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Abstract

Background: Oxidative stress has been related to type 2 diabetes (T2D) and cardiovascular disease (CVD), the
leading global cause of death. Contributions of environmental factors such as oxidative stress on complex traits and
disease may be partly mediated through changes in epigenetic marks (e.g. DNA methylation). Studies relating
differential methylation with intermediate phenotypes and disease endpoints may be useful in identifying
additional candidate genes and mechanisms involved in disease.

Methods: To investigate the role of epigenetic variation in oxidative stress marker levels and subsequent
development of CVD and T2D, we performed analyses of genome-wide DNA methylation in blood, ten markers of
oxidative stress (total glutathione [TGSH], reduced glutathione [GSH], oxidised glutathione [GSSG], GSSG to GSH
ratio, homocysteine [HCY], oxidised low-density lipoprotein (oxLDL), antibodies against oxLDL [OLAB], conjugated
dienes [CD], baseline conjugated dienes [BCD]-LDL and total antioxidant capacity [TAOC]) and incident disease in
up to 966 age-matched individuals.

Results: In total, we found 66 cytosine-guanine (CpG) sites associated with one or more oxidative stress
markers (false discovery rate [FDR] <0.05). These sites were enriched in regulatory regions of the genome.
Genes annotated to CpG sites showed enrichment in annotation clusters relating to phospho-metabolism and
proteins with pleckstrin domains. We investigated the contribution of oxidative stress-associated CpGs to
development of cardiometabolic disease. Methylation variation at CpGs in the 3'-UTR of HIST1H4D
(cg08170869; histone cluster 1, H4d) and in the body of DVL1 (cg03465880; dishevelled-1) were associated
with incident T2D events during 10 years of follow-up (all permutation p-values <0.01), indicating a role of
epigenetic regulation in oxidative stress processes leading to development or progression of diabetes.
Methylation QTL (meQTL) analysis showed significant associations with genetic sequence variants in cis at 28
(42%) of oxidative stress phenotype-associated sites (FDR < 0.05). Integrating cis-meQTLs with genotype-
phenotype associations indicated that genetic effects on oxidative stress phenotype at one locus (cg07547695;
BCL2L11) may be mediated through DNA methylation.

Conclusions: In conclusion, we report novel associations of DNA methylation with oxidative stress, some of
which also show evidence of a relation with T2D incidence.
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Background
CVD is the most common cause of death globally. Risk
factors of CVD include high blood pressure, smoking,
hyperglycaemia, T2D and obesity [1]. Previous studies
have suggested that increased oxidative stress as a conse-
quence of obesity and T2D may contribute to the in-
creased risk of CVD [2, 3]. Furthermore, CVD and risk
factors of CVD have been associated with changes in
levels of oxidative stress markers [4, 5].
Some of the oxidative markers have also been associated

with sub-phenotypes of CVD and T2D. For example,
oxLDL, elevated in CVD [6, 7], plays a role in atheroscler-
osis through its role in maturation of macrophages con-
tributing to inflammation and foam formation [8, 9].
Furthermore, oxLDL is associated with insulin resistance
[10] indicating a role of oxidative stress in progression to
insulin resistance and T2D. The amino acid HCY has
been associated with inflammation in blood vessels, pro-
gression to atherosclerosis and development of CVD,
particularly ischemic stroke [11, 12]; however, the causal
role of homocysteine has been challenged [13–15].
While genome-wide association studies (GWAS) have

been successful in identifying numerous common genetic
sequence variants associated with metabolic disease and
CVD [16–20], so far these only explain a small proportion
of the variability of these phenotypes. In addition, environ-
mental factors also influence disease susceptibility. Such
contributions may be partly mediated through changes in
epigenetic marks (e.g. DNA methylation), affecting tran-
scription through mechanisms independent of DNA se-
quence [21]. Thus, studies relating differential methylation
with intermediate phenotypes and disease endpoints may
be useful in identifying additional candidate genes and
mechanisms involved in these diseases [22]. Previous stud-
ies support a role for DNA methylation in common com-
plex diseases [23–26] and in mediation of environmental
exposures of importance for CVD and T2D, such as
cigarette smoking [27, 28] and oxidative stress [29, 30].
In this study, we aimed to examine epigenetic variation

in blood cells in relation to oxidative stress and de-
velopment of T2D and CVD. Blood-derived cells play
a role in several processes relating to cardiometabolic
disease [31, 32]. Furthermore, previous studies have
shown methylation variation in blood to reflect differential
methylation in various tissues [33–37]. We performed ana-
lyses of genome-wide DNA methylation, ten markers of
oxidative stress (TGSH, GSH, GSSG, GSSG/GSH ratio,
HCY, oxLDL, OLAB, CD, BCD-LDL and TAOC) and inci-
dent disease in 966 individuals from the general population.

Methods
Study sample
The Prospective Investigation of the Vasculature in
Uppsala Seniors (PIVUS) is a prospective community-

based cohort of participants from Uppsala, Sweden.
All men and women at age 70 living in Uppsala in 2001
were invited to participate. The 1016 participants (50%
women) have been extensively phenotyped, as described
previously [38], and on the Internet (www.medsci.uu.se/
pivus/). The participants have been re-examined at ages
75 and 80, and their morbidity and mortality has been
followed via national registers and journal review. Clinical
diagnoses by journal review of CVD and/or T2D at
80 years (10 years after baseline) were used to define dis-
ease events. For analysis of CVD outcomes, we included
myocardial infarction (ICD-10 code: I21), stroke (ICD-10
code:I63) and heart failure (ICD-10 code: I50). During the
10 year follow up period (between ages 70 and 80), there
were 142 deaths; 34 of these due to CVD related disease.

Markers of oxidative stress
The methods of collection and validation of oxidative
markers have previously been described [5]. Briefly,
TGSH, GSH, CD and TAOC were determined using a
method described and validated in Annuk et al. [39]. HCY
levels were measured using an Enzyme Immunoassay
method (Axis-Shield Diagnostics Ltd, UK). BCD-LDL
were measured using a method described in detail in [40].
Enzyme-linked immuno-absorbent assays were used to
determine levels of serum oxLDL (Mercodia AB, Sweden)
and OLAB (BioMedica, Austria).

Genome-wide DNA methylation profiling
Blood for the DNA methylation assay was collected at
the baseline examination. Genomic DNA was extracted
from blood samples and bisulphite conversion of 500 ng
genomic DNA was performed using the EZ-96 DNA
Methylation Gold Kit (Zymo Research Product,
Germany). The equivalent of approximately 200 ng of
bisulphite converted DNA was removed, evaporated to a
volume of < 4 μl, and used for methylation profiling
using the Illumina Infinium assay and the Illumina
HumanMethylation450_v.1.2 bead chip according to the
protocol from the supplier (Illumina Inc., San Diego,
CA, USA). The results were analysed with GenomeStu-
dio 2011.1 (Illumina Inc., San Diego, CA, USA). After
exclusion of replicates, a total of 1002 study participants
had methylation data available for quality control proce-
dures. Three samples were excluded based on poor
bisulphite conversion efficiency, twelve samples due to
low pass rate of CpG sites (<98.5% with a detection P-
value > 0.01) and a further six samples based on low
SNP genotype match (>1 SNP mismatches) between
genotypes from the methylation array and Omni/Meta-
bochip genotyping chips leaving 981 samples. Following
additional removal of participants with high leukocyte
cell counts (>10x109 cells/L; n = 14) and one individual
with no data on oxidative stress markers, 966 individuals
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remained for downstream analysis. The signal intensities
for the methylated and unmethylated states were then
quantile normalised for each probe type separately, and
beta values were calculated. Mapping and annotation of
the 485,764 probes on the HumanMethylation450K
BeadChip has previously been described [41]. Briefly,
probes mapping to multiple locations (with at least two
mismatches) in the human reference genome (GRCh37)
were excluded leaving 459,433 uniquely mapping auto-
somal probes. Furthermore, probes were filtered based on
sequence polymorphisms as follows: those with a com-
mon SNP (minor allele frequency [MAF] > 5%) within
10 bp of the methylation site and those overlapping copy
number variants were excluded from analysis. This re-
sulted in a final set of 455,127 probes which were then
assigned to CpG islands and RefSeq transcripts down-
loaded from the UCSC Genome Browser (September,
2012). Probes within 2 kb away from borders of a CpG
island were defined as shores and those within 2 kb of
shores as falling within shelves. The rest were assigned to
others/open sea. Probes were mapped in relation to tran-
scripts as follows: TSS1500 (1500 bp to 200 bp upstream
of transcriptional start site [TSS]), TSS200 (200 bp
upstream of TSS), the 5'-UTR, the first exon, the gene
body or the 3'-UTR [42].

Genotyping and imputation
Individuals were genotyped using the Illumina OmniEx-
press and Illumina Metabochip microarrays. Prior to im-
putation, quality control was performed as described
below. Exclusion of samples were performed based on the
following criteria: genotype call rate <95%; heterozygosity
>3 standard deviations (SD); gender discordance; dupli-
cated samples; identity-by-descent match; and ethnic out-
liers. Monomorphic SNPs; or SNPs with Hardy-Weinberg
equilibrium p-value < 1E10-6; genotype call rate < 0.99
(SNPs with MAF <5%) or <0.95 (SNPs with MAF ≥ 5%);
MAF < 1% were excluded from analysis. Data were im-
puted to the 1000G (version: March 2012) multi popula-
tion reference panel using Impute v.2.2.2 [43]. A plot of
the PIVUS data with the data from the multi - population
reference panel are included in Additional file 1: Figure S1.

Statistical analyses
Association of methylation of blood cell-derived DNA with
phenotypes and disease outcomes
Transformed or raw phenotypes were used (details in
Table 1). All models were adjusted for age, sex, batching
(clinical visit date), bisulphite conversion efficiency mean
(calculated from control probes), bisulphite conversion
plate and predicted white cell counts (estimated from the
DNA methylation data using the Houseman algorithm
[44], as implemented in R package minfi for Illumina
HumanMethylation450 [45], with reference data on sorted

blood cell populations from Reinius et al. [46]). To deter-
mine whether BMI confounds the relationship between
the oxidative marker and DNA methylation, we per-
formed secondary models additionally adjusted for BMI
for those oxidative markers that showed association with
BMI in sex adjusted models (nominal p-value < 0.01). For
continuous phenotypes, the associations between normal-
ised DNA methylation beta values and phenotypes were
modelled by a linear model, using R [47] and the lm func-
tion, fitted by maximum-likelihood assuming a normally
distributed error term. For binary phenotypes (case/con-
trol), we fitted a logistic regression in R using the glm
function (binomial family [link function, logit]), to model
the association between standardised DNA methylation
and case/control status. Disease was used as the outcome
variable, and technical covariates (as above), age, sex, pre-
dicted white cell count and standardised methylation as
independent variables as follows: Disease status (1/0) ~
standardised methylation + age + sex + predicted white cell
counts + technical covariates. In secondary models, we
also included BMI and smoking as covariates in the
model. In all cases, a likelihood ratio test was used to as-
sess the significance of the phenotype effect. The p-value
of the phenotype effect in each model was calculated
from the Chi-square distribution with 1 degree of free-
dom using -2log(likelihood ratio) as the test statistic.
FDR were estimated based on Q-values [48]. For CVD
and T2D outcomes, significance was assessed using per-
mutations of case/control status (10,000 permutations). A
permutation p-value of < 0.01 was considered as
significant.

meQTL and SNP-phenotype analyses
Associations between normalised DNA methylation beta
values and genotypes were modelled by a linear model,
using R [47] and the lm function, fitted by maximum-
likelihood assuming a normally distributed error term.
We assumed an additive genetic model. A likelihood
ratio test was used to assess the significance of the SNP
effect. The p-value of the SNP effect in each model was
calculated from the Chi-square distribution with 1 de-
gree of freedom using -2log(likelihood ratio) as the test
statistic. We only performed cis analysis, which was
limited to SNPs located within 100 kb either side of the
probe location. To perform analyses in R, genotype
probabilities (from IMPUTE) were transformed to pos-
terior mean genotypes (MACH format [49]). Further, we
only included SNPs with a MAF <5% and INFO (from
imputation) >0.8 in down-stream analyses. Since we did
not perform a array-wide cis-meQTL scan, and were
therefore concerned of potential bias in the p-value dis-
tribution, we estimated FDR from permutations, rather
than using Q-values. We permuted SNP data, performed
cis-meQTL analysis on the permuted data, and repeated
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this for ten replicates selecting the most associated SNP
per methylation probe in each round of permutation.
FDR of 0.05 was calculated as the nominal p-value
threshold which gave less than 5% significant associa-
tions (i.e. false discoveries) in the permuted data. Associ-
ations between oxidative markers and meQTL genotypes
were modelled by a linear model, using R [47] and the
lm function, fitted by maximum-likelihood assuming a
normally distributed error term. We assumed an additive
genetic model. A likelihood ratio test was used to assess
the significance of the SNP effect. The p-value of the SNP
effect in each model was calculated from the Chi-square
distribution with 1 degree of freedom using -2log(likeli-
hood ratio) as the test statistic. Significance was assessed
using permutations of genotype data (10,000 permuta-
tions). Using a one-sided Fisher exact test we tested for
over representation of significant meQTL SNPs in nomin-
ally significant GWAS associations (p-value < 0.05) using
GWAS data from the CARDIoGRAM consortium for
CHD [20] and the DIAGRAM consortium for T2D [18].

Enrichment in genomic location, regulatory regions,
transcription factor binding and biological processes
Using annotation data described above we tested whether
CpGs associated with oxidative markers were enriched in
genomic locations with respect to genes and CpG islands.
Enrichment was assessed using a two-sided Fisher exact
test. Overlap of associated CpGs with functional regula-
tory elements across cell types were assessed using data
available at RegulomeDB [50]. We determined if the over-
lap was more than expected by chance by comparing this
to random set of CpGs. To assess whether genes anno-
tated to phenotype-associated CpGs are likely to be regu-
lated by a common set of transcription factors (TFs), we
utilised PSCAN [51] with the JASPAR database [52]. To
place our data in the context of biological processes or
pathways, we subjected genes annotated to CpGs

associated with phenotypes or genotypes to pathway ana-
lysis using DAVID [53, 54] and PANTHER [55–57]. We
used only genes on the array as background and consid-
ered terms with a p-value < 0.05 following adjustments for
multiple testing (to the number of pathways or ontology
terms) as significant.

Results
Identification of DNA methylation patterns of oxidative
stress
We characterised genome-wide blood DNA methyla-
tion patterns at 459,235 CpGs mapping uniquely across
the genome in 966 70-year old individuals from the
PIVUS cohort [38]. We performed genome-wide associ-
ation scans to determine DNA methylation patterns
associated with ten markers of oxidative stress: TGSH,
GSH, GSSG, GSSG/GSH ratio, HCY, oxLDL, OLAB,
CD, BCD-LDL and TAOC (Table 1). In total, we ob-
served 66 CpGs for which levels of methylation were
associated with one or more oxidative markers at a-
per-trait FDR of <0.05; 18 of these were also associated
with at least one oxidative marker at a Bonferroni-
corrected alpha threshold <0.05 (taking the number of
CpGs into account; Additional file 2: Figure S2).
Figure 1 shows the associations of CpGs with oxidative
stress markers.

Glutathione
Glutathione is an important antioxidant and the balance
between the reduced and oxidised form is indicative of
the oxidative state of an individual. We investigated the
association between genome-wide methylation patterns
and TGSH, GSH and GSSG and found 18, 25 and one
significant CpGs, respectively (FDR < 0.05; Additional file 3:
Table S1–S3). As should be expected, a large proportion of
CpGs associated with TGSH and GSH was shared (14
CpGs; Fig. 1), including sites annotated to BCL2L11

Table 1 Methylation sites associated with oxidative markers in blood

Phenotype Number Mean (SD) Range No. of CpG sites associated
at FDR <0.05

No. of CpG sites associated
at P-value <1.1E-7

TGSH (μg/ml) 958 905.0 (199.3) 440–1836 18 3

GSH (μg/ml) 957 829.9 (191.1) 398–1730 25 2

GSSG (μg/ml) 959 75.8 (35.7) 23–257 1 1

GSSG/GSH ratio 957 0.1 (0.06) 0.03–0.53 21 3

HCY (μmol/l) 966 10.6 (3.98) 3.4–40.7 9 6

ln OxLDL (U/l) 966 132.8 (47.7) 42–285 1 1

CD (μmol/l) 966 40.7 (11.1) 13.8–90.4 1 1

BCD-LDL (μmol/l) 964 21.7 (7.4) 7.8–71.7 6 4

ln OLAB (U/l) 734 5.9 (0.96) 3.4–7.9 0 0

TAOC (%) 957 37.6 (3.9) 22–55 0 0

SD standard deviation, CpG cytosine-guanine site, FDR false discovery rate, TGSH total glutathione level, GSH reduced glutathione, GSSG oxidised glutathione, HCY
homocysteine, OxLDL oxidised LDL, CD conjugated dienes, BCD baseline CD, OLAB antibodies against oxLDL, TAOC total antioxidant capacity
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(cg07547695; BCL2-like 11 [apoptosis facilitator]), NDUFS7
(cg19054833; NADH dehydrogenase [ubiquinone] Fe-S
protein 7, 20 kDa) and EIF3J (cg08637583; eukaryotic trans-
lation initiation factor 3, subunit J). The ratio of GSSG to
GSH can be used as a marker of oxidative stress. We found
methylation at 21 CpGs to be significantly associated
with GSSG/GSH ratio (FDR < 0.05; Additional file 3:
Table S4). Methylation in the promoter region of
ZNF761 (cg02892660; zinc finger protein 761) and
PSMG3 (cg23970891; proteasome assembly chaperone 3),
showed the strongest associations with GSSG/GSH ratio.

Homocysteine
In our analysis, methylation at nine CpGs were signifi-
cantly associated with levels of the amino acid HCY (FDR
< 0.05; Additional file 3: Table S5), including sites anno-
tated to genes with a role in signal transduction (ENTHD1
[cg00044729], LRIG1[cg25230917], RIPK3 [cg13796295],

RPS6KC1 [cg10578681], ATP2B4 [cg17850539]) and lipid-
related processes (RPS6KC1 [cg10578681]).

Lipid-related oxidative markers
In genome-wide methylation analysis, oxLDL was associ-
ated with methylation in the 5'-UTR of SEMA6A
(cg06650664; sema domain, transmembrane domain
[TM], and cytoplasmic domain, [semaphorin] 6A), a pro-
tein with anti-angiogenic function [58, 59] (FDR < 0.05;
Additional file 3: Table S6). Oxidation of LDL can also be
monitored by markers CD and BCD-LDL which measure
products of lipid peroxidation. In our analysis, CD was
found to associate with higher methylation at a CpG site
located in the 3'-UTR of TAPBP (cg09899712; TAP bind-
ing protein [tapasin]) and the promoter region (TSS1500)
of RGL2 (cg09899712; ral guanine nucleotide dissociation
stimulator-like 2 (FDR < 0.05; Additional file 3: Table S7).
Methylation levels at six CpGs were associated with BCD-
LDL (FDR < 0.05; Additional file 3: Table S8). These were

cg03465880 : DVL1 
cg22613799 : ZNF691

chr1:86082316
cg08008854 : PRKAB2

cg26896255 : DNM3
cg17850539 : ATP2B4

cg10578681 : RPS6KC1
cg08199727 : ROCK2
cg11133114 : FOSL2

cg07547695 : BCL2L11
chr3:12269362

cg25230917 : LRIG1
cg05957736 : PHLDB2

cg05668807 : EPHB1
cg04072156 : CPB1

chr4:1762460
cg04301682 : G3BP2

chr5:2176142
cg06650664 : SEMA6A

chr5:159894868
cg08170869 : HIST1H4D

cg09899712 : TAPBP; RGL2
cg26241416 : HSP90AB1

chr6:101674899
cg21913519 : FAM20C
cg05969038 : FAM20C

cg02859511 : KIAA1908;PSMG3
cg23970891 : KIAA1908;PSMG3

chr7:5464807
cg24400517 : JHDM1D

cg05421564 : FAM150A
cg02049840 : NDUFB9;TATDN1

cg14396800 : WNK2
cg13834017 : PRRX2
cg24371383 : CEP55

cg02945296 : FBXL15;PSD
cg09822824 : CKAP5

cg10970776 : DAK;DDB1
cg26561267 : KLHL35

cg20033071 : KIAA1551
cg15351688 : AMDHD1

chr12:115135859
cg23828467 : GRTP1
cg13796295 : RIPK3

chr14:61655919
cg01260820 : EML1

chr14:104917395
cg08637583 : EIF3J;LOC645212

cg13215555 : UNC45A;HDDC3
cg05185311 : KCNG4

cg07161625 : CBFA2T3
cg19040702 : MTRNR2L1

cg04865506 : NF1
cg02102644 : SYNRG

cg04813119 : SEC14L1
cg03654727 : SETBP1
cg19054833 : NDUFS7

cg16260977 : MRPL54;APBA3
cg23244192 : ZNF846
cg04352310 : ZNF442

chr19:13975628
cg02892660 : TPM3P9;ZNF761

cg11842944 : ZNF341
cg00044729 : ENTHD1

cg10115873 : XPNPEP3;DNAJB7

Category

+beta

−beta

Non significant

Fig. 1 Overview of CpGs associated with oxidative markers (FDR < 0.05). CpGs are ordered by chromosomal position from bottom (chr. 1) to top
(chr. 22). Two of the oxidative markers (OLAB and TAOC) showed no significant associations with CpGs and were not included in the figure
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annotated to CKAP5 (cg09822824; cytoskeleton associated
protein 5), FOSL2 (cg11133114; FOS-like antigen 2),
FAM20C (cg21913519, cg05969038; family with sequence
similarity 20, member C) and FRMD6 (cg18894781;
FERM Domain containing 6). We observed no overlap in
significant CpGs between the three lipid-related oxidative
markers. As CD (p-value = 0.00011) and BCD-LDL (p-
value = 0.0091) were found to be associated with BMI in
sex-adjusted models in our study, secondary models
adjusted for BMI were also performed for these two phe-
notypes (Additional file 3: Tables S7–S8). None of the
phenotype-associated CpGs showed a large change in the
regression coefficient for the oxidative marker after adjust-
ment with BMI, indicating that BMI did not confound the
relationship between DNA methylation and these oxida-
tive markers (Additional file 1: Figure S3).

Functional characterisation of methylation sites
associated with oxidative stress
We explored the functional role of CpGs associated with
oxidative markers through investigation of their genomic
location with respect to genes, CpG islands and func-
tional regulatory elements. Phenotype-associated CpGs
were enriched in CpG island shores compared to all
CpGs on the array (enrichment p-value = 0.04, Fig. 2). A
larger proportion of phenotype-associated CpGs (as
compared to all CpGs) were located in promoters of
genes (45% vs. 36%; enrichment p-value = 0.06, Fig. 3);
thus having the potential to affect transcription from ad-
jacent genes. We assessed the overlap of associated
CpGs with functional regulatory elements across cell
types using RegulomeDB [50]. Twenty-three percentages
of sites showed strong evidence of being located in a
functional regulatory region (RegulomeDB score 1a-2c;

Additional file 3: Tables S1–S8). This was more than
expected by chance (permutation p-value = 0.01).
To assess whether genes annotated to phenotype-

associated CpGs are likely to be regulated by a common
set of TFs, we used PSCAN [51] with the JASPAR data-
base [52]. We found significant enrichment of four TF
binding sites (adjusted p-value <0.05; Additional file 1:
Table S9), including binding sites of E2F1, a gene/pro-
tein with a potential role in atherosclerosis and coronary
heart disease (CHD) [60].
To further place our findings in biological context, we

performed gene set enrichment analysis [55–57] on the
64 genes annotated to CpGs associated with oxidative
markers. Using the Functional Annotation Clustering
Tool in DAVID [53], we found evidence of genes cluster-
ing into annotations (enrichment score > 1) relating to
functional terms phosphorylation and phosphate/phos-
phorous metabolic processes and pleckstrin domains
(Additional file 1: Table S11).

Genetic associations of oxidative stress-associated DNA
methylation
Genetic sequence variants have been shown to contrib-
ute to DNA methylation variation, so called meQTLs
[61]. We examined the presence of such loci for the 66
CpGs associated with oxidative markers, and found 28
(41.8%) of phenotype-CpGs with a significant cis-meQTL
(FDR < 0.05, nominal p-value <2.07E-4, Additional file 1:
Table S12). To assess whether genetic associations with
markers of oxidative stress may be mediated by epigenet-
ics, we examined whether genotype-phenotype, genotype-
CpG and CpG-phenotype associations overlapped (an
overview of the analysis are available in Additional file 4:
Figure S4). Overall, we investigated whether cis-meQTL
SNPs associated with the oxidative markers and found

Fig. 2 CpG island context of CpGs associated with oxidative markers. CpGs were classified into: CpG island, Shore, Shelf and Others/Open sea,
and phenotype-associated CpGs (striped bars) were compared with all CpGs on the array (black bars). P-values in figure represent results of a
one-sided Fisher exact test testing for over- or under-representation of term in either group
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modest suggestive evidence of association (p-value <0.001)
for 171 SNPs (0.56%) with at least one of the oxidative
markers. We found two instances (at cg07547695 in the
5'-UTR of BCL2L11, associated with both TGSH and
GSH) for which associations of genotype-phenotype
(p-value <0.001), cis-meQTL (FDR < 0.05) and CpG-
phenotype (FDR < 0.05) overlapped (Additional file 1:
Table S13; Additional file 4: Figure S4). A proxy of
rs6750142 (rs726430, r2 = 1) associated with methyla-
tion at cg07547695 was nominally associated (p-value
<0.05) with both CHD and T2D in GWAS [18, 20].
We investigated the behaviour of 1599 significant

meQTL SNPs (FDR < 0.05) in GWAS data from the
CARDIoGRAM consortium for CHD [20] and the DIA-
GRAM consortium for T2D [18]. We found no evidence
of overrepresentation of nominally significant associa-
tions (p-value <0.05) for CHD (one-sided Fisher exact p-
value = 0.99) or T2D (one-sided Fisher exact p-value =
0.93) among significant meQTL SNPs. One or more sig-
nificant meQTL SNPs of nine CpG sites were nominally
associated with CHD in GWAS data from the CARDIo
GRAM consortium (p-value < 0.05). These were anno-
tated to AMDHD1 (cg15351688: rs10777751, rs7955450,
rs7486703), BCL2L11 (cg07547695: rs726430), FAM20C
(cg05969038: rs7786461; cg21913519: rs7786461), HSP9
0AB1 (cg26241416: rs6905285, rs7758726, rs666462),
SEMA6A (cg06650664: rs10077506, rs17139825), WNK2
(cg14396800: rs2991377,rs10992689, rs10821105) and
intergenic sites on chr. 5 (cg15609272: rs17057846) and
chr. 12 (cg17173663: rs1354156) (Additional file 5). In
analogous analysis on GWAS data from the DIAGRAM
consortium, we found nominal associations for SNPs as-
sociated with methylation at CpG sites annotated to
BCL2L11 (cg07547695: rs726430), CEP55 (cg24371383:

rs12782691), CPB1 (cg04072156: rs16861015) and an
intergenic site on chr. 4 (cg14532755: rs1665364, rs2236
786, rs3752749, rs732754, rs744658, rs798719, rs798726,
rs798727, rs798741, rs798744, rs798751, rs798754, rs79
8755, rs798756, rs798766, rs811316, rs8389) (p-value <
0.05; Additional file 5).

The relationship between oxidative stress-associated
CpGs and disease incidence
As markers of oxidative stress have been associated with
both CVD and T2D, we sought to assess the role of epi-
genetics in this process. Methylation levels at the 66
CpGs associated with oxidative markers were tested for
association with incident CVD (n = 180) and T2D (n =
71) events during a 10-year follow-up using logistic re-
gression models to examine their potential role in dis-
ease. Epigenetic variation in the 3'-UTR of HIST1H4D
(cg08170869; histone cluster 1, H4d) and in the body of
DVL1 (cg03465880; dishevelled-1) were associated with
incident T2D (permutation p-value <0.01; Table 2). For
every SD decrease in methylation β value at cg08170869,
the risk of T2D was 39% higher (nominal p-value =
0.0034; permutation p-value = 0.0044; odds ratio [OR] per
SD decrement = 1.39 [95% CI, 1.15–1.57]). Similarly, hy-
pomethylation in DVL1 was associated with higher risk of
T2D (nominal p-value = 0.0073; permutation p-value =
0.0080; OR per SD decrement = 1.31 [95% CI, 1.10–1.47]).
Analogous analysis of CVD revealed no significant

association of methylation levels at the phenotype-
associated CpGs with incident CVD events (permutation
p-value <0.01). The strongest association was to methy-
lation levels at cg11842944 in the body of ZNF341
(nominal p-value = 0.013; permutation p-value = 0.016;
OR per SD decrement = 1.23 [95% CI, 1.05–1.42]).

Fig. 3 Genomic distribution of CpGs associated with oxidative markers. CpGs were classified into: promoter (TSS1500, TSS200, 5'-UTR, First exon),
Body, 3'-UTR and intergenic. Phenotype-associated CpGs (striped bars) were compared to all CpGs on the array (black bars). P-values in figure
represent results of a one-sided Fisher exact test testing for over- or under-representation of term in either group
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Analysing myocardial infarction (n = 55), heart failure (n
= 76) and ischaemic stroke (n = 47) separately, methyla-
tion at this CpG showed the strongest association to
heart failure (nominal p-value = 0.0087; permutation p-
value = 0.0126; OR per SD decrement = 1.28 [95% CI,
1.06–1.50]). This gene lies in a region previously associ-
ated with height in GWAS [62] and encodes a gene
product involved in transcriptional regulation.

Discussion
Oxidative stress has previously been associated with de-
velopment of cardiometabolic disease. In this study, the
role of epigenetic changes in blood cells for oxidative
stress and development of CVD and T2D was examined
through analyses of genome-wide DNA methylation data
and ten markers of oxidative stress, CVD and T2D in up
to 966 individuals of the same age.
We identified numerous blood CpGs for which levels

of methylation correlated with markers of oxidative
stress. Enrichment of associations to DNA methylation
in CpG island shores, previously noted to be dynamic
[63, 64] and correlated with gene expression [63], indi-
cates that differential methylation with oxidative stress
may play a role in transcriptional regulation. Overlap
with functional regulatory elements for one-fourth of
associated CpGs support a functional role for these
methylation changes with oxidative stress. Enrichment
of TF binding sites in regions upstream of genes anno-
tated to phenotype-associated CpGs indicates a common
set of regulatory signals. TFs included E2F1 with prior
evidence of a function in processes relating to athero-
sclerosis and CHD [60], connecting genes for which
CpG methylation changed with oxidative stress to CVD.
Methylation variation in the 3'-UTR of HIST1H4D

(cg08170869) and in the body of DVL1 (cg03465880)
associated with GSH were also associated with incident
T2D. Previous evidence indicates changes in levels of
GSH in individuals with T2D [65, 66]. Evidence from
previous studies implicates DVL1 in processes related to
T2D [67]. DVL1 encodes a gene product with an

important role in Wnt signalling, important in adipogen-
eis, and has, for example, been found to be down-
regulated in adipocytes from non-obese insulin resistant
individuals compared to controls [67].
Roughly forty percent of oxidative stress-associated

CpGs were regulated by genetic sequence variation in
cis. We found evidence of genotype-phenotype associa-
tions acting via epigenetic variation at gene BCL2L11
(BCL2-like 11 [apoptosis facilitator]). Genetic variants
close to this gene have previously been associated with
the biological ageing marker dehydroepiandrosterone
sulphate in GWAS [68]. Integration of meQTLs with
GWAS data on CHD and T2D showed no significant
enrichment in nominal associations for meQTL SNPs of
oxidative stress-associated CpGs.
Previous evidence indicates a role for some of the

genes annotated to oxidative stress marker-associated
CpGs in metabolic or cardiovascular disease, indicating
that epigenetic changes with oxidative stress may reflect
important disease processes. Lipid-related oxidative
markers such as oxLDL has previously been shown to
play a role in atherosclerosis [8, 9] and to associate with
insulin resistance [10]. In agreement with this, we found
methylation at genes involved in some of these processes
to associate with lipid-related oxidative markers. RGL2
(for which promoter methylation was higher with higher
CD) has been shown to have a protective role in re-
sponse to cardiac stress in vitro [69]. Furthermore, pre-
vious results implicate RGL2 in atherosclerosis
pathogenesis. RGL2 in complex with SAMD9 have an
inhibitory function on expression of the transcription
factor EGR1, which is highly expressed in atherosclerotic
lesions and has been shown to be involved in induction
of the coagulation protein tissue factor in response to
oxLDL [70–72]. Earlier studies suggest a role of the
transcription factor FOSL2 (for which intragenic methy-
lation was higher with BCD-LDL) in processes relating to
cardiac fibrosis of ischaemic tissue through its oxygen-
sensitive induction of TGFβ in cardiac fibroblasts [73].
FOSL2 also regulates leptin expression in adipocytes [74].

Table 2 Association of oxidative marker-associated CpGs with incident T2Da events (permutation p-value < 0.01)

Primary model Secondary
modeld

Disease
outcome

CpG Gene Description Gene
Property

OR
(95% CIs)b

Nominal
P-value

Permutation
P-valuec

P-value Oxidative marker
association (Direction)e

T2D cg08170869 HIST1H4D Histone cluster 1, H4d 3'-UTR 1.39 (1.15–1.57) 3.39E-03 4.40E-03 9.19E-03 GSH (+)

T2D cg03465880 DVL1 Dishevelled segment
polarity protein 1

Body 1.31 (1.10–1.47) 7.27E-03 8.00E-03 6.48E-03 GSH (−)

T2D type 2 diabetes, CpG cytosine-guanine site, OR odds ratio, CI confidence intervals, GSH reduced glutathione, SD standard deviation
aEvents up to 10 years after baseline; number of T2D events = 71
bCorresponds to the OR increase in risk of disease per SD decrement in DNA methylation
cP-value from permutation test (n = 10,000 permutations)
dSecondary model also included BMI and smoking
eDirection of association between oxidative marker(s) and methylation at CpG site. A + symbol corresponds to that increased levels of DNA methylation associate
with increased levels of the oxidative marker
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The association of BCD-LDL to promoter methylation of
this gene in blood was not driven by obesity as the signal
still remained following adjustment for BMI. Additionally,
genetic studies of QRS duration [75], which has been as-
sociated with increased risk of heart failure [76, 77], in-
dicate a role of LRIG1. In our study, methylation at this
gene associated with HCY, an amino acid previously as-
sociated with inflammation in blood vessels, progres-
sion to atherosclerosis and development of CVD,
particularly ischemic stroke [11, 12]. However, the
causal role of homocysteine in CVD has been
challenged [13–15].
The main strengths of the present study include the

large sample size that underwent measurements of
genome-wide DNA methylation, ten markers of reflect-
ing different aspects of oxidative stress and the 10 years
of follow-up allowing analyses of incident disease end-
points. The study also has some limitations. First, we ac-
knowledge that the most important limitation is the lack
of replication of oxidative stress-associated DNA methy-
lation. To our knowledge, there are no other study sam-
ples with the needed data available making replication
impossible, but we have done our best to avoid false
positive findings via strict correction for multiple testing
and integration with data on gene function, regulation
and on related phenotypes from external data sources.
Second, gene expression data for the same individuals
were not available to assess the effect of epigenetic vari-
ation with oxidative markers on transcription in blood.
Third, while blood is easily accessible and thus attractive
for biomarker discovery, clinical diagnostics and transla-
tion, blood derived cells may not be the most relevant
tissue for drawing biological conclusions about oxidative
stress, CVD and T2D. However, previous studies have
shown methylation variation in blood to be a good proxy
of differential methylation in various tissues [33–37].

Conclusions
We found novel epigenetic changes in blood to be associ-
ated with markers of oxidative stress, two of these with
evidence of a relation to T2D. Further studies are needed
to replicate the findings on DNA methylation with oxida-
tive stress, as well as determining the effect of epigenetic
variation related to oxidative stress on downstream mo-
lecular biological phenotypes.
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