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Abstract

Background: The observation that the genetic variants identified in genome-wide association studies (GWAS)
frequently lie in non-coding regions of the genome that contain cis-regulatory elements suggests that altered
gene expression underlies the development of many complex traits. In order to efficiently make a comprehensive
assessment of the impact of non-coding genetic variation in immune related diseases we emulated the whole-exome
sequencing paradigm and developed a custom capture panel for the known DNase I hypersensitive site (DHS) in
immune cells – “Immunoseq”.

Results: We performed Immunoseq in 30 healthy individuals where we had existing transcriptome data from T cells.
We identified a large number of novel non-coding variants in these samples. Relying on allele specific expression
measurements, we also showed that our selected capture regions are enriched for functional variants that have an
impact on differential allelic gene expression. The results from a replication set with 180 samples confirmed our
observations.

Conclusions: We show that Immunoseq is a powerful approach to detect novel rare variants in regulatory regions.
We also demonstrate that these novel variants have a potential functional role in immune cells.

Keywords: Rare variants, Immune disease, Gene expression, Next-generation sequencing, Capture

Background
Genome-wide association studies (GWAS) have identified
thousands of associated single nucleotide polymorphisms
(SNPs) in hundreds of complex diseases [1] and have
thereby provided unprecedented insights into the genetic
architecture underlying these conditions [2]. However, be-
cause GWAS are inherently dependent upon there being
meaningful linkage disequilibrium (LD) between relevant
variation and the few hundred thousand common variants
that are actually genotyped this method has limited ability

to accurately assess the role of rare variants [3] and effect-
ively only screens common variation [4]. This limitation
has been suggested to contribute to the notable gap be-
tween observed heritability and that explained by the cur-
rently identified common variants - the so-called missing
heritability [5]. Direct assessment of all variation through
the next-generation sequencing of the whole genome
would provide a comprehensive assessment that would
necessarily avoid any dependency on LD but unfortunately
remains prohibitively expensive. On the other hand the
targeted capture of genomic regions with high prior
probability of containing relevant variation allows next-
generation sequencing efforts to be focused and there-
fore substantially more affordable. This logic underlies
whole exome sequencing which allows comprehensive
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assessment of coding variation and has enabled the
identification of rare coding variants exerting large effects
in a number of complex diseases [6–8]. It is notable that
the majority of the associated variants identified through
immune disease GWAS are located in non-coding regions
of the genome that are enriched for regulatory elements
that are active in immune cell types [9–11], suggesting
that a resequencing effort focused in these regulatory re-
gions would provide a highly efficient means to identify
both common and rare variation of relevance in such
diseases.
Using deoxyribonuclease I (DNase I) based sequencing

(DNase-seq) international collaborative efforts such as
the ENCODE [12] and NIH Roadmap Epigenomics [13]
projects have established comprehensive maps of DNase
I hypersensitive sites (DHSs) in multiple cell types. Sites
which are markedly enriched for cis-regulatory elements
active in those cell types such as enhancers and pro-
moters [14, 15], show very high concordance with chro-
matin immunoprecipitation sequencing of histone marks
for active enhancers or promoters [16, 17] and are
enriched for SNPs (eSNPs) that influence the expression
of local genes that show variable expression (expression
quantitative trait loci, eQTLs) [16, 18, 19]. It has been
noted that the enrichment of eSNPs is most pronounced
in those functional elements that are located closest to
their respective eQTL [17] and that there might be an
inverse relationship between the effect size of cis-eQTLs
and the minor allele frequency (MAF) of the relevant
eSNP; suggesting that rare variants might have a higher
impact on gene expression than common variants [20–23].
Based on the overwhelming evidence from GWAS that

common variants associated with immune disease likely
influence disease risk by perturbing the regulation of gene
expression together with emerging evidence indicating the
existence of rare “high-impact” non-coding variation, we
designed a custom capture panel, relying on contemporary
regulatory element maps, to enable the targeted re-
sequencing of immune regulatory regions - “Immunoseq”.
Immunoseq is designed to allow efficient re-sequencing of
regulatory regions of relevance in immune cells (coding
and non-coding) and thus enable a comprehensive assess-
ment of all potentially relevant variation in these regions,
both common and rare. The panel includes SNPs previ-
ously associated with immune traits as well as established
immune cell eSNPs. Using Immunoseq in parallel with
transcriptome sequencing (RNA-seq), we show that, after
accounting for effects attributable to associated common
variants, there are significant effects attributable to rare
variants, and that these explain up to 14 % of residual vari-
ation. Our results confirm that targeted capture and re-
sequencing of regulatory regions active in relevant cell
types provides an efficient means to identify rare variants
of relevance in immune disease.

Methods
Design of the Immunoseq custom capture panel
We selected regulatory regions of immune cells using
genome-wide DHS data from the ENCODE [12] and
NIH Roadmap Epigenomics [24] projects. Data from 12
different immune cell types were utilized: CD3+, CD3+
cord blood, CD4+, CD8+, CD14+, CD19+, CD20+, CD34+,
CD56+, Th1, Th2, Th17 (Additional file 1: Table S1). The
entire genome was divided in 100 bp bins and the DHS sig-
nals were normalized by calculating the number of reads
per bin divided by the total number of reads. In each sam-
ple, the signals were ranked and the top 300,000 bins
(representing the top 1 % of the genome) identified, within
each cell type bins were retained if they were identified in
at least 50 % of the available samples. For those cell types
where only two samples were available, the selected bins
were required to be present in both samples; in those cell
types where only one sample was available (Th2, Th17 and
CD20) all 300,000 bins were retained. The 100 bp bins were
then grouped into blocks of 50,000 bins each (i.e. 0 to
50,000 top bins, 50,000 to 100,000 top bins etc.) and when
the overlap between sample blocks (from the same cell
type) dropped below 50 %, the blocks were eliminated.
Additional file 1: Table S1 shows the number of bins used
and the number of samples available for each cell type. All
selected regions were combined and bins were removed
when at least 50 % of a bin overlapped with an exome
capture region (SeqCapEZ Exome V3 Capture, Roche,
64.1 Mb). Non-coding regions targeted by our design cover
a total of 67.3 Mb. The Immunoseq custom capture was
complemented by exome (SeqCapEZ Exome V3 Capture,
Roche, 64.1 Mb) and Human Leukocyte Antigen (HLA) re-
gions (SeqCap EZ design, Human MHC design from
Roche, 4.97 Mb) totaling 138 Mb for the panel.

Enrichment of GWAS hits in DHSs selected for the
Immunoseq custom capture panel design
GWAS hits were obtained from the National Human
Genome Research Institute (NHGRI) (https://www.e-
bi.ac.uk/gwas/, January 29th 2015). We selected SNPs
from different disease categories: Immune and chronic
inflammatory diseases (724 SNPs), associated to more
than one immune or chronic inflammatory diseases (49
SNPs), Neuropsychiatric disease (65 SNPs) and Cancer
(393 SNPs), including SNPs in LD using HaploReg V2
(r2 > 0.9) [25]. Functional variants were selected from
Monocyte and B-cell cis-eQTLs identified in the paper by
Fairfax and colleagues [18]. Associated eQTLs with empir-
ical p < 0.001 after 1000 permutations, for each top hit per
transcript were retained for each cell type. ImmunoChip
hits (224 SNPs) from five immune and chronic inflamma-
tory disease studies [26–30] were used. The analysis of
overlap between Immunoseq regions and SNPs was deter-
mined using bedtools (v2.17.0).
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We compared the enrichment of GWAS or Immuno-
Chip hits and functional variants in DHS regions in-
cluded in the Immunoseq to other regions: 1) DHS from
other cell types (Additional file 1: Table S2) selected in
the same way as for the immune cells in the Immunoseq
design, 2) Same as in 1) but keeping only regions that do
not overlap immune cell DHS regions selected for
Immunoseq (compared to Immunoseq DHS regions not
overlapping with the other cell types’ DHS regions), 3)
an equal number of bins as in the Immunoseq DHSs se-
lected randomly from the whole genome in 1000 itera-
tions and 4) an equal number of bins as in the
Immunoseq DHSs selected randomly from the non-
coding genome in 1000 iterations. For the randomly se-
lected regions, the whole genome was split into 100 bp
bins and 67,300 of them were selected, 1000 times. Fish-
er’s exact test was performed to evaluate the significance
of the enrichment.

Design of the second version of Immunoseq
Using coverage statistics from the first version of the
Immunoseq panel, we flagged poorly covered regions
(<0.1X across all samples) or unusually high coverage re-
gions (>120x across all samples), as well as ENCODE
Blacklist regions for removal, and used the remaining re-
gions to begin designing a 2nd version of our Immuno-
seq panel. Additional regions totalling 7.243 Mb based
on Digital Genomic Footprinting (DGF) data from EN-
CODE for CD4+, CD8+, CD19+ and CD56+ were added
for this new panel.

Capture and sequencing
Thirty samples from the Swedish Uppsala Bioresource
cohort were used as the discovery sample set in this study.
The regional ethical review board in Uppsala, Sweden ap-
proved the study and all participants gave their informed
consent. The Cambridge Multiple Sclerosis (MS) sample
set was used as a replication set in this study. Eighty-six af-
fected and 94 healthy controls were included for a total of
180 samples. DNA was prepared from Peripheral Blood
Mononuclear Cells using standard methods. DNA quanti-
fication was performed using PicoGreen.
Whole-genome library preparation was performed

using 500–1000 ng of genomic DNA. Covaris focused-
ultrasonicator E210 was used for shearing DNA into
150–1500 bp fragments. LabChip EZ reader was used
for fragment size evaluation and size selection was per-
formed when needed. Libraries were prepared using the
KAPA High Throughput (HTP) Library Preparation Kit
(KAPA Biosystems). The end repair to produce blunt-
ended double stranded DNA, adenylation of the 3′-ends,
adapter ligation and amplification were performed follow-
ing the recommendations from the kit manufacturer and
cleaned using AMPure XP beads. The libraries were

analyzed on LabChip and quantified using PicoGreen.
Samples were then pooled (2X, 5X or 6X) using a total of
1 μg of library, followed by Roche NimbleGen SeqCap EZ
Library instructions for the hybridization of the baits and
the capture steps. The final amplification was done using
KAPA HTP. Concentration, size distribution, and quality
of the amplified capture were assessed using LabChip.
Captured products were sequenced on the Illumina
HiSeq2500 or HiSeq2000 with 100 bp paired-end
reads. The discovery sample set was captured with
the first version of the panel, and the replication set
was captured with the second version of the panel.
For the second panel, the library preparation and capture
steps were automated and performed using the Biomek
FX (Beckman Coulter).

Read mapping and variant calling
Reads were aligned to Genome Reference Consortium
Human genome build 37 (GRCh37) using bwa 0.7.6a. and
variants were called using HaplotypeCaller v3.2 (GATK).

Variants quality control/SNVs validation
Quality cut-off was set at read depth ≥10, genotyping
quality (gq) ≥70, and mapping quality (MQ) ≥50. These
cut-offs were selected based on the comparison of the
sequencing and genotyping data (Human Omni2.5 Bead-
Chip in the 30 sample cohort or Human Omni5 BeadChip
in the 180 sample set), available for all samples, where
both had concordance of over 95 % (Additional file 1:
Figure S1). Indels were not included in our analysis.
To test the variant capture efficiency of Immunoseq,

we applied our panel to a Yoruban sample (NA18502)
that has been sequenced at high depth by Complete
Genomics [31]. We compared the accuracy of the het-
erozygous variants identified by Complete Genomics
that overlapped with the panel regions with the variants
identified using our custom capture panel (Additional
file 1: Figure S2). DNA sequencing data from the
NA18502 sample was downloaded from the public gen-
ome data repository (ftp2.completegenomics.com, as-
sembly software version 1.10).

Annotation of variants
The GERP++ score was used as a metric for conservation
to identify selectively constrained variants (http://mendel.-
stanford.edu/SidowLab/downloads/gerp/) [32]. We also
used the CADD tool to score the deleteriousness of the
identified variants (http://cadd.gs.washington.edu/) [33].
Coding variants were annotated using snpEff [34]. Com-
mon variants are defined as having MAF > =1 % and rare
variants are defined as having MAF < 1 % based on the al-
lele frequencies from the 1000 Genomes Project [35].
Novel variants were defined as variants not observed in
the 1000 Genomes Project or dbSNP141.
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Shared vs cell-type specific DHSs
The DHS sets selected for each cell type were intersected
to determine which bins are observed in all selected cell
types or in a subset of the cells. Enrichment was measured
by comparing the number of rare and/or novel variants to
the number of common variants falling in each category
of DHSs and the total observed in DHSs.

Identifications of variants that disrupt or create motifs
Each identified variant was tested for the impact of the
reference and the alternate allele on transcription factor
motifs ± 15 nucleotides from the variant position. Matri-
ces for TRANSFAC (version 2009.4) were used with the
Finding Individual Motif Occurrence (FIMO) scanning
software, version 4.10.1, using a p < 1.42e-7 threshold
(Bonferroni correction: 0.05/351,088 SNPs =1.42e-7). Only
motifs directly overlapping a variant were kept. A motif
was considered as created if it had a significant matrix af-
finity score only with the alternate allele, whereas it was
considered disrupted if it had a significant matrix affinity
score only with the reference allele.

RNA-sequencing and allele-specific expression mapping
Purified T cells were isolated from the discovery set sam-
ples (eight CD3+ and 20 CD4+). RNA was isolated with
miRNeasy Mini Kit (Qiagen) and 500 ng of RNA was
used to prepare libraries using Illumina TruSeq Stranded
Total RNA Sample preparation kit following the manu-
facturer’s instructions. Quality control was performed
using Agilent Bioanalyzer and samples were sequenced
on Illumina HiSeq2000 with 100 bp paired-end reads.
Raw reads were trimmed (quality: phred33 ≥ 30 and
length n ≥ 32), adapters were removed (using Trimmo-
matic V.0.32 [36]) and reads were aligned to the hg19
human reference (Tophat v.2.0.10 [37] and bowtie
v.2.1.0 [38]) for 81.9 % of the reads aligned. For the rep-
lication set, purified T-cell (CD4+ and CD8+) subpopu-
lations were isolated from 180 subjects (86 multiple
sclerosis patients and 94 healthy controls) for 73 % of
the reads aligned. For details see Lemire et al. [39].
Allele counts were measured using the SNPs from Illu-

mina Human Omni2.5 BeadChip (30 samples cohort) or
Human Omni5 BeadChip (180 samples cohort) and im-
putation (1000 Genomes Project, using the IMPUTE2
software). Haplotype phasing was performed using the
SHAPEIT V2 software and allele specific expression was
calculated using reads from whole genes as previously
described [19]. We used the Allele-specific expression
(ASE) association data calculated with the replication
cohort for the first cohort because of the lack of power
due to the small samples number. Since CD3+ cells were
not assessed in the replication cohort, we use the combin-
ation of CD4+ and CD8+ data to get association p-values
for this cell type. Transcripts with association p-value

<1e-5 were kept, and isoforms were removed based on
normalized read counts for each gene (keeping the best
covered isoform). A total of 3859 transcripts for CD3+
cells and 3428 transcripts for CD4+ cells in the 30 sam-
ples discovery set, and 5536 transcripts for CD4+ and
5594 transcripts for CD8+ cells in the replication set
were included in the analysis.

Enrichment of rare variants in vicinity of allelically
imbalanced (AI) genes
The fold difference between the expressed alleles was
calculated as counts for the most abundant allele divided
by counts for the less abundant allele. Thus a fold differ-
ence of one corresponds to alleles that are expressed
equally. Genes with fold difference between 2 and 9 were
considered as having allelic imbalance (AI). Genes with
> 9-fold were considered to be enriched for imprinted loci
or artefacts and were thus removed from the analyses.
We performed enrichment analysis for variants in

DHS +/−20 kb from each gene. We calculated the enrich-
ment of rare variants in highly AI genes (ASE effect size
between 2 and 9, 1 meaning both alleles are expressed
equally) by dividing the proportion of AI genes with rare
variants in correlated DHSs by the proportion of all tested
genes with rare variants in correlated DHSs.

DNAse –sensitive regions correlated to transcript
promoters
NIH ENCODE Roadmap DHS datasets (n = 317) were
retrieved and binned into 100 bp segments as described
above. Using transcripts from GENCODE v15, we ex-
tracted all promoter regions (defined as transcription
start site (TSS) +/−500 bp). Across all of the DHS datasets,
we correlated the normalized bin scores for these pro-
moter region bins with all DHS bins +/− 1 Mb.

Hi-C region linked with promoter regions
Hi-C data from GM12787 lymphoblastoid cell line were
obtained from Rao et al. [40] (Gene Expression Omnibus
accession number: GSE63525). We extracted all regions
that overlapped promoter regions (1500 bp from TSS) of
gene where expression data was available, as well as the
linked regions.

Results
Design of the Immunoseq custom capture panel
In order to select the most relevant non-coding regions
to target, we used DNase I mapping data available from
the ENCODE and Roadmap epigenomics projects from
12 different cell types (CD3+, CD3+ cord blood, CD4+,
CD8+, CD14+, CD19+, CD20+, CD34+, CD56+, Th1,
Th2 and Th17, Additional file 1: Table S1) [12, 13]. The
whole genome was divided into 100 base pair bins,
which were ranked according to the DHS signal for all
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samples available for every immune cell type (Methods).
The top 300,000 signal intensity bins for every cell
sample from the ENCODE and Roadmap epigenomics
project were used for the design of the Immunoseq
capture panel. The bins that were kept were required
to be consistent in most (>50 %) biological replicates
used for each cell type. Additional file 1: Table S1 shows
the number of DHS signal intensity bins used and the
number of samples available for every cell type. We com-
bined these putative regulatory regions (67.3 Mb) with the
coding regions from exome capture and the HLA region.
However, given the unique and complex role of HLA in
immune disease risk along with the extreme sequence di-
versity of human Major Histocompatibility Complex, we
exclude its analysis in the following discussion. Altogether,
Immunoseq covers a total 138 Mb of the genome.

The Immunoseq regions are enriched in pertinent GWAS
hits and eQTLs
We estimated the sensitivity of this panel by determining
the extent to which it captured known autoimmune and
chronic inflammatory diseases associated SNPs listed in
the National Human Genome Research Institute (NHGRI)
GWAS catalogue (p < 5 × 10−8) [1]; or SNPs in high link-
age disequilibrium (r2 > 0.9) with these [25] (Additional file
1: Table S1-S2). We repeated this process using cancer
and neuropsychiatric diseases associated SNPs listed in
the GWAS catalogue (assuming that immune cells play a
less significant role in these conditions, although it some
case, it can play one) and using cis-eQTL data for mono-
cytes (CD14+) and B-cells (CD19+) from Fairfax et al. [18].
This panel includes SNPs in high LD (r2 > 0.9) with

62 % (448 SNPs) of the autoimmune disease associated
variants listed in the GWAS catalogue (Fig. 1a), 63 %
(140 SNPs) of the associated variants identified in key
ImmunoChip studies [26–30] (Additional file 1: Figure
S3A) and more than 68 % (378 SNPs) of the eSNPs iden-
tified by Fairfax et al. (Fig. 1b) [18]. These observations
indicate the potential of our design to identify variants
associated to autoimmune disease as well as other vari-
ants with potential functional impact on immune cell
function. In contrast, alternate panels based on DHSs
from randomly selected tissues, or random genomic re-
gions show significantly poorer performance (Fig. 1c-d,
Additional file 1: Figure S3B).

Functional potential of rare and novel variants identified
using Immunoseq
Performing Immunoseq on DNA from 30 healthy blood
donors (Table 1) at a mean sequencing coverage of 52x, we
found that on average 88 % of the reads were located on or
near target, >98 % of the target regions were covered (only
1.90 % of the bases were missing) and 95 % of the target re-
gions were covered by at least two reads.

Taking advantage of the high sequencing depth, we were
able to identify rare and novel variants at high confidence.
We defined rare variants as those having a MAF <1 % in
1000 Genomes Project data (Phase3) and novel variants
that have not previously been identified by either 1000
Genomes Project or dbSNP141. A total of 351,088 variants
were identified, of which 275,042 were common, 50,004
were rare and 26,042 were novel (Table 2, Additional file 1:
Table S3 and S4, Additional file 2: Table S5).
Comparing non-coding with coding variants we found a

significantly higher proportion were novel (p-value = 2.87e-
175) and selectively constrained variants based on Genomic
Evolutionary Rate Profiling (GERP++ ≥1 p-value = 3.57e-60
and GERP++ ≥ 2 p-value = 3.06e-47) (Fig. 2a). Using
GERP++ [32] and Combined Annotation Dependant
Depletion (CADD) scores [33], we also observed that the
proportion of selectively constrained variants was greater
amongst the novel and rare variants than amongst the
common variants (Fig. 2b).
We next partitioned the variants called according to

whether the DHS used in the design was shared among
cell types or unique to one cell type. It has been previ-
ously shown that cell-type specific DHSs mostly overlap
gene bodies and intergenic regions, whereas DHSs that
are shared between cell types overlap with more active
regions and promoters [41]. We observed a higher pro-
portion of novel and rare variants compared to common
variants in DHSs that are shared between cell types,
compared to the ones that are unique for a single cell
type (Fig. 2c). A clear increase in enrichment is observed
when variants present at cell type unique DHSs and vari-
ants that are in DHSs shared between two to 12 cell types
are compared, with linear regression p-values of 1.35e-05,
2.41e-06 and 5.81e-05 for rare, novel and combined rare
and novel variants, respectively. These findings indicate
that rare and novel variants are enriched in more active
genomic regions compared to common variants.
To further investigate the potential functional impact

of the rare and novel variants in DHSs, we explored the
proportion of variants that disrupt or create transcription-
factor motifs, compared to common variants and GWAS
hits (Methods). In comparison to common variants a
significantly higher proportion of novel variants create
(p-value = 1.56e-38) or disrupt (p-value = 2.43e-11) tran-
scription factor motifs (Fig. 2d). Rare variants show a
slightly lower, but still significant enrichment for created
motifs than do common variants (Fig. 2d, p-values for dis-
rupted motifs = 0.16 and created motifs = 2.77e-07).

The functional impact on gene expression by variants
identified using Immunoseq
Given that rare non-coding variants in regulatory genomic
regions can exert large cis-eQTLs effects and demonstrate
extreme allele specific expression (ASE) bias [22, 23] we
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assessed the extent to which the rare and novel variants
identified using Immunoseq influenced gene expression in a
second independent set of samples; T cells (both CD4+ and
CD8+) from 180 individuals used in a parallel effort to map
common SNPs resulting in ASE (Ban, Ge et al. manuscript
in preparation), almost 400 RNA-seq datasets in total.
We also generated deep RNA-seq data from fraction-

ated T cells (CD3+ or CD4+) obtained from the 30 indi-
viduals used initially. These data generated equivalent

results, which are shown in the Supplementary materials
(Additional file 1: Figures S4-S10).
For each gene we counted and characterised (coding/

non-coding and novel/rare/common) the variants lying
in the immediate vicinity (gene +/−20 kb) and determined
the allelic imbalance (AI) in expression observed in each
transcript. After adjusting for the average number of SNPs
used to calculate AI for each transcript, we observed a
higher proportion of transcripts with non-coding variants

Table 1 Sequencing statistics of the samples sequenced with Immunoseq

Mean target
coverage

Bases on
target (%)a

Target region without
coverage (%)b

Target bases with
> =10x coverage (%)c

Level of
multiplexing

Sequencing platform

Sweden Uppsala Bioresource
samples (n = 30)

52X 88 1.9 83 2X (3 samples) HiSeq2500 (2X samples)

5X (27 samples) HiSeq2000 (5X samples)

Alignment to the human hg19 reference genome, and variant calling (HaplotypeCaller) to identify all SNPs were performed. Shows average values across samples
aOn and near bait bases/good quality bases aligned (according to Picards metrics). bThe percentage of target region that did not reach 2x coverage over any
base.cThe percentage of all target bases achieving 10X or higher coverage. We considered a variant to be true at > =10 depth

Fig. 1 Benchmarking the ImmunoSeq capture panel by known disease associated sites and regulatory variants. a Autosomal GWAS hits
associated to more than one autoimmune or chronic inflammatory disease, for neuropsychiatric diseases and for cancer included in the
Immunoseq. custom capture panel. (Cut-off of 1 × 10−8 was used to select GWAS hits to analyze, SNPs in LD selected based on r2 > 0.9, HLA
(human leucocyte antigen) hits and region as well as chromosome X SNPs were excluded from the analyses). SNP in LD = GWAS hits that have a
SNP in LD in the Immunoseq. custom capture panel. b cis-eQTLs from monocytes (CD14+) and B Cells (CD19+) (considered has haplotype block,
r2 > 0.9) included in the Immunoseq. panel. Cut-off of p < 1e-3 or p < 1e-5, and p < 1e-12 after 1000 permutations (1000 = number of SNPs tested
per probe) and top 1 eQTLs per transcript were kept for analysis (HLA hits and region as well as chromosome X hits were excluded in the
analyses). c Enrichment of GWAS hits (same as in A) and proximal SNPs (LD r2 > 0.9) that fall in DHSs selected for immune cell types compared to
DHSs selected from other tissues (either all or non-overlapping ones) and regions randomly selected (1000 times) from the whole genome (either
the full genome or only non-coding regions excluding HLA). Significance was calculated using Fisher’s exact test. Enrichment is significant
(p < 0.001) for all GWAS hits except for Neuropsychiatric hits. d Enrichment of eQTLs (same as in B) and proximal SNPs (LD r2 > 0.9) positioned at
DHSs selected for immune cell types compared to DHSs selected from other tissues (either all or non-overlapping ones) and regions randomly selected
(1000 times) from the whole genome (either entire genome or only the non-coding part excluding the HLA region). All enrichments shown are
significant (p < 0.001). All p-values were calculated using Fisher’s exact test
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Table 2 General characteristics of the common, rare and novel single nucleotide variations (SNVs)

Total number (average per sample) All Common Rare Novela

All (Immunoseq) 351,088 (90,594) 275,042 (83,839) 50,004 (5318) 26,042 (1437)

Codingb All 60,946 (15,169) 45,545 (1818) 12,452 (1166) 2949 (185)

Non-synonymousc 30,967 (7174) 21,807 (6403) 7405 (669) 1755 (102)

Synonymousc 29,214 (7770) 23,434 (7305) 4785 (395) 995 (71)

Stop-gainedc 395 (71) 202 (56) 135 (13) 58 (2)

Exomed 120,245 (30,682) 91,818 (27,916) 21,497 (2280) 6930 (486)

Non-codinge 290,142 (75,424) 229,497 (70,020) 37,552 (4152) 23,093 (1251)

All DHSf 195,182 (51,559) 154,154 (48,056) 24,571 (2677) 16,457 (826)

Total number of variants and the average number of variants per sample that were included in the Immunoseq design
aNovel variants are defined as not identified in the 1000 Genomes Project nor included in dbSNP141. bCoding variants are those located in the exons of the
RefSeq coding sequence. cSynonymous, non-synonymous and stop-gained variants were annotated using SNPeff and the hg19 version of the genome.
dThe Exome is based on the Roche SeqCap EZ exome v3.0. e Non-coding variants are those not in the RefSeq coding sequence. f The All DHSs category
combines all DHSs from the selected 12 cell types and could partly overlap with the Exome. Cut-offs used for the quality control of the variants are read
depth ≥ 10, genotyping quality (gq) ≥ 70, mapping quality (MQ) ≥50, and proportion of the reference allele between 10 and 90 %

Fig. 2 Discovery and functional potential of rare and novel variants using Immunoseq. a Proportion of novel variants (all, Genomic Evolutionary
Rate Profiling (GERP++) > =1 and GERP++ > =2) identified in DHS (red) compared to the exome (blue). b Distribution of proportion of common
(red), rare (blue) and novel (green) variants according to GERP++ score and Combined annotation dependent depletion (CADD) score. c Fold
enrichment of rare (blue), novel (green) or rare and novel combined (red) variants compared to common variants found at shared or cell-type specific
DHSs. Linear regression slope: rare =0.119 p-value = 1.35e-05, novel = 0.093 p-value = 5.81e-05, rare and novel = 0.113 p-value = 2.41e-06. d Proportion
of common (red), rare (blue) and novel (green) variants localized at a DHS that either disrupt or create a transcription-factor binding motif. P-values are
calculated using Fisher’s exact test (***p < 0.001)
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in their vicinity for transcripts where the higher AI level is
independent of a common, rare or novel regulatory variant
(Additional file 1: Figures S11-S12). A distinct increase in
the proportion of variants was observed by comparing
equally expressed transcripts with a <1.5-fold difference in
their allelic expression with transcripts displaying AI with
an ≥1.5, ≥2, ≥2.5, ≥3 and ≥3.5 fold difference in allelic ex-
pression (Fig. 3a). The increase in AI is more pronounced
for transcripts flanked by rare or novel variants than by
common variants. In order to control for the influence of
common variants we repeated this analysis focusing on
just those genes which are known to undergo ASE (Ban,
Ge, et al. manuscript in preparation) and for which we
had already mapped the common SNP contribution to cis-
regulation by ASE-mapping [42]. This approach allowed
us to include just those individuals that are homozygous
for the relevant common eSNP and thereby exclude the
influence of these common variants (Additional file 1:
Figure S13). The same trend was observed for such
transcripts when analysis was based exclusively on data
from individuals homozygous for the local established
common variant eSNP (Additional file 1: Figure S14).
This observation was then confirmed when rare and

novel variants are considered together and this situation
is even more pronounced when focusing on individuals
homozygous for the relevant eSNP (Fig. 3b). Rare and
novel variants located in DHSs that are correlated to the
transcript promoters are highly enriched transcripts with
substantial AI (> = 2 fold) compared to common vari-
ants, especially in transcripts with homozygous common
eSNP (Fig. 3b). The stronger the correlation between a
promoter and a DHS is, the more it is enriched in rare
and novel variants (p-value = 0.0196), and is even stronger
when looking at transcripts with homozygous common
eSNP (p-value = 0.0024, Fig. 3b). We also observed that
the transcripts displaying higher AI show more enrich-
ment for rare and novel variants in its vicinity, compared
to common variants (Fig. 3c). This was also observed
when looking at rare and novel variants located in regions
linked to the gene promoter by Hi-C (Additional file 1:
Figure S15). The same increasing trend for DHSs corre-
lated with promoters is observed for transcripts with dif-
ferent levels of AI (Fig. 3c). However, the observed trend is
not as strong in all transcripts (Additional file 1: Figure
S16). Coding rare and novel variants especially in tran-
scripts with homozygous eSNP also appear to have an im-
pact on gene expression, as they are as enriched in coding
regions compared to common variants (Fig. 3b). The effect
is almost as strong as the one observed for non-coding
variants located at DHSs highly correlated with the
promoter (Pearson’s r2 > 0.9) (Fig. 3b). Also, a similar
trend of significant increased AI is observed for coding
variants in transcripts with homozygous eSNP (Fig. 3c,
linear regression slope = 0.227, p-value = 0.018).

Having the advantage of higher power using this larger
cohort, we observed that the more rare or novel variants
there are within the vicinity of the transcribed region of
a gene, the higher the likelihood is that the transcripts
will display AI (Fig. 4a), which is not observed for com-
mon variants. Finally, we looked at the enrichment of
rare or common variants around the TSS of transcripts
with homozygous eSNP and observed a higher enrichment
at +/− 50 kb from the TSS for rare variants compared to
common variants (Fig. 4b).
Taken together we have shown that, rare and novel

variants identified in human immune cells using the
Immunoseq capture panel are enriched in DHSs that are
highly correlated to the promoters of transcripts and in
the coding regions of highly differentially expressed
transcripts, for which the top associated SNP is homozy-
gous. We also observed enrichment of rare and novel
variants in the vicinity of the TSS regions, and the more
rare or novel variants there are, the stronger is the allelic
imbalance of the gene expression.

Discussion
In this study, we used existing DHS mapping data to
build a custom capture panel designed to enable efficient
re-sequencing of key immune cell regulatory regions. Our
“Immunoseq” panel provides the means to comprehensively
assess both coding and non-coding variation that could be
implicated in the development of immune and inflamma-
tory diseases. Because the method is based on sequencing
rather than genotyping it allows direct cost effective assess-
ment of both rare and common variation without any reli-
ance on LD or the need for imputation. We have shown
that with high sequencing coverage we are able to study
novel non-coding variants in a confident way, which cannot
be realized using whole exome sequencing, or would be
prohibitively expensive using whole genome sequencing
(WGS). The targeted regions included in the Immunoseq
panel overlap with GWAS hits in immune and inflamma-
tory diseases and eQTLs of immune cells.
An inevitable drawback of the Immunoseq design is its

inability to capture variants of relevance to the disease of
interest that map outside the targeted regions. This limita-
tion is illustrated by disease-associated SNPs that are not
included in the panel. Since the Immunoseq panel was
based exclusively on DHSs seen in immune cells, these
missing associated SNPs could reflect regulatory effects
that are associated with non-immune cell based aspects of
the disease [10], e.g. gastrointestinal tract DHSs in ulcera-
tive colitis. The fact that our panel captures the majority
of the known immune and chronic inflammatory disease
associated SNPs indicates that it will have broad utility
across multiple immune related diseases.
Until now targeted capture methods have focused al-

most exclusively on the coding regions of the genome
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[43], which means that the effects of rare non-coding vari-
ants have largely been ignored in the analysis of complex
traits. In our exploration of the approach we found that
the non-coding rare and novel variants identified by
Immunoseq frequently modify transcription factor binding
motifs and show higher levels of selective constraint than
are seen in included common sequence variants. This dif-
ference is expected based on evolutionary and population

genetics principles, with common variants expected to be
more neutral than rare ones [44].
A further novel aspect of the Immunoseq approach is

its inherent ability to utilise ASE information to interro-
gate the functional impact of sequence variants on gene
expression. The greater power of ASE allowed us to ob-
serve functional effects using a lower sample size of unre-
lated subjects than traditional eQTL analysis [45]. In total

Fig. 3 The impact of rare and novel noncoding variants on gene expression. a Using the replication set, we looked at the adjusted proportion of
transcripts with common (red), rare (blue) or novel (green) noncoding variants in the vicinity (+/−20 kb) of a gene based on different allelic imbalance:
1.5 to 9, 2 to 9, 2.5 to 9, 3 to 9 and 3.5 to 9 fold difference. Adjustment was based on average number of SNPs used to calculate ASE at each ASE
levels. b Enrichment of proportion of transcripts showing allelic imbalance (AI) with rare or novel variants in the vicinity of the gene compared to AI
transcripts with common variants in vicinity of a gene. We looked at coding (histogram) vs noncoding variants as well as noncoding variants in DHS
regions correlated with the promoters (Pearson correlation r > 0.5 to 0.9). In red are all transcripts where allelic imbalance was measured (allAI)
and in blue are the transcripts for which the top associated SNP is homozygous in the sample (homAI). Linear regression slope for allAI = 0.015
(p-value = 0.0196) and homAI = 0.063 (p-value = 0.0024). Allelic imbalance genes are considered as > =2 fold between the alleles and equally expressed
genes are < =1.5 fold. c Fold difference between proportions of AI transcripts with rare or novel variants in the vicinity compared to AI transcripts with
common variants in the vicinity. Only including transcripts for which the top associated SNP is homozygous (homAI). We looked at coding (histogram)
vs noncoding variants around the genes (+/−20 kb from gene) and in DHS regions correlated with the promoters (Pearson correlation r > 0.5 to 0.9).
We compare different levels of allelically imbalanced transcripts from 1.5 fold to 3.5. all AI: AI transcripts comparing all transcripts for which ASE was
measured and homAI: transcripts for which the top associated SNP that drives the association across samples is homozygous
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the rare and novel variants identified by Immunoseq ex-
plained 14 % of the residual allelic imbalance in expression
observed amongst individuals homozygous for common
variants know to influence ASE, indicating that rare and
novel variants likely account for at least part of the AI ob-
served in the transcripts from individuals heterozygous for
common eSNPs. Comparing non-coding variants in DHSs
to variants in coding exons, the coding variants appeared
to have a stronger effect on gene expression. However, the
opposite situation was observed for variants located in
DHSs that are correlated with gene promoters, where the
effect of the non-coding variants was larger than those of
coding ones. Rare and novel variants with substantial ef-
fects on AI in particular genes may contribute to certain
disease phenotypes. In contrast to previous studies, we did
not limit our exploration to extreme phenotypes, but in-
stead we investigated the whole spectrum of AI. In doing
so, we observed that the effect of rare and novel variants
on gene expression does not appear to be limited to ex-
treme differences in allelic expression, but may also affect
genes with moderate AI.
One further limitation of the study may be that not all

transcripts for which the allelic expression is skewed
were accounted for by rare variants identified by Immuno-
seq. Some variants exerting long range or trans effects will
inevitably have been missed by not performing WGS.
Nevertheless, as opposed to earlier studies [22, 23], we ex-
pand the exploration of rare variant effects to distal regu-
latory sites with correlated activity with gene promoter.
While distal sites show enrichment, the strongest effect of
rare and novel variants is found around the TSS of genes
displaying AI. This observation indicates that variants can
be clustered to perform collapsing association test for
complex traits, which will permit the identification of rare

and novel trait-associated variants and to easy linking of
the variants to a specific gene.

Conclusion
In this study, we show that targeted re-sequencing of cell
specific active regulatory regions can be an efficient
means to identify functionally relevant variation that is
considerably more cost effective than WGS. Immunoseq
provides an efficient means to identify rare and novel,
coding and non-coding variation of relevance in complex
traits involving the immune system and to study the im-
pact of rare and novel non-coding regulatory variants on
other epigenetic traits.

Additional files

Additional file 1: Table S1. Cell type selected to target regulatory
regions in immune cells. Table S2. Cell types selected to target
regulatory regions in other cell types not related to immune function.
Table S3. Summary of shared common, rare and novel variants in
selected DHS regions of different immune cells. Table S4. Sequencing
statistics of the Cambridge Multiple sclerosis samples with Immunoseq.
Figure S1. Variants quality control. Figure S2. Comparing sequencing
data for NA18502 sample (Complete Genomics data and Immunoseq)
considering only heterozygous SNVs identified by Complete Genomics
that fall within Immunoseq custom capture panel regions. Figure S3.
ImmunoChip hits that falls into Immunoseq custom capture panel.
Figure S4. Discovery set distribution of allele specific expression (ASE).
Figure S5. Average number of SNPs used to calculate allele specific
expression (ASE) in discovery set samples. Figure S6. Adjusted
proportion of transcripts with common (red), rare (blue) or novel (green)
noncoding variants in the vicinity (+/-20kb) of a gene based on different
allelic imbalance: 1.5 to 9, 2 to 9, 2.5 to 9, 3 to 9 and 3.5 to 9 fold
difference in the discovery set. Figure S7. Discovery set distribution of
Allelic imbalance (AI). Figure S8. Enrichment of proportion of AI
transcripts with rare or novel variants in vicinity of a gene compared to
AI transcripts with common variants in vicinity of a gene in the discovery
set. Figure S9. Fold difference between proportions of AI transcripts with
rare or novel variants in vicinity compared to AI transcripts with common

Fig. 4 The number and location of rare and novel noncoding variants have an impact on gene. a Adjusted proportion of AI transcripts that
contain 1 or more noncoding common (red) or rare and novel (blue) variants in transcripts vicinity (+/−20 kb from gene). Adjustment was based
on average number of SNPs used to calculate ASE at each ASE levels. b Fold enrichment of common (red) or rare and novel (blue) variants in AI
vs all transcripts measuring their distance from transcription start sites (TSS). Transcripts with p < 0.05 were used. Sliding window of 80 kb every
10 kb was used
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variants in vicinity in the discovery set. Figure S10. Enrichment between
proportions of AI transcripts with rare or novel variants in vicinity
compared to AI transcripts with common variants in vicinity in the
discovery set. Figure S11. Replication set distribution of allele specific
expression (ASE). Figure S12. Average number of SNPs used to calculate
allele specific expression (ASE) in the replication set. Figure S13.
Distribution of allele specific expression of all transcripts and transcripts
that did not carry the common allele in a heterozygous state. Figure
S14. Replication set distribution of Allelic Imbalance (AI). Figure S15.
Enrichment between proportions of AI transcripts with rare or novel
variants in vicinity compared to AI transcripts with common variants in
vicinity in the discovery and replication set. Figure S16. Enrichment
between proportions of AI transcripts with rare or novel variants in
vicinity compared to AI transcripts with common variants in vicinity in
the replication set. (DOCX 1.61 mb)

Additional file 2: Table S5. Rare and novel variants identified using
Immunoseq and DHS cell-type they fall into. (XLSX 2.46 mb)
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