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Abstract

Background: Asthma is strongly associated with allergic sensitization, but the mechanisms that determine why
only a subset of atopics develop asthma are not well understood. The aim of this study was to test the hypothesis
that variations in allergen-driven CD4 T cell responses are associated with susceptibility to expression of asthma
symptoms.

Methods: The study population consisted of house dust mite (HDM) sensitized atopics with current asthma
(n = 22), HDM-sensitized atopics without current asthma (n = 26), and HDM-nonsensitized controls (n = 24).
Peripheral blood mononuclear cells from these groups were cultured in the presence or absence of HDM
extract for 24 h. CD4 T cells were then isolated by immunomagnetic separation, and gene expression
patterns were profiled on microarrays.

Results: Differential network analysis of HDM-induced CD4 T cell responses in sensitized atopics with or
without asthma unveiled a cohort of asthma-associated genes that escaped detection by more conventional
data analysis techniques. These asthma-associated genes were enriched for targets of STAT6 signaling, and
they were nested within a larger coexpression module comprising 406 genes. Upstream regulator analysis
suggested that this module was driven primarily by IL-2, IL-4, and TNF signaling; reconstruction of the wiring
diagram of the module revealed a series of hub genes involved in inflammation (IL-1B, NFkB, STAT1, STAT3),
apoptosis (BCL2, MYC), and regulatory T cells (IL-2Ra, FoxP3). Finally, we identified several negative regulators
of asthmatic CD4 T cell responses to allergens (e.g. IL-10, type I interferons, microRNAs, drugs, metabolites),
and these represent logical candidates for therapeutic intervention.

Conclusion: Differential network analysis of allergen-induced CD4 T cell responses can unmask covert disease-associated
genes and pin point novel therapeutic targets.
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Background
Asthma is a complex and heterogeneous disease that is
characterized by airways inflammation, airways remodel-
ing, and reversible airflow obstruction. The most com-
mon form of the disease begins in early childhood, and
is associated with the development of sensitization to in-
halant allergens such as house dust mites, pollen, and
fungal spores [1]. The airways of atopic individuals with
asthma are characterized by infiltration of mast cells,
CD4 T cells and eosinophils, which are activated by ex-
posure to allergens. CD4 T cells play a central role in the
disease process by producing Th2 effector cytokines (e.g.
IL-4, IL-5, IL-9, IL-13) that drive many of the hallmark
phenotypic changes observed in asthma; these include
airways hyperresponsiveness, increased mucus production,
mucus cell hyperplasia, and eosinophilic inflammation.
CD4 T cell responses are themselves heterogeneous, com-
prising multiple subsets that can either promote (Th1,
Th2, Th9, Th17) or negate (Treg, Tr1) the airway inflam-
matory processes that underpin asthma [2–5].
There is compelling evidence supporting a causal rela-

tionship between IgE and Th2 cytokines and the expres-
sion of asthma symptoms [6–8]. However, the vast
majority of atopics do not develop asthma, and the
mechanisms that determine why some atopics develop
asthma whilst others do not are not well understood.
We have previously investigated this question via im-
munological profiling studies in a community cohort,
and our findings showed that expression of asthma
symptoms amongst atopics sensitized to HDM was asso-
ciated with increased levels of HDM-specific IgE, blood
eosinophils, and HDM-driven Th2 cytokine expression
[9]. It is noteworthy that these previous studies were
based on assessment of a restricted number of immuno-
logical parameters. In the present study we conducted a
genome-wide analysis of HDM-driven CD4 T cell re-
sponses in sensitized atopics who were stratified on the
basis of current asthma symptom expression. Our find-
ings demonstrate that differential network analysis can
unmask asthma-associated genes that escape detection
by more conventional analytical approaches. Moreover,
we illustrate the application of causal analytical algo-
rithms to identify molecular drivers of the gene expres-
sion patterns, and pin point logical candidates for
therapeutic intervention [10].

Methods
Study population
The study design was based on case/control compari-
sons of 72 subjects nested within the 14 year follow-up
of The Western Australian Pregnancy (Raine Study)
Cohort, an unselected longitudinal birth cohort, repre-
sentative of the West Australian population [11]. The
study population was stratified into three groups; HDM-

sensitized atopics with current asthma (n = 22), HDM-
sensitized atopics without current asthma (n = 26) and
HDM-nonsensitized controls (without current asthma,
n = 24). Current asthma was assessed by questionnaire,
and was defined as a doctor diagnosis of asthma ever,
plus the use of any asthma medication in the last
12 months, plus wheeze in the last 12 months. Total IgE
was measured by ImmunoCAP (Phadia) from serum
samples for all participants, as was Phaditop IgE; the
Phadiatop test (Phadia) uses an ImmunoCAP with a bal-
anced mix of representative inhalant allergens. Specific
IgE to the following allergens was measured (Immuno-
CAP, Phadia): HDM (Dermatophagoides pteronyssinus),
rye grass pollen (Lolium perenne), cat, couch grass
(Cynodon dactylon), mold mix (Penicillium notatum,
Cladosporium herbarum, Aspergillus fumigatus, Can-
dida albicans, Alternaria alternata, and Helminthospor-
ium halodes), peanut, and food mix (egg white, milk,
fish, wheat, peanut, and soybean). Sensitization to an al-
lergen was defined as specific IgE ≥0.35kU/L.

Cellular immunology
Cryobanked peripheral blood mononuclear cells
(PBMC) were thawed and cultured in AIM-V medium
(Gibco) in the presence or absence of 10 μg/ml HDM
extract (CSL, Australia) as described previously [9, 12]. At
the termination of the 24 h cultures, CD8 positive cells
were removed and CD4 positive T cells were purified
via positive immunomagnetic selection (Dynal Biotech)
[13, 14]. The purity of the isolated CD4 T cells was rou-
tinely 98 %.

Gene expression profiling
Total RNA was extracted from CD4 T cells using TRIzol
(Invitrogen) followed by purification on an RNeasy col-
umn (Qiagen) [13, 14]. The integrity of the RNA was
assessed on the Bioanalyzer (Agilent) and the RNA in-
tegrity number was greater than 8.0 for all samples.
Total RNA (100 ng) was labelled and hybridized to Hu-
man Gene 1.0 ST microarrays (Affymetrix), employing
standardized reagents and protocols from Affymetrix.
The raw microarray data are available from the ncbi
gene expression omnibus repository (GSE73482; http://
www.ncbi.nlm.nih.gov/geo/).

Data analysis
The raw microarray data was preprocessed in R employ-
ing the robust multi-array average (RMA) algorithm
[15]. A custom mapping of probe sets to genes was uti-
lized to annotate the arrays using current genome know-
ledge (hugene10sthsentrezgcdf, version 19, http://
brainarray.mbni.med.umich.edu/) [16]. The quality of
the microarray data was assessed with ArrayQuality-
Metrics, and low quality samples were removed from
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the analysis [17]. Batch effects were identified using
principal components analysis. Two sample batches were
identified, that were highly correlated with the micro-
array hybridization date and removed using the ComBat
algorithm [18]. Noisy probe sets were identified using
the proportion of variation accounted for by the first
principal component (PVAC) algorithm (threshold = 0.4)
and removed from the analysis [19]. The PVAC filtering
step was applied separately to each of the three clinical
groups, resulting in the identification of 1442 probe sets
that were high quality in at least one clinical group,
which were retained in the analysis. It is noteworthy that
this filtering step results in a dramatic reduction of the
number of probe sets remaining in the analysis (the un-
filtered data contains 19,700 probes sets). This highly
stringent filtering step is motivated by statistical model-
ling of Affymetrix probe level data that has demon-
strated that the vast majority of probes do not measure
any signal above background [20, 21]. The PVAC algo-
rithm identifies unreliable/noisy probe sets as those in
which the signal is not consistent across the multiple in-
dependent probes within a probe set [19].
Differentially expressed genes were identified using

linear models for microarray analysis (LIMMA), with
False Discovery Rate (FDR) adjustment for multiple test-
ing [22]. Paired comparisons were performed to identify
HDM regulated genes within each clinical group. Re-
sponse patterns between clinical groups were based on
unpaired comparisons of gene expression log ratios
(HDM stimulated CD4 T cells/unstimulated controls).
The weighted gene coexpression network analysis

(WGCNA) algorithm was used to construct a coexpres-
sion network [14]. Separate coexpression networks were
constructed for each clinical group, using the same set
of input genes (all 1442 probe sets identified by PVAC).
Thus the resulting networks will be comprised of both
constitutively expressed genes and differentially
expressed genes. The standard WGCNA algorithm em-
ploys an absolute measure of the pairwise correlations
between genes across the samples to build networks,
and therefore no distinction is made between positive or
negative correlations. In this study we used the signed
variant of the WGCNA algorithm, which employs a
transformation of the correlations that retains positive
correlations and pushes negative correlations towards
zero [23]. The signed correlation similarity between a
pair of genes I and j across the samples (sij) is defined as:

s signed
jj ¼ 1þ cor xi; xjð Þ

2

Modules of coexpression genes identified by WGCNA
were tested for enrichment of differentially expressed
genes by plotting the –Log10 p-values derived from the
LIMMA analysis on a module-by-module basis. The
wiring diagram of disease-associated modules was

reconstructed employing prior knowledge from the In-
genuity Systems Knowledgebase [10, 24].
Differential network analysis was based on the meth-

odology developed by Fuller et al. [25]. The approach
entails case/control comparisons of gene expression pat-
terns along dimensions of differential expression versus
differential coexpression. Differential expression is calcu-
lated between cases and controls using a standard t-test.
Differential coexpression is derived from comparing
gene network connectivity measures between case/con-
trol networks. The network connectivity is defined as
the sum of the signed correlation similarity of each gene
with all other genes. These connectivity values are calcu-
lated separately for each clinical group, scaled by their
maximum value to facilitate comparisons between
groups, and then subtracted to define the difference.
The differential expression/coexpression values are
plotted as a scatterplot, and the plot is divided into 8
significance regions, defined by t-test statistic >1.96
(or less than – 1.96) and/or differential connectivity
>0.3 (or less than -0.3). The number of observations
that fall within each region is counted, and the statis-
tical significance is assessed by comparing these values
with the same values generated from 1000 random
permutations of the sample class labels (i.e. case/con-
trol status).
Molecular drivers of the gene expression responses

were identified utilizing upstream regulator analysis
(Ingenuity Systems) [10]. Gene lists were analysed for
enrichment of transcription factor target genes
employing Enrichr [26]. Biological pathways enriched
in the gene lists and modules were interrogated using
cluster profiler to analyse the reactome pathway
database [27].

Results
Study population
This study examined participants in the age 14 year
Raine Study follow-up comprising three distinct
phenotypic groups: HDM-sensitized atopics with
current asthma (n = 22), HDM-sensitized atopics
without current asthma (n = 26) and HDM-
nonsensitized controls (without current asthma, n =
24). The characteristics of these participants are pre-
sented in Table 1. Although total IgE titre was sig-
nificantly higher in the two HDM-sensitized groups
than in the HDM-nonsensitized control group, it did
not differ significantly between the two HDM-
sensitized groups; HDM-specific IgE titre followed
the same pattern, as did the number of allergens to
which participants were sensitized. In contrast, Pha-
diatop IgE levels differed significantly between all
three groups and were highest among asthmatics
and lowest among HDM-nonsensitized controls.
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HDM-sensitized asthmatics had a higher prevalence
of positive family history of atopy and of current rhi-
noconjunctivitis than the other two groups. There
were, however, no differences in age, gender, height,
weight, BMI, current smoking, or FEV1/FVC ratio
between the three study groups.

Molecular profiling of allergen-driven gene expression
profiles in CD4 T cells
PBMC from the subjects in Table 1 were cultured in the
presence or absence of HDM allergen extracts for 24 h,
after which, CD4 T cells were isolated by immunomag-
netic separation, and gene expression patterns were

Table 1 Characteristics of the study population

HDM-nonsensitized controls HDM-sensitized without asthma HDM-sensitized
with asthma

P-value

Number of participants 24 26 22

Male (%) 50.0 42.3 63.6 0.333

Age at assessment (years) 14.1 (0.2) 14.1 (0.2) 14.1 (0.1) 0.912

Wheeze in past 12 months [A] (%) 0.0 a 0.0 a 100 b N/A

Doctor diagnosis of asthma ever [B] (%) 29.2 a 26.9 a 100.0 b <0.001

Asthma medication use in past 12 months [C] (%) 0.0 a 19.2 a 100.0 b <0.001

Current medicated asthma[Postive for A,B &C] (%) 0.0 a 0.0 a 100.0 b <0.001

Bronchial hyperresponsiveness (%) 17.4 a 28.0 a,b 59.1 b 0.009

Total IgE (kU/L) 21.2 a (23.3) 192.7 b (266.3) 479 b (629.7) <0.001

Phadiatop IgE (Phadiatop units) 0.0 a (0.9) 21.4 b (30.6) 74.9 c (127.0) <0.001

Number of allergens to which sensitized 0.0 a (1.7) 2.5 b (3.0) 3.0 b (4.0) <0.001

House dust mite IgE (kU/L) 0.0 a (0.0) 27.1 b (33.0) 84.1 b (160.0) <0.001

House dust mite sensitizeda (%) 0.0 a 100.0 b 100.0 b <0.001

Rye grass sensitized (%) 20.8 a 53.8 b 63.6 b 0.009

Rye grass IgE (kU/L) 0.0 (0.2) 0.4 (4.6) 0.8 (6.0) 0.037*

Cat sensitized (%) 4.2 a 34.6 b 40.9 b 0.009

Cat IgE (kU/L) 0.0 a (0.0) 0.0 b (0.7) 0.3 b (2.9) <0.001

Couch grass sensitized (%) 20.8 38.5 54.5 0.061

Couch grassIgE (kU/L) 0.0 (0.1) 0.1 (1.2) 0.5 (1.9) 0.056

Mould sensitized (%) 16.7 19.2 18.2 0.972

Mould mix IgE (kU/L) 0.0 (0.0) 0.0 (0.1) 0.0 (0.20) 0.293

Peanut sensitized (%) 0.0 a 11.5 a,b 31.8 b 0.007

Peanut IgE (kU/L) 0.0 a (0.0) 0.0 a,b (0.2) 0.1 b (0.5) 0.001

Food mix sensitized (%) 0.0 11.5 18.2 0.107

Food mix IgE (kU/L) 0.0 a (0.0) 0.1 b (0.2) 0.2 b (0.2) <0.001

Positive family history of atopy (%) 61.9 a 63.6 a 95.5 b 0.018

FEV/FVC1 (% ratio) 91.8 (8.6) 92.1 (10.9) 91.9 (17.8) 0.813

Current rhinoconjunctivitis (%) 16.7 a 0.0 a 68.2 b <0.001

Maternal smoking in pregnancy (%) 22.2 31.6 25.0 0.801

Current smokers (%) 0.0 16.0 9.1 0.131

BMI 18.8 (4.3) 20.6 (4.9) 21.0 (4.2) 0.106

Height (cm) 166.8 (9.2) 166.0 (11.1) 161.6 (14.1) 0.246

Weight (kg) 50.5 (17.8) 57.1 (19.8) 54.3 (15.2) 0.278

Median (interquartile range) is displayed for all continuous measures. P value is derived from analyses comparing the three groups: prevalence values were
compared by Chi square analysis; continuous measures were compared by Kruskal Wallis analysis. Where significant differences were observed between the three
group groups (P < 0.05 in table) subsequent pairwise comparisons were performed; identical letters denote groups that do not differ significantly at the 0.05 level
after adjusting for multiple comparisons (a vs a = not different; a vs b = significantly different). aSensitization was defined as specific IgE ≥0.35 kU/L). *Kruskal Wallis
analysis found that the three groups were not the same but subsequent pairwise comparisons did not show significant differences (P < 0.05) between groups
after P was adjusted for multiple testing
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profiled on microarrays, as per our earlier studies [13,
14]. The microarray data was preprocessed and summa-
rized into a set of non-redundant genes, and stringent
filtering was employed to filter out noisy probe sets,
resulting in 1442 remaining genes for analysis (see
Methods).
First, we compared gene expression patterns between

HDM-stimulated and unstimulated CD4 T cells from
HDM-sensitized asthmatics. The data showed that 409
genes were upregulated and 452 genes were downregu-
lated after adjustment for multiple testing (FDR <0.05,
Fig. 1a). The 50 most statistically significant differentially
expressed genes (DEG) are shown in Additional file 1:
Table S1, with IL4R as the top ranked DEG. Next, we
compared HDM-stimulated and unstimulated CD4 T
cells in HDM-sensitized subjects without asthma. The
data showed that 407 genes were increased and 503
genes were decreased (FDR <0.05, Fig. 1b). The 50 most
significant DEG are shown in Additional file 2: Table S2,
with IL4R absent as it is ranked number 85. Finally, we
examined the response to HDM in nonsensitized con-
trols, and we found that 348 genes were upregulated and
475 were downregulated (FDR <0.05, Fig. 1c). Additional
file 3: Table S3 lists the 50 most statistically significant
DEG and a change in gene expression of IL4R was not
detected. It is noteworthy that there was considerable
overlap in the respective responses when comparing
stimulated versus unstimulated CD4 T cells for each
group (Additional file 4: Figure S1). Moreover, this
overlap extended to the level of biological pathways
(Additional file 5: Figure S2).

Molecular drivers of allergen-driven gene expression
profiles in CD4 T cells
We employed upstream regulator analysis to identify the
putative molecular drivers of the gene expression pat-
terns in CD4 T cells [10]. This analysis leverages experi-
mental findings from prior studies to identify the
putative regulatory molecules that are driving the ob-
served differential expression patterns. Two statistical
measures are calculated: (i) the overlap p-value measures
enrichment of target genes amongst the list of differen-
tially expressed genes (both upregulated and downregu-
lated); (ii) the activation Z-score measures the pattern
match between the observed gene expression changes
(up/down regulation) and the predicted pattern based
on prior knowledge. (an activation Z-score >2 is statisti-
cally significant) [10]. As illustrated in Fig. 1d, the most
significant candidate drivers of the responses in HDM-
sensitized asthmatics were IL-4, TcR signaling, IL-2, IL-
15, CD40L, and IL-1B. This analysis also suggested that
IL-10 and type I interferon signaling was downregulated
by HDM stimulation. A similar pattern was observed in
the responses from HDM-sensitized atopics without

asthma (Fig. 1e), although the activation Z-score for IL-4
did not reach statistical significance (Z-score = 1.79). In
the HDM-nonsensitized controls, the putative molecular
drivers of the HDM responses were IL-2, CD40L, IL-1B,
and TcR signaling (Fig. 1f ). IL-10 and butyric acid were
identified as candidate negative regulators of this
response.
HDM extracts contain non-allergenic components such

as LPS that can stimulate immune responses [28, 29]. In
this context it is noteworthy that LPS was not identified as
a significant candidate driver of the responses in any of
the three groups (activation Z-score ~ 1.0).

Differential analysis of HDM-driven CD4 T cell responses
in sensitized atopics with or without asthma and in
non-sensitized controls
To provide a global view of the HDM responses, we cal-
culated gene expression log ratios (HDM stimulated T
cells/unstimulated T cells) for each subject, and analyzed
the data using principal component analysis. As illus-
trated in Fig. 2, the data showed that the HDM-
sensitized atopics with asthma (red circles) clustered
separately to the HDM-nonsensitized controls (black cir-
cles). In contrast, HDM-sensitized atopics without
asthma did not form an isolated cluster, but instead
blended into the two other groups.
We then proceeded to identify differentially expressed

genes between the responses of the three groups. This was
done by comparing gene expression changes in HDM-
stimulated CD4 T cells between groups. Reflecting the find-
ings from the PCA analysis; 535 genes were differentially
expressed between HDM-sensitized atopics with asthma
compared to the HDM-nonsensitized controls (Fig. 3a); less
genes (79 genes) were differentially expressed between
HDM-sensitized atopics without asthma and the nonsensi-
tized controls (Fig. 3b); and no genes were differentially
expressed between HDM-sensitized atopics with or without
asthma (data not shown). Although this last comparison
did not reveal any differences, the molecular drivers under-
lying the differential responses of the two HDM-sensitized
groups versus the nonsensitized controls were not the same
(Fig. 3c, d). For instance, the asthmatic responses included
highly ranked proinflammatory pathways such as IFNg,
TNF, STAT3, and IL-6 (Fig. 3c). In contrast, the molecular
drivers underlying the differential response to HDM-
sensitized nonasthmatics versus nonsensitized controls
were much less significant and/or mainly restricted to Th2-
assocaited signaling pathways (IL-2, IL-4, IL-5, STAT6,
Fig. 3d).

Coexpression network analysis of HDM-driven CD4 T cell
responses
To explore the CD4 T cell response to HDM at the
systems-level, we employed coexpression network analysis
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Fig. 1 (See legend on next page.)
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[14, 24]. We constructed the coexpression network under-
lying the HDM-stimulated CD4 T cell response in the
HDM-sensitized asthmatics. The resulting network was
organized into 7 coexpression modules (Fig. 4a), which
were functionally distinct (Additional file 6: Figure S3) To
identify disease-associated modules, gene expression levels
were compared between the HDM-sensitized asthmatics
versus the nonsensitized controls, and the –log10 P-values
derived from this analysis were plotted on a module-by-
module basis (Fig. 4b). The data showed that one module
in particular (the “blue module”) was enriched with differ-
entially expressed genes. This module contained 406
genes, and upstream regulator analysis suggested the
underlying molecular drivers were IL2, IL4, TNF, CD40LG
and NFkB (Fig. 4c). To obtain additional information
about the regulation and function of this module, we
employed experimental findings from published studies to
reconstruct the wiring diagram of the module [24]. This
analysis unveiled a series of hub genes including MYC (96
connections to other genes; i.e. edges), IL-1B (85 edges),
STAT3 (76 edges), STAT1 (58 edges) NFkBIA (61 edges),
BCL2 (55 edges) FOXP3 (41 edges), IL-2Ra (22 edges) and
IL-4R (8 edges) (Fig. 4d).

In parallel, we constructed the coexpression network
underlying CD4 T cell responses in HDM-sensitized
atopics without asthma (Fig. 5a). Five functional mod-
ules were identified (Additional file 7: Figure S4), and
one of these modules (the “green” module) was differen-
tially expressed between HDM-sensitized atopics with-
out asthma and the nonsensitized controls (Fig. 5b).
This module contained 85 genes, 95 % of which were
also identified in the asthmatic blue module described
above. The putative molecular drivers of this module
were IL-2, IL-4, and IL-7, IL-15, and IL-3 (Fig. 5c). Re-
construction of the module using prior knowledge un-
veiled the hub genes STAT5B (14 edges), BCL2 (14
edges), CTLA4 (11 edges) and FOXP3 (10 edges,
Fig. 5d).

Differential network analysis of HDM-driven CD4 T cell
response patterns in sensitized atopics with or without
asthma
The above analyses suggested that HDM-driven gene
network patterns were not equivalent in HDM-
sensitized atopics who did or did not have asthma. How-
ever these analyses were based on parallel comparisons

Fig. 2 HDM response patterns in CD4 T cells from sensitized atopics and nonsensitized controls. Gene expression log ratios were calculated for
each subject (HDM stimulated CD4 T cells/unstimulated CD4 T cells) and analyzed by principal components analysis. HDM-sensitized atopics with
asthma are shown in red, HDM-sensitized atopics without asthma are blue and HDM-nonsensitized controls in black circles

(See figure on previous page.)
Fig. 1 Identification of molecular drivers of HDM-driven gene expression patterns in CD4 T cells. Differentially expressed genes/molecular drivers
were identified in: a/d HDM-sensitized atopics with asthma; b/e HDM-sensitized atopics without asthma; and c/f HDM-nonsensitized controls.
Data analysis was performed by LIMMA (a, b, c) and upstream regulator analysis (d, e, f). The dashed horizontal line in figs a, b, c indicates FDR <0.05.
Drivers in red are predicted to be activated and those in blue are inhibited
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of the two HDM-sensitized cohorts with the nonsensitized
control group, rather than a direct comparison between the
two HDM-sensitized cohorts. To address this issue, we
employed differential network analysis to directly compare
the two groups [25]. The approach entails case/control
comparisons of gene expression patterns along axes of dif-
ferential expression versus differential coexpression (see
Methods). The resulting plot is divided into eight regions;
genes that appear in regions R2 and R6 are differentially
expressed (but not differentially coexpressed); genes in

regions R4 and R8 are differentially coexpressed (but not
differentially expressed), and genes in the remaining regions
(R1, R3, R5, R7) are both differentially expressed and differ-
entially coexpressed. The number of observations that fall
within each region is counted, and statistical significance is
assessed by a simulation which randomly permutes or
changes the case/control status of the subjects and runs the
analysis. This simulation is repeated 1000 times and region
counts are then compared between the original observed
data and the randomized/permutated data.

a

b

c

d

Fig. 3 Identification of molecular drivers of differential responses to HDM in CD4 T cells. Differentially expressed genes/molecular drivers were
identified between the response patterns of: a/c HDM-sensitized atopics with asthma versus HDM-nonsensitized controls; b/d HDM-sensitized
atopics without asthma versus HDM-nonsensitized controls. Data analysis was performed by LIMMA (a, b) and upstream regulator analysis (c, d).
The dashed horizontal line in figs a, b indicates FDR <0.05. Drivers in red are predicted to be activated and those in blue are inhibited
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Fig. 4 Coexpression networks underling HDM-driven CD4 T cell responses in sensitized asthmatics. a Heatmap illustrating the gene coexpression
network. Increasing red intensity indicates increasing strength of correlation between genes. Modules are defined as the branch-like
structures on the dendrogram. b Differentially expressed genes were identified between HDM-driven CD4 T cell responses in sensitized asthmatics versus
nonsensitized controls and the –Log10 p-values were plotted on a module by module basis. c Molecular drivers of the blue modules were identified
employing upstream regulator analysis. d The wiring diagram of the blue module was reconstructed employing prior knowledge from the Ingenuity
Systems database
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First, we employed this approach for differential net-
work analysis of the responses in HDM-sensitized
atopics with asthma versus HDM-nonsensitized controls.
The data showed that the genes with upregulated ex-
pression and coexpression (region 3, P = 0.0009) patterns
in the asthmatic group were exclusively from the blue
module (Fig. 6a, Additional file 8: Table S4). Then we
employed differential network analysis to compare the
responses in HDM-sensitized atopics with or without
asthma. The data showed that although the differences
were more subtle, 25 genes were associated with asthma

(region 3, P = 0.0009, Fig. 6b, Additional file 9: Table S5).
Notably, all 25 of these genes were upregulated in the
responses of both HDM sensitized cohorts, and 14 out
of 25 were also upregulated in the responses of the
HDM-nonsensitized controls, albeit to a lesser extent
(Additional file 10: Table S6). In addition, it is pertinent
to note with the exception of one gene “PRPS1” (brown
module), these asthma-associated genes were again re-
stricted to the blue module. Bioinformatics analyses
showed that these asthma-associated genes were
enriched with targets of STAT6 signaling (Additional file

a

d 

b c

Fig. 5 Coexpression networks underling HDM-driven CD4 T cell responses in sensitized atopics without asthma. a Heatmap illustrating the gene
coexpression network. Increasing red intensity indicates increasing strength of correlation between genes. Modules are defined as the branch-like
structures on the dendrogram. b Differentially expressed genes were identified between HDM-driven CD4 T cell responses in sensitized atopics
without asthma versus nonsensitized controls and the –Log10 p-values were plotted on a module by module basis. c Molecular drivers of the
green modules were identified employing upstream regulator analysis. d The wiring diagram of the green module was reconstructed employing
prior knowledge from the Ingenuity Systems database
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a

b

Fig. 6 Differential network analysis of CD4 T cell responses to HDM in sensitized atopics with asthma versus HDM-nonsensitized controls. Gene
expression patterns were compared along dimensions of differential expression versus differential connectivity; a HDM-sensitized atopics with asthma
versus HDM-nonsensitized controls; b HDM-sensitized atopics with asthma versus HDM-sensitized atopics without asthma. To assign statistical significance
to the unpermuted data, we permute the case/control status of the data 1000 times. Region counts can then be compared between permuted and
unpermuted data. The data points are colored by their module assignment. Genes in the region 3 of the plots have upregulated expression levels and
connectivity patterns in the subjects with asthma. ** P< 0.005
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11: Table S7). Finally, two additional genes of interest
were identified in region 1 of Fig. 6b. These genes were;
(i) gamma-aminobutyric acid A receptor-associated pro-
tein (GABARAP), which is a ubiquitin-like modifier with
a role in the intracellular transport of the GABA(A) re-
ceptor and the regulation of apoptosis and autophagy,
and (ii) macrophage-expressed gene 1 (MPEG1), which
encodes a perforin-like protein with bactericidal activity.

Identification of negative regulators of HDM-induced CD4
T cell responses in sensitized atopics with asthma
Finally, we employed upstream regulator analysis to
identify negative regulators of HDM-driven CD4 T cell
responses in sensitized atopics with asthma. Three sep-
arate comparisons were performed; (i) HDM-stimulated
versus unstimulated CD4 T cells within the HDM-
sensitized asthmatics (Fig. 7a); (ii) HDM responses of

HDM-sensitized asthmatics versus HDM-nonsensitized
controls Fig. 7b); (iii) the blue asthma-associated coex-
pression module identified in Fig. 4 using coexpression
network analysis (Fig. 7c). This analysis highlighted sev-
eral molecular pathways (IL-10, type I interferon, micro-
RNAs), drugs (sirolimus, LY294002, glucocorticoids),
and metabolites (butyric acid, curcumin), which have po-
tential utility as targets for therapeutic intervention.

Discussion
Atopic asthma is thought to be driven to a significant
extent by repeated cycles of allergen-driven, Th2-
associated inflammation. However, it is not known why
the vast majority of atopics who are sensitized to ubiqui-
tous environmental allergens do not develop persistent
asthma. In this regard we hypothesized that variations in
allergen-driven CD4 T cell responses may in part
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Fig. 7 Identification of negative regulators of the house dust mite response in CD4 T cells from atopics with asthma. Negative regulators were
identified in: a HDM-sensitized atopics with asthma b HDM-sensitized atopics with asthma versus HDM-nonsensitized controls; c The blue module
in HDM-sensitized atopics with asthma. Upstream regulator analysis was used
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determine expression of disease symptoms. Our findings
showed that HDM responses from sensitized atopics
with or without asthma were not different when ana-
lyzed with conventional statistical methods that focus
solely on differences in gene expression levels. In con-
trast, interrogation of the same data using differential
network analysis, unmasked a cohort of asthma-
associated genes. These asthma genes were enriched for
targets of STAT6 signaling and they were nested within
a larger coexpression module comprising 406 genes. Up-
stream regulator analysis suggested that this module was
driven primarily by IL-2, IL-4 and TNF signaling. The
module was also characterized by the presence of a
series of hub genes, which were involved in the regula-
tion of inflammation (IL-1B, NFkB, STAT1, STAT3),
apoptosis (Bcl2, Myc), and regulatory T cell function
(IL-2Ra, FoxP3). Finally, we identified several negative
regulators of asthmatic CD4 T cell responses to allergens
(e.g. IL-10, type I interferons, microRNAs, drugs, metab-
olites), and these represent logical candidates for thera-
peutic intervention.
The asthma-associated genes we unveiled by differen-

tial network analysis shown in Additional file 9: Table S5
and Additional file 10: Table S6, play diverse roles in
biology, but many of them have unknown roles in allergy
and asthma: (i) CNKSR2 functions as a scaffold that reg-
ulates mitogen-activated protein kinase signaling and de-
ficiency in CNKSR2 is characterized by intellectual
disability and seizures, [30] (ii) DACT1 is known to
regulate Wnt/beta-catenin signaling, a pathway that is
essential for normal development [31] and for gata-3 ex-
pression and Th2 differentiation; [32] DACT1 may
therefore regulate Th2 differentiation, (iii) DARS forms a
complex with other enzymes that mediate attachment of
amino acids to tRNAs; mutations in DARS cause hypo-
myelination of cerebral white matter which manifests
clinically as severe leg spasticity, [33] (iv) KPNA6 regu-
lates the nuclear import of STAT1 and STAT3, which
were hub genes in the asthma module, [34] (v) NCOA3
is a nuclear receptor coactivator that negatively regulates
NFkB signaling and inflammatory responses, [35, 36] (vi)
NDFIP2 activates HECT domain-containing E3
ubiquitin-protein ligases, and promotes IFNg production
in Th1 cells, [37] (vii) NFkBIZ is a transcription factor
that interacts with RORgammaT and RORalpha; it drives
Th17 development, but is dispensable for Th1 and Th2
development, [38] (viii) PRPS1 is an enzyme that cata-
lyzes the synthesis of phosphoribosylpyrophosphate,
which is required for the synthesis of nucleotides; muta-
tions in this gene are associated with multiple disorders
including neuropathy, hearing loss, and central nervous
system impairment [39] (ix) RASGRP3 is a guanine nu-
cleotide exchange factor that activates Ras and Rap1 sig-
naling; it negatively regulates TLR-induced IL-6

production in macrophages, [40] (x) TRAFD1 is an
interferon-induced gene that negatively regulates innate
immune responses to LPS and Poly-IC [41]. Detailed
mechanistic studies will need to be conducted on all
these genes to define their role in allergy and asthma.
To identify molecular drivers (and negative regulators)

of CD4 T cell responses to allergens, we considered
three separate analyses: (i) HDM-stimulated versus un-
stimulated CD4 T cell responses within HDM-sensitized
asthmatics (Fig. 1d); (ii) the differential response to
HDM in sensitized asthmatics versus non-sensitized
controls (Fig. 3c); (iii) and the asthma-associated module
(Fig. 4c). In all three comparisons, IL-2 and IL-4 were
the most significant drivers we identified. We have pre-
viously shown that dual inhibition of IL-2 and IL-4 sig-
naling with neutralizing antibodies could silence
allergen-driven Th2 responses in PBMC from sensitized
atopics, thus confirming the findings from upstream
regulator analysis [14]. Moreover, we showed that IL-2
drives expression of both Th2 cytokines and regulatory
T cell (Treg) signature genes (FoxP3), suggesting that
IL-2 may play a dual effector/regulatory role in allergic
responses [14]. Notably, IL-2-mediated upregulation of
IL-4Ra expression is required to prime CD4 T cells for
Th2 differentiation and enhance Th2 cytokine expres-
sion [42]. IL-2 is also required for the generation and
homeostasis of Tregs, and the maintenance of FoxP3 ex-
pression [43, 44]. In a clinical trial, blockade of IL-2Ra
with a monoclonal antibody improved pulmonary func-
tion and asthma control [45]. IL-4/IL-4R antagonists
have also been evaluated in clinical trials, but improve-
ments in asthma symptoms were limited or inconsistent
across studies [46, 47]. Our findings suggest that dual in-
hibition of IL-2 and IL-4 signaling may silence Th2 re-
sponses, but the potential benefits of this approach will
need to be weighed up against the potential impact on
Tregs.
Our data identified IL-15 as a key driver of the asth-

matic responses (Figs. 1d, 3c and 4c). Like IL-2 and IL-4,
IL-15 transduces signals via the common cytokine recep-
tor gamma-chain (IL2RG, CD132). Mori et al. showed
that exogenous IL-15 drives the expression of Th2 cyto-
kines in HDM-specific CD4 T cell clones [48]. Ruckert
et al. demonstrated that inhibition of IL-15 signaling
with a soluble receptor antagonist abolished the induc-
tion of allergic airways inflammation, and reduced the
production of allergen-specific IgE and airways hyper-
reactivity [49]. IL-15 is therefore a logical therapeutic
target for allergic asthma, however it is noteworthy that
IL-15 may play a protective role during virus-induced
asthma exacerbations [50, 51].
Upstream regulator analysis suggested that TNF was a

highly significant molecular driver of the asthma-
associated module (Fig. 4c). This finding is consistent
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with the paradigm proposed by Liu, who suggested that
Th2 cells could be divided into two subsets; “inflammatory
Th2 cells” that express Th2 cytokines plus TNF, versus
“regulatory Th2 cells” that express Th2 cytokines plus IL-
10 [52]. Our network analysis suggests that the concept of
inflammatory Th2 responses may be extended to include
additional proinflammatory pathways including IL-1B,
STAT1, and STAT3 signaling (Fig. 4d). TNF blockade has
been evaluated in clinical trials, but severe adverse events
were reported including infection and malignancy [53].
IL-1B is an interesting therapeutic candidate because a
broad range of acute and chronic inflammatory diseases
respond to IL-1B blockade [54]. In IL-1R1 deficient mice,
allergen-induced eosinophilic inflammation and goblet
cell hyperplasia were reduced, highlighting the therapeutic
potential of this pathway [55].
An alternative therapeutic strategy to antagonizing key

drivers of the asthmatic responses is to induce negative
regulators. Two plausible candidates for this approach,
identified by our study, are type I interferons and IL-10
(Fig. 1d). Huber et al. showed that type I interferons in-
hibit Th2 development and cytokine secretion of com-
mitted Th2 cells in humans but not mice [56]. Type I
interferons are an attractive therapeutic target because
they may potentially protect asthmatics from virus-
induced exacerbations [57]. IL-10 is a potent anti-
inflammatory protein that is produced by regulatory T
cells, and the generation of IL-10 producing Tregs dur-
ing allergen-specific immunotherapy is thought to
underpin the development of tolerance [58, 59]. Previous
studies have shown that intranasal delivery of recombin-
ant IL-10 protein or an IL-10 transgene can inhibit
allergen-induced airways inflammation in mouse models
[60, 61]. IL-10 has a short half-life in vivo, thus a prac-
tical cell based therapy could entail the generation of
allergen-specific, IL-10 secreting Treg, via in vitro stimu-
lation of CD4 T cells in the presence of glucocorticoids
and 1α25-dihydroxyvitamin D3 [62, 63].
Another class of molecules we identified that has

therapeutic potential are microRNAs (miRNAs, Fig. 7b),
small endogenous RNAs that can regulate gene expres-
sion via mRNA degradation or translational repression
[64]. Each miRNA can modulate hundreds of genes, and
therefore even modest alterations to miRNA expression
can have a dramatic impact on biological networks and
functionality [64]. Mattes et al. showed that miR-126 is
upregulated in the airways of a mouse model of HDM-
driven allergic airways disease, and inhibition of miR-
126 by an antagomir (cholesterol-linked, single-stranded
antisense RNA) reduced HDM-induced allergic inflam-
mation and abolished airways hyperreactivity [65]. Colli-
son et al. showed that antagomir mediated silencing of
miR-145 but not miR-21 or miR-let-7b inhibited HDM-
induced eosinophilic inflammation, Th2 cytokine

expression and airways hyperresponsiveness in a mouse
model [66]. Moreover, they also showed that the effects
of miR inhibition were comparable to dexamethasone
treatment. Simpson et al. showed that miR-19-a expres-
sion was increased in CD4 T cells isolated from the
bronchoalveolar lavage of human asthmatics. MiR-19a is
transcribed as a polycistronic cluster of six miRNAs
(miR-17/92 cluster). Th2 responses were impaired in
CD4 T cells deficient for the miR-17/92 cluster, and this
was restored by transfection of mature mimics of miR-
19a or mi-19b [67]. Here we have identified a number of
miRNAs that are predicted to inhibit differential re-
sponses to HDM in asthmatics versus non-sensitized
controls (Fig. 7b). However as these findings are largely
based on computational predictions from the TargetScan
database, [68] mechanistic studies will be required to
validate these data.
Additionally upstream regulator analysis identified

curcumin, a natural phenol present in turmeric which
has been shown to exhibit a variety of anti-inflammatory
properties, as a potential negative regulator of the asth-
matic response to HDM (Figs. 1d and 4c) [69]. Although
curcumin is known for its low systemic bioavailability
and is rapidly metabolized in the gut, intranasal delivery
in a murine model of asthma reduced airways inflamma-
tion, histamine release, and eosinophil peroxidase activ-
ity in bronchoalveolar lavage fluid [70]. It has also been
shown that daily administration of curcumin via intra-
peritoneal injection can attenuate allergen-induced air-
ways inflammation and hyper-responsiveness [71].
We have also identified butyric acid, a short chain fatty

acid (SCFA) produced by fermentation of dietary fiber
by commensal gut microbiome, [72] as a potential nega-
tive regulator (Fig. 7a). SCFAs in the gut interact with
G-protein coupled receptors (GPR), and Maslowski et al.
has shown that SCFA-GPR43 signalling was required for
the normal resolution of inflammatory responses in
mouse models of colitis, asthma, and arthritis [73]. Add-
itionally Trompette et al. demonstrated that mice fed a
high fiber diet had higher levels of circulating SCFA
(acetate, butyrate, propionate), and were protected from
HDM-driven airways inflammation, and this effect could
be reproduced by SCFA supplementation of drinking
water [74]. Of interest in this context was the promin-
ence here of butyrate in the list of negative regulators of
the HDM response in both non-atopic controls and
non-asthmatic HDM-sensitized atopics, in contrast to
the HDM-sensitized asthmatics (Fig. 1e/f ). This may
imply that acquired or inherent resistance to the im-
munomodulatory effects of microbiome-derived SCFA
may be one of the determinants of the pathogenic
potential of Th2-associated gene networks underlying
allergen-specific CD4 Th-memory responses amongst
atopics.
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This study has limitations that should be acknowl-
edged. First, our studies focused on stimulating CD4 T
cells in vitro outside of the context of the airways. This
is a limitation because signals in the local microenviron-
ment may modulate the CD4 T cell response. Moreover,
our experimental strategy cannot provide any direct
insight into the impact on these T cell responses on the
target tissues in the airways. This limitation can be ad-
dressed by performing molecular profiling studies on
CD4 T cells and epithelial cells isolated from airway bi-
opsies after experimental allergen challenge [75]. Sec-
ond, our analyses focused on a single time point (24 h)
post HDM stimulation, and we have previously shown
that later time points are optimal for detecting the
expression of effector cytokines [13]. Third, network

analysis requires larger sample sizes compared to con-
ventional analyses that focus on differentially expressed
genes, and therefore follow-up studies in a larger sample
will have more power to find subtle differences. Finally,
the differential network analyses we performed require
group-wise comparisons, and this is a limitation because
asthma is a heterogeneous disease that comprises mul-
tiple subphenotypes [3]. This limitation can be addressed
by data analysis methods that can interpret genome-
wide immune responses using data from a single subject
[76]. Notwithstanding these limitations, our study illus-
trates the application of differential network analysis
techniques to the unmasking of asthma-associated
genes, and has highlighted novel candidate genes for
functional dissection in mechanistic studies, and poten-
tial new opportunities for therapeutic intervention.

Conclusion
Differential network analysis of immune profiling data
unmasks asthma-associated genes that escape detection
employing more conventional data analysis methods.
Combining network analysis with upstream regulator
analysis can predict the cause of the observed gene ex-
pression changes, and pin point novel therapeutic
targets.
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Additional file 4: Figure S1. Overlap of differentially expressed genes
by group. Overlap of differentially expressed genes in HDM-sensitized
atopics with asthma (red), HDM-sensitized atopics without asthma (blue)
and non-sensitized controls (black). Gene expression patterns in CD4+ T
cells were profiled by microarray and we compared HDM stimulated
versus unstimulated CD4+ T cells for each group. Numbers in red indicate
upregulated genes and numbers in green represent downregulated
genes. (PDF 68 kb)

Additional file 5: Figure S2. Biological pathways enriched in the CD4 T
cell responses to HDM from the three clinical groups. Data analysis by
Cluster Profiler using reactome database. Biological pathways enriched in
the set of upregulated (Upreg) and downregulated (Downreg) genes
from HDM-stimulated versus resting CD4 T cells from HDM-sensitized
atopics with/without asthma and HDM nonsensitized controls.
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WGCNA modules in the CD4 T cell responses to HDM from HDM
sensitized atopics with asthma. Data analysis by Cluster Profiler using
reactome database. (PDF 73 kb)

Additional file 7: Figure S4. Biological pathways enriched in the
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Additional file 8: Table S4. Upregulated and differentially expressed
genes in the HDM-sensitized atopics with asthma compared to HDM-
nonsensitized controls. Differential network analysis of the responses in
HDM-sensitized atopics with asthma versus HDM-nonsensitized controls
identified genes with upregulated expression and coexpression (region 3,
P = 0.0009) patterns in the asthmatic group. Genes identified were
exclusively from the blue module (Fig. 6a). (XLS 32 kb)

Additional file 9: Table S5. Asthma associated genes identified via
differential network analysis of CD4 T cell responses to HDM. Genes
with both upregulated expression and coexpression patterns (region 3,
P = 0.0009) were identified in the HDM-sensitized atopics with asthma
compared to HDM-sensitized atopics without asthma using differential
network analysis. Genes identified were exclusively from the blue module
(Fig. 6b) with the exception of *PRPS1 (brown module). (XLS 29 kb)

Additional file 10: Table S6. Expression of asthma-associated genes in
CD4 T cell responses to HDM in the three clinical groups. Asthma-
associated genes were identified by differential network analysis (Fig. 6b).
Log Fold Change values are derived from comparison of HDM treated
versus untreated CD4 T cells from each group. (XLSX 60 kb)
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