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Abstract

Background: Advances in DNA sequencing technologies have prompted a wide range of genomic applications to
improve healthcare and facilitate biomedical research. However, privacy and security concerns have emerged as a
challenge for utilizing cloud computing to handle sensitive genomic data.

Methods: We present one of the first implementations of Software Guard Extension (SGX) based securely outsourced
genetic testing framework, which leverages multiple cryptographic protocols and minimal perfect hash scheme to
enable efficient and secure data storage and computation outsourcing.

Results: We compared the performance of the proposed PRESAGE framework with the state-of-the-art
homomorphic encryption scheme, as well as the plaintext implementation. The experimental results demonstrated
significant performance over the homomorphic encryption methods and a small computational overhead in
comparison to plaintext implementation.

Conclusions: The proposed PRESAGE provides an alternative solution for secure and efficient genomic data
outsourcing in an untrusted cloud by using a hybrid framework that combines secure hardware and multiple crypto
protocols.
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Background
The advance of sequencing technology has significantly
lower the costs of generating genomic data for improv-
ing healthcare, discovering new treatment methods and
facilitating biomedical research [1]. For example, Preci-
sion Medicine Initiative (PMI) [2] aims to usher in a new
era of medicine by collecting genomic data from a million
people, by which more targeted treatment could be devel-
oped. It is becoming a big challenge to efficiently store
and process the huge amount of genomic data in biomed-
ical research [3]. Recently, cloud computing emerges [4]
as an ideal platform for providing elastic computation
and storage resources for genomic data analysis. However,
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privacy concerns [5, 6] have posed challenges to out-
source genomic data in an untrusted cloud environment.
Individual genomic information tends to reveal sensitive
personal information including, but not limited to, per-
sonal identity [7, 8], disease condition [9–11], appearance
[12]. As genomic data are shared by blood relatives, the
dissemination of personal genomic information may have
negative impact on other family members [13, 14]. For
example, Lin et al. [15] demonstrated that a number of
75 statistically independent SNPs may be enough to re-
identify an individual. Sweeney et al. [8] demonstrated
that 84-97% patients profiles in the Personal Genome
Project (PGP) could be identified by linking their demo-
graphic information to publicly available records. Gymrek
et al. [7] illustrated that surname inferences for U.S.
males could be performed by matching Y-chromosome
haplotypes in recreational genetic genealogy databases.
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Claes et al. [12] modeled the 3D human facial appearance
based on gender, genomic ancestry, genotype and specific
genes that determine facial features. Furthermore, sen-
sitive patient information would also be recovered from
aggregated statistics [9, 16, 17]. By utilizing the refer-
ence population from the International HapMap Project,
Homer’s attack model [9] is able to re-identify individuals
in a case group from the aggregated allele frequencies in
genome-wide association studies (GWAS). A recent study
by Shringarpure et al. [16] demonstrated that even binary
query results (i.e., existence of variants) from the genomic
data sharing Beacon project [18] can still reveal sensitive
personal information.
To protect the privacy and confidentiality of genomic

data, many cryptographic methods have been developed.
Homomorphic encryption (HME) is one of the most
popular technologies for secure computation over the
encrypted data. Since the first fully HME scheme was pro-
posed by Gentry [19] to support both addition and multi-
plication operations over encrypted data, the performance
of HME technology has been improved significantly
[20–22]. Many HME-based applications have been stud-
ied for safeguarding linear classification [23], predictive
analysis on encrypted medical data [24], genetic asso-
ciation studies [25, 26], Edit distance computation [27],
GWAS study using exact logistic regression [28]. Secure
multiparty computation (SMC) is another widely adopted
technique for securing genomic data analysis, such as
secure multiparty GWAS [29–33], secure distributed
regression model learning [34] and so on. However, the
high computational complexity of the existing HME and
SMC solutions plague their practical adoption over the
large-scale genomic data.
Recently, Software Guard Extension (SGX) [35] has

been released to be an alternative solution for securing
computation over sensitive data by using a hybrid system
combining both secure hardware and software. It allows
an application to create a protected container, namely
enclave, to guarantee integrity and confidentiality of sen-
sitive data and computation under the protection against
potential privileged softwares. A detailed discussion of
SGX can be found in the overview of SGX section. Many
studies have demonstrated the feasibility of applying SGX
as efficient solutions for secure and privacy-preserving
computation in cloud computing [36, 37], ancestry anal-
ysis [38], international collaboration on rare disease anal-
ysis [39]. Thus, in this paper, we proposed an SGX based
framework to enable both secure and efficient outsourc-
ing of genetic testing in an untrusted cloud environment.
Genetic testing has become affordable and ubiquitous

with the development of whole genome sequencing tech-
nology. It would potentially benefit healthcare by provid-
ing clinical decision support and prognostic estimates for
patients and their related subpopulation, e.g., supporting

diagnosis of disease, determining personalized medicine
and treatment and evaluating the risk of disease. Genetic
testing matches the targeted biomarkers to identify the
variations in chromosome, gene and proteins. Although
data owners can efficiently perform genetic testing by out-
sourcing the storage and computation to cloud services,
the liability of genomic data security and privacy is still
a major concern. Many efforts have been attempted to
provide better protection for genetic test. For example,
in [40], a privacy-preserving toolkit named GenoDroid is
proposed for genomic tests like paternity testing, ances-
try testing and personalized medicine testing. Another
secure primitive [41] was developed based on additively
homomorphic encryption to outsource genetic testing
without revealing the sizes and positions of biomarkers to
be matched. Danezis et al. [42, 43] proposed two crypto-
graphic protocols to evaluate private disease susceptibility
with a weighted combination of the targeted geneticmark-
ers. Another privacy-preserving genetic testing frame-
work [44] is proposed based on homomorphic encryption
to make HIV-related prediction. De Cristofaro et al. [45]
developed yet another a privacy-preserving protocol to
allow a cloud server to securely perform genetic relat-
edness test on encrypted genomic data. As mentioned
above, most of existing secure genetic testing frameworks
are facing the scalability issues due to the high compu-
tation overhead. In this paper, we explore an alternative
SGX based solution to enable both secure and efficient
outsourcing genomic data storage and computation on an
untrusted cloud for the purpose of genetic testing. The
main contributions of the proposed studies are as follows:

• We present one of the first implementations of SGX
based secure genetic testing framework to facilitate
efficiently outsourced storage and computation. The
secure outsource storage is achieved through data
sealing scheme within SGX framework, which is
immune to replay attack.

• We have taken into account the oblivious access
protection by using 4KB page-wise data access model.

• To improve the performance, we adopt a perfect
hashing scheme to achieve O(1) complexity data
access within each 4KB page.

Overview of software guard extension
Software Guard Extensions (SGX) [46] is a security exten-
sion of Intel processor architecture. SGX tends to provide
security and confidentiality guarantee for secure comput-
ing on hosts. By using SGX, privileged modules like oper-
ating system (OS), virtual machine (VM) scheduler etc.
are isolated from private codes and secret data through
hardware protection. More specifically, instead of quar-
antining malicious parts within the running system as
traditional security sandbox, Intel SGX uses the “inverse
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sandbox” design to seal private codes, sensitive data and
other selected secrets into a CPU secure computation
unit called “Enclave”. The access of secrets within enclaves
are strongly restricted by the hardware supported access
control. This fact implies that Intel SGX can effectively
protect secrets for applications, even though the other
privileged parts are attacked and compromised by mali-
cious components.
An overview of a typical SGX framework is illustrated

in Fig. 1. A typical SGX based application consists of
data owner, untrusted cloud service provider (CSP), and
the secure enclave. First, the data owner establishes a
secure channel with the enclave hosted by an untrusted
CSP through the remote attestation process [46]. Then,
the data owner can securely upload data to the CSP
(data provisioning). In SGX, all decrypted secrets can
only be accessed by the authorized codes, which also lie
inside the enclave. A hardware supported access control
proxy guarantees the code and data cannot be accessed
or modified by softwares outside the secure enclave. It
is quickly becoming a hot area of study. Recent inves-
tigations have demonstrated the potential of SGX to
improve the security and privacy in real-world appli-
cations including shielded execution of server applica-
tions [47] and trustworthy data analytics [36] in the
cloud, secure execution environment for network applica-
tions [48], secure function evaluation [49], and oblivious
multi-party machine learning [50]. In these applications,
SGX provided hardware-level security guarantees with a
reduced computational complexity comparing with the
traditional cryptographic methods. In this paper, we pro-
pose a SGX-based method to enable securely outsourced
genetic testing.

Fig. 1 Overview of a typical SGX framework. It consists of data owner,
untrusted cloud service provider, and secure enclave

Methods
In this section, we present the proposed PRESAGE frame-
work for securely outsourcing genetic tests using SGX.
Figure 2 provides an overview of the proposed PRESAGE
framework. Our framework is optimized for the dual
objectives of security and efficiency. In our proposed
framework, we support genomic queries, which count
genomic records by matching a set of biomarkers in the
VCF files. More specifically, the attributes to be matched
include chromosome ID (CHROM), position (POS), refer-
ence (REF) and alternative alleles (ALT). Figure 3 shows a
sample query, where a query consists of 4 tuples, and each
tuple indicates certain matching conditions. In this exam-
ple, the query will locate all records in a VCF file that meet
the conditions of CHROM = 20, POS = 17330 or 14370,
REF = ‘T’or ‘G’ and ALT = ‘A’. The results of this query will
the count of matched records (i.e. 2 in this example). This
query is equivalent to a Structured Query Language (SQL)
query as follow:
SELECT count(∗) FROM sample.vcf WHERE CHROM

= 2 AND (POS = 17330 or 14370) AND (REF= ‘T’ or ‘G’)
AND ALT = ‘A’.

In the remaining part of this section, our approach will
be introduced in details.
Step 1. Preprocessing. We assume that a data owner

holds a private genomic database in Variant Call Format
(VCF). The goal of data preprocessing is to minimize the
potential overheads for the outsourced matching process.
Genomic records in the VCF file is sparse, which only con-
tains a few million variants in comparison to the whole
genome with 3 billion base pairs. In order to represent
the spare VCF records more efficiently, we use minimal
perfect hash (MPH) to map n input records into n consec-
utive integers, by which each input record can be accessed
at a constant time. For example, data owner has a dataset
R = {r1, r2, . . . , rn}, where rj denotes a single record, and
n is the total number of records. For each record ri in
the VCF file, data owner encodes the fields of #CHROM
with 5 bits, POS (i.e., reference position) with 30 bits,
REF (i.e., reference alleles) with 2 bits, ALT (i.e., alter-
native alleles) with 2 bits and SNP flag with 1 bit into
a 40-bit vector based on the characteristics of human
genome [51]. To improve access efficiency, this 40-bit vec-
tor will be stored in the first 40-bit of a 64-bit/8-byte
integer with the rest bits of the integer as 0s. By this data
alignment (widely used in modern software design), each
record can be retrieved within one instruction in the x86
architecture. Let us denote by ai the 64-bit integer. Then
A = {a0, a1, a2, . . . , an−1} is a list of encoded integers.
The data owner can learn a MPH function denoted by
hj = f (aj), where the unique hash hi is an integer rang-
ing from 0 to n − 1. More specifically, the FCH algorithm
proposed by Fox, Chen and Heath [52] was used in our
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Fig. 2Workflows of the proposed PRESAGE framework. It presents in three consecutive steps

PRESAGE framework. The FCH is very compact and effi-
cient for small dataset (for PRESAGE, the whole dataset is
divided into equal sized 500 records to protect paging pat-
tern attack. See the last subsection of this part for more
details). The generated hash from FCH algorithm can be
stored in approximately 4.1 bits per key. Figure 4 shows
the workflow and encoding and MPH generation.
Step 2. Encryption and data outsourcing. A remote

attestation procedure is required between the data owner
and the enclave so that they can provide the evidences
to prove their integrities and authenticities through the
Elliptic Curve Digital Signature Algorithm (ECDSA) [53]
and a quoting enclave. Once the attestation step is passed,
data owner negotiates a session key with the enclave
via the Elliptic curve Diffie–Hellman (ECDH) [54] pro-
tocol. Given the MPH function learned in step 1, each
record in the VCF file will be encoded and reordered
based on the hashing index followed by a data encryption

step using Advance Encryption Standard-Galois/Counter
Mode (AES-GCM) [55] for the sake of efficiency, secrecy
and integrity. Then, the encrypted data will be uploaded
to the CSP. A time varying initial vector will be used for
encrypting each data block in AES to avoid the replay
attack [56]. In addition, message authentication code
(MAC) will be sent along with each encrypted message to
ensure that the message are from the stated sender (i.e.,
authenticity) and has not been changed during transit (i.e.,
integrity). After receiving the encrypted data and hashed
table, enclave seals them outside for long term storage and
answering further queries from data user. Since the data
are stored outside the enclave, the untrusted CSP may
maliciously reorder data or provide the old versions to
enclave for unsealing, which can be considered as a replay
attack. Tomitigate this kind of attack, we will embed addi-
tionalMAC, timestamp and data owner information along
with the sealed data.

Fig. 3 A sample query for retrieving count of records from VCF files
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a

b

Fig. 4Workflow of the proposed encoding and MPH procedures. a Encoding, b Hash generation

Step 3. Secure Genetic QueryMatching. Firstly, the data
user will attest the remote enclave to check the integrity
of enclave, and build a secure channel with the enclave.
Then, the data querying phase for identifying the exis-
tence of certain genetic variants, encrypted queries that
encode the chromosome #, position, reference and alter-
native alleles, will be sent to the CSP. Once the query is
received, the enclave will unseal the data and hash func-
tions stored in Enclave for query execution: a potential
position (hash value) is obtained by applying hash func-
tion to query value. Finally, the enclave will encrypt the
number of matching queries as result and send it back
to the authorized data user. The above procedures ensure
the data security and integrity for outsourced cloud based
genetic testing.

Results
Experimental setup
The sizes of VCF datasets used in our experiments vary
from 10,000 to 200,000 records. The data owner and CSP
can communicate over a Secure Sockets Layer (SSL) chan-
nel, which is built based on OPENSSL library [57]. All of
the experiments except the iDASH competition results are
conducted on a Windows 10 SGX-enabled machine with
i7 6820HK CPU and 48 GBmemory. Both data owner and
CSPwere simulated on the aforementioned SGXmachine.

The iDASH competition results were evaluated on the
Linux server with an Xeon Processor E3-1275 v5 and 64
GB memory [58]. All evaluation results of our PRESAGE
framework are averaged over five trials.

Experimental resultsp
Table 1 shows the runtime results of the PRESAGE frame-
work, which include the key steps such as remote attesta-
tion, SNPs coding, hash generation, enclave creation, data
sealing and different number of queries. All of above steps
except for querying step can be considered as one-time
jobs. The attestation, SNPs coding and hash generation
steps are profiled on the data owner side, while the rest
steps are profiled on the CSP side. As we can see, for
different input data sizes, the time consumption of attes-
tation and enclave creation is stable. The time consump-
tion of SNPs coding, hash generation, and data sealing
increases linearly with the increase of input data size.
Among all these key steps, MPH generation is the most
time consuming step. In contrast, the querying step is
highly efficient, which took the least time among all steps
based on our testing datasets. We can see that there is a
trade-off between adopting MPH for hash generation and
query execution. It is worth emphasizing that the MPH
generation will be only a one-time process, but the query
execution would be highly frequent.

Table 1 The breakdown run time (in seconds) of the proposed PRESAGE framework

Query #

Size Attestation Coding Generating hash Creating enclave Sealing 1 3

10 K 0.121 0.016 1.130 0.169 0.094 0.003 0.025

50 K 0.126 0.080 6.371 0.173 0.517 0.012 0.013

100 K 0.124 0.164 13.473 0.179 0.980 0.023 0.025

500 K 0.120 0.309 28.677 0.171 2.045 0.043 0.048



The Author(s) BMCMedical Genomics 2017, 10(Suppl 2):48 Page 82 of 100

Table 2 The data size and enclave memory consumption (in MB) for different datasets

Query #

Size Plaintext Encoded data Sealed data Single query 3 queries

10 K 0.55 0.09 0.12 3.006 3.016

50 K 2.59 0.45 0.59 3.010 3.010

100 K 5.26 0.90 1.15 3.010 3.010

500 K 10.5 1.75 2.31 3.010 3.010

Table 2 depicts data size and the memory consump-
tions in MB for different VCF datasets. We can see that
the amount of encoded data after hashing is about 1

6
size of these original VCF files. The sealed data imposed
about 1

3 overhead in storage due to the inclusion of the
additional security information such as MAC to pro-
tect replay attack. The enclave memory usage is sta-
ble in PRESAGE framework for different setups, as we
divided the large inputs into 4 KB page-wise block to
process, which allows oblivious memory access in an
efficient manner.
Figure 5 is the comparison between the SGX and

plaintext. Following the standards of the the iDASH
2016 genome privacy competition [58], we implemented
the PRESAGE over 10K and 100K SNPs sizes. To
benchmark the performance of the plaintext, we also
implemented the same query algorithm outside the
enclave. As we can see, the PRESAGE is about 120 times
faster than the HME-based method [58] as reported in
the 2016 genome privacy protection competition [59].
However, PRESAGE still showed some computational
overhead in comparison to plain text based implementa-
tion due to the extra data unsealing steps and memory
encryption in SGX.

Fig. 5 Comparison of querying performance among PRESAGE,
HME-based method and plaintext implementation

Discussion
Security model
The proposed PRESAGE framework is designed under the
assumption of a malicious CSP, which may deviate arbi-
trarily from their predefined protocols. The CSP has full
control over the hardware and software environments,
which include the control of OS, VM, and all code invoked
outside the SGX enclave. The malicious activities aim to
break the confidentiality and integrity of the proposed
framework. Some existing threats such as crashing the
CPU hardware and interrupting the enclave execution are
not considered in this paper [35, 60]. We try to minimize
the controlled-side channel attacks due to the observa-
tion of page faulty access pattern through page-wise data
blocking. In addition, we assume that the data owner fully
trusts the design and correct implementation of secure
enclave on the CPU hardware and SGX instructions. In
PRESAGE, although the secure enclave is hosted by an
untrusted CSP, the remote attestation step ensures to
identify a trustworthy enclave and build a secure channel
between the data owner/users and the enclave. The adop-
tion of a 128 bits AES-GCMencryption protocol ensures a
high-level security and integrity guarantee of all encrypted
and sealed data. For storage and computation efficiency
concerns, each record is encoded into a 40-bit vector and
stored as an 8 byte integer, by which the amount of data
operated in communication and sealing phases can be
reduced dramatically. Theminimal perfect hash is utilized
to enable O(1) complexity data query in each page block.
To avoid the paging access attack, we equally divided input
data into 500 records to fit a 4 KB page-wise block in SGX.
To enable secure data storage outsourcing, the seal data
have been added with MAC in order to defend the replay
attack. The sealed data only introduced about 31% storage
overhead on average in our experiments.

Limitation
There are several limitations of the proposed PRESAGE
framework. First, the available Enclave Page Cache (EPC)
for a single SGX machine is limited to 128 MB. Although,
the enclave memory could be extended to 4 GB with soft-
ware paging technique under Linux OS, it will impose
computational overhead and still cannot avoid expen-
sive data sealing and unsealing processes when genomic



The Author(s) BMCMedical Genomics 2017, 10(Suppl 2):48 Page 83 of 100

datasets exceed 4 GB. Some previous studies [35, 61] have
identified the potential vulnerabilities of straightforward
SGX implementations due to the memory access patterns,
cache timing, page faults, hyper-threading, etc. Although,
the proposed framework can take into account the pro-
tection of memory access patterns by using page-wise
oblivious data access algorithm, we have not tackled other
potential vulnerabilities. Finally, the proposed framework
is based on the FCH scheme to build the perfect hashing
on a single thread, which imposed a significant overhead
at the data owner side. More efficient hashing mechanism
or multi-threading based parallel hash building schemes
will be considered in our future work. Moreover, the cur-
rent implementation of PRESAGE store each 40-bit vector
using a 8-byte integer, which will result in 24-bit unused
space for each record. Additional data compression step
and better hashing scheme could be adopted to improve
the encoding efficiency. The above limitations warrant the
further investigation of SGX based secure genomic data
analysis framework.

Conclusion
This paper proposed a secure outsourcing framework,
which can defend malicious attack. To improve the effi-
ciency, an MPH scheme has been incorporated. To avoid
paging based attack, the input data are divided into small
pieces in order to be filled into one 4 KB page. The out-
sourced data are sealed by the enclave and stored in an
untrusted cloud. Our experiment results demonstrated
the efficiency of the proposed PRESAGE framework. For
a VCF file with 200K records, the PRESAGE securely pro-
cesses a query within 0.05 s, which includes file loading,
unsealing and query matching. Compared with state-of-
the-art HME solution, PRESAGE framework shows at
least 120X performance gain.
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