpho-
logical information. Intuitively, the character-level
representation will be brought into full-play in chemical
or protein NER problem whose word-formation is much
complex. For example, the chemicals are often represented
as the forms like N-[4-(5-nitro-2-furyl)-2-thiazolyl]-form-
amide, alphabeta-methylene adenosine-5'-triphosphate,
pralidoxime-2-chloride, etc. and the proteins like IFN-
alpha, senescence-associated beta-galactosidase, p53, ET-3,
etc. As can be seen, chemical and protein mentions often
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show a complex structure by mixing of letters, digits and
symbols while it happens rarely for disease mentions.

Conclusions

In this paper, we present a novel convolutional neural
network based disease NER architecture (MCNN). The
concatenation of the word-level, the character-level and the
lexicon feature embeddings is fed to the CNN model. Then
a CNN-based classifier is learned to recognize the disease
mentions in the texts. Finally, MCNN achieves the state-of-
the-art performance on both NCBI and CDR corpora.

The main contributions of our work can be summa-
rized as follows: 1. Little feature engineering is needed in
MCNN as the word-level embedding, the character-level
embedding and the lexicon feature embedding can be
tuned automatically during the training process. 2.
Multiple label strategy is introduced to capture the
correlation information between labels in neighborhoods
and it has been proved to be effective and efficient.

MCNN exhibits promising results for disease NER in
the biomedical texts. Nevertheless, the performance still
has much room for improvement. In the future work,
we will further improve the MCNN model to achieve
better performance.
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