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Abstract

Background: Ventricular septal defects (VSDs) constitute the most prevalent congenital heart disease (CHD), occurs
either in isolation (isolated VSD) or in combination with other cardiac defects (complex VSD). Copy number variation
(CNV) has been highlighted as a possible contributing factor to the etiology of many congenital diseases. However,
little is known concerning the involvement of CNVs in either isolated or complex VSDs.

Methods: We analyzed 154 unrelated Chinese individuals with VSD by chromosomal microarray analysis. The subjects
were recruited from four hospitals across China. Each case underwent clinical assessment to define the type of VSD,
either isolated or complex VSD. CNVs detected were categorized into syndrom related CNVs, recurrent CNVs and rare
CNVs. Genes encompassed by the CNVs were analyzed using enrichment and pathway analysis.

Results: Among 154 probands, we identified 29 rare CNVs in 26 VSD patients (16.9 %, 26/154) and 8 syndrome-related
CNVs in 8 VSD patients (5.2 %, 8/154). 12 of the detected 29 rare CNVs (41.3 %) were recurrently reported in DECIPHER
or ISCA database as associated with either VSD or general heart disease. Fifteen genes (5 %, 15/285) within CNVs were

associated with a broad spectrum of complicated CHD. Among these15 genes, 7 genes were in “abnormal
interventricular septum morphology” derived from the MGI (mouse genome informatics) database, and nine
genes were associated with cardiovascular system development (GO:0072538).We also found that these VSD-related
candidate genes are enriched in chromatin binding and transcription regulation, which are the biological processes

underlying heart development.

Conclusions: Our study demonstrates the potential clinical diagnostic utility of genomic imbalance profiling in VSD
patients. Additionally, gene enrichment and pathway analysis helped us to implicate VSD related candidate genes.
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Background

Congenital heart defects (CHDs) are the most promin-
ent birth defects, with a prevalence of 4 to 10 per 1000
live births [1]. A ventricular septal defect (VSD) occurs
in more than 1 in 300 live births and is the most common
CHD identified to date [2]. Although nearly 40 % of in-
fants with VSDs can survive without treatment up to the
age of 15 years, VSD patients diagnosed in adulthood may
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experience potentially serious clinical and hemodynamic
problems [3]. Early detection and diagnosis lead to im-
proved prognosis for patients with CHD.

Genomic imbalances detected by karyotype or FISH
explain 9 % to 18 % of neonatal CHD cases [4]. CHD-
related CNVs, identified by chromosomal microarray
analysis (CMA), have been reported on almost every hu-
man chromosome [5-9] and numerical chromosomal
abnormalities such as trisomy 21, trisomy 18 and tri-
somy 13 and also CNVs such as 22q11.2 deletion are
causally related to CHD. Although the causal relation-
ship between CNVs within the size range of 100 kb-1 Mb
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and CHD is incompletely investigated, rare de novo CNVs
were revealed up to 5 % of CHD trios [10].

Some CNV studies focus on one type of CHD such as
syndromic CHD(5], tetralogy of Fallot[8], double outlet
right ventricle[11], thoracic aortic aneurysms and dissec-
tions[12] and isolated congenital heart disease[9]. Aproxi-
mately 10 % of Tetralogy of Fallot CHD patients (TOF)
display an increased genome-wide CNV burden [8, 10].
Hence,while Studies focusing on the involvement of
CNV in CHD development have been reported [5, 7, 8,
12], the complex and heterogeneous phenotypic and
genetic nature of CHD suggest the need for further investi-
gation of their genetic basis, particularly for certain category
of CHD.

The aim of the present study was to detect CHD-asso-
ciated CNVs in Chinese patients with VSD. Although sev-
eral studies had examined the occurrence of CNVs in
Chinese CHD patients [13, 14], the CNVs in the Chinese
patients with VSD have not been particularly investigated.
Detecting the CNVs in patients with VSD may reveal VSD
specific candidate genes and associated pathways.

Methods

Subjects

The subjects were recruited from multi-center hospital-
based CHD cohort between 2000 and 2009. We ran-
domly enrolled 166 unrelated patients (Subject details in
Additional file 1: Table S1). All patients except seven had
VSD phenotype. Every subject underwent complete car-
diac evaluation. Congenital cardiac malformations were
diagnosed by echocardiography and subsequently con-
firmed during surgery when performed. We categorized
cases into two large groups: Isolated VSD (patients with
VSD as the only cardiac defect) and complex VSD (patients
with more than two additional cardiac phenotypes besides
VSD). The additional phenotype besides cardiac phenotype
such as mental defect or developmental disability was not
discussed due to lack of clinical evaluation. The ethics
committee of Fudan University approved the study. Docu-
mented consents were obtained from all participating
patients or their legal guardians.

CNV callings and rare CNVs identification
The Agilent Human Genome CGH microarray 244 k kit
was used for CMA analysis (Agilent Technologies).
Sample-specific CNV regions were identified using two
software packages, Agilent DNA Analytics 4.0 CH3
Module (Agilent Technologies) and Nexus Copy Num-
ber v5.0 (BioDiscovery). Copy number gains or losses
identified by both software packages were further manu-
ally inspected and confirmed.

We interpreted the CNVs hierarchically as shown in
Figure 1. Common CNVs were removed based upon their
frequency in DGV (Database of Genomic Variants) [15, 16]
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and Chinese control data sets which were compiled
from four published data sets including 10 individuals
from Park et al. [17], 779 individuals from Lin et al.
[18], 99 individuals established by SGVP (Singapore
Genome Variation Project) [19] and 80 Han Chinese by
Lou et al. [20]. CNVs with >70 % overlap with the ones
reported in DGV were considered as common CNVs;
CNVs partially (< 30 %) overlapped or with no overlap
with the DGV dataset or other data sets were consid-
ered as rare CNVs. For the rare CNVs, we consulted
the DECIPHER (https://decipher.sanger.ac.uk/) and ISCA
(now as Clingene, https://www.clinicalgenome.org/) data-
bases for evidence of clinical relevance [21]. The Refseq
genes which included in CNVs were identified by UCSC
browser (Human NCBI36/hg18 Assembly).

Validation of small rare CNVs

CNVs with marginal QC values or of small size (< 80 kb)
were selected to be confirmed by multiplex ligation-
dependent probe amplification analysis (MLPA) (MLPA
probes are listed in Additional file 1: Table S2). We also
performed parental testing for 16 probands as listed in
Additional file 1: Tables S3—S4.

Statistical analyses

Statistical analysis was performed using SPSS 17. Two-
side Fisher’s exact test and Student’s ¢-test were performed
for qualitative and quantitative variables respectively.

Identifying CHD-associated genes

In order to identify VSD related genes, we compared the
genes located in our rare CNVs with known CHD candi-
date genes. The Mouse Genome Informatics resource
(MGI, http://www.informatics.jax.org/) can be very inform-
ative for studying disease-related genes in the human. We
used “abnormal interventricular septum morphology” as
the MP term to search for VSD related genes listed in MGI
(MP: 0000281 as shown in the Additional file 1: Figure S1;
http://www.informatics.jax.org/) and identified 147 genes
with 375 genotypes and 416 annotations from MGL In
addition, 202 CHD-related genes were compiled from
other resources: 104 genes from UCSC with the Human
Genome Build 19 (cardiac gene: 76, cardiac transcrip-
tion factor gene: 28), 51 genes from published literature
(non-syndromic and syndromic CHD) and 47 genes
from the CHD wiki. We also collected gene sets from
the term “cardiovascular system development” (GO:
0072358) and candidate pathways involved in cardiac
development such as Wnt, Notch, Hedgehog and FGF by
KEGG and Netpath (http://www.netpath.org/). The CHD-
related pathway selection processes are listed in Additional
file 1: Figure S2. In total, there are a total of 1957 col-
lected genes involved in cardiac related pathways which
were combined as a potentially CHD- related dataset
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Fig. 1 Workflow of CNV analysis and candidate genes discovery. CNV calls by DNA Analytics were performed by using the ADM2 algorithm, with
a sensitivity threshold of 6.0 and a minimum of 5 probes. The QC metrics table was used to check signal intensity and background noise. Above
0.22 of DLR Score (Derivative Log Ratio) was set as the cutoff to avoid false CNVs. 6 cases were removed because of bad quality of data during

the QC filter.6 cases with aneuploid abnormals (Trisomy X and Down syndrome) were not put into further analysis

for further analysis. We compared the above combined
data sets with genes mapping to CNVs detected in VSD
patients.

VSD candidate gene identification and pathway analysis
To define the most promising candidate genes from
above defined gene list, ToppGENE was used as a gene
prioritization and enrichment tool [22]. We used Ingenuity
Pathway Analysis (IPA) to annotate genes encompassed
within VSD-related CNVs for their molecular and cellular
functions and associated pathways. Network scores were
calculated based on the hypergeometric distribution and
Fisher’s exact test.

Results

Chromosomal imbalances in VSD patients

We identified six aneuploid abnormalities: two cases of
trisomy X (47, XXX) and four of trisomy 21. Up to 70 %
of Down syndrome [23]subjects but only 1.3 % of trisomy
X subjects have been reported to display CHD. CHD
features in the trisomy X patients included VSD, ASD
(Atrial septal defect), pulmonic and aortic stenosis co-
arctation [24].

Rare CNVs in VSD patients
There were 1575 CNVs detected in our 154 patient
cohort, with a median size of 310.5 kb (max 33.4 Mb,



Table 1 Summary of rare CNVs identified in CHD patients include genes

sample ID  Gender age Cytoband Chromosome Region Event Interval(kb) Count of Gene Major candidate genes® CHD phenotype  DECIPHER/ISCA/OMIM
(no. of clinical features)®
NAO12 F Ty8m 6p12.1 Chré:55,823,840-55,949,133 Gain 125 1 BMP5 VSD /
NA027 M Ty3m 2g35 Chr2:216,757,058-216,797,948  Gain 41 1 XRCC5 VSD /
NA067 M 7m 4912 Chr4:57,627,423-57,940,932 Gain 314 2 IGFBP7, LOC255130 VSD /
NAO68 F 5y5m  16g22.1 chr16:67,868,480-68,086,257 Loss 218 8 COG8, CYB5B, NIP7, PDF, SNTB2, TGA VSD (20)
TERF2, TMED6, VPS4A

NAO79 F 3yTm 10024.31-g24.32  Chr10:102,953,588-103,040,185 Gain 87 2 LBXT1 VSD VSD (10)
NAOO8 F 2y8m 3g12.1-q12.2 Chr3:101,403,767-101,519268  Gain 116 1 TBC1D23 VSD /
NA082 F 3ylm 3p222 Chr3:37377757-37577933 Gain 201 3 GOLGA4, C30RF35, ITGA9 ASD /

3q26.33-29 Chr3:180469228-198475603 Gain 18006 234 SOX2, MAP3K13, BCL6, TP63, FGF12  ASD /

4q34.3-935.2 Chr4:181,026,511-190,784,769  Loss 9694 76 CASP3, ING2, PDLIM3, SLC25A4, F11  ASD VSD (5)
NA084 F Ty2m 2g36.1 Chr2:222,835,872-223,511,548  Gain 676 6 PAX3 VSD /
NA252 M 4m Xq133 ChrX:73900661-74462483 Gain 562 2 KIAA2022,ABCB7 VSD /

Xqg21.1 ChrX:77,425,233-78,428,001 Loss 1003 " CYSLTR1, GPR174, LPAR4, P2RY10 VSD /
NA380 F 4y7m 16p13.11 Chr16:15,406,764-16,170,797 Gain 764 9 MYH11, NDET VSD ASD (15), ASD (3)
NA423 M 5m 16924.1 Chr16:16,574,972-28,505,961 Loss 100 2 ATP2C2, WFDC1 VSD /
NB1264 M 27d 4p16.1 Chr4:8,270,586-8,498,212 Loss 228 4 ACOX3, C4orf23, HTRA3, SH3TC1 VSD,ASD /
NB245 M Tm 16p13.11 - p11.2  Chr16:16,574,972-28,505,961 Gain 11931 135 CACNG3, CHP2, PLK1, PRKCB, XYLT1 VSD,ASD ASD (15)
NB887 F 4m Xq22.1 Chrx:100,039,582-100,068017  Gain 28 1 XKRX VSDASDPDAPH  /
NB910 M 11d 139133 Chr13:35,777,130-35,835,221 Gain 58 1 NBEA VSD,PDA,PFO /

Xq27.2 ChrX:140,727,218-141,583,235  Gain 856 3 MAGECI, MAGEC2, MAGEC3 VSD,PDAPFO /
NC15 M 5y 20p12.1 Chr20:16,574,972-28,505,961 Gain 120 1 KIF16B VSD ASD,VSD (15)
NC27 F 4y 15g13.1 Chr15:25,833,244-25,871,572 Loss 38 1 OCA2 VSD /
NC28 M 3y 15026.2 Chr15:92,616,792-92,673,355 Loss 57 1 MCTP2 VSD AVSD, CHD (4), ASD
NS176 M 7yTm 7p14.2 Chr7:36657642-36756092 Gain 118 1 AOCAH VSD ASD,VSD

7ylm 14932.12 Chr14:91069401-91230897 Gain 160 2 Cl40rf184, CATSPERB VSD ASD

NS480 M 4y 1931.2 Chr1:190,543,305-190,707,353  Gain 164 1 RGS21 VSD ASD (35)
NS494 M 2m 2q14.2 Chr2:119,275,149-119,375870  Gain 101 1 ENT VSD,PFO,PH ASD (5)
NS548 M 3y 7911.22 Chr7:70,953,860-71,032,938 Loss 79 1 CALNT VSD VSD (15)
NS584 F 8&m 9qg21.32 Chr9:84,859,691-85,387,778 Loss 528 2 FRMD3, RASEF ASD,PS /
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Table 1 Summary of rare CNVs identified in CHD patients include genes (Continued)

NS659 F 12y5m 73132 Chr7:121,449,591-122,397,323  Gain 948 7 AASS, CADPS2, FEZFI1, PTPRZ1 VSD /
NS667 F 1y9m 219223 Chr21:41639464-41733339 Gain %4 3 FAM3BMX2, MX1 VSD ASD (15)
NS8343 M 5m Xp22.2 Chrx:13,472,898-13,530,787 Loss 58 1 EGFL6 VSDPDAASDPFO /

“Major genes means that they are not included all genes involved in the CNVs and the genes in bold are the candidate genes which have evidences derived from previous studies
PReported phenotype in DECIPHER/ISCA/OMIM. Number in parenthesis is the number of features that the patient was affected. ASD, Atrial septal defect; VSD, Ventricular septal defect; CHD, congenital heart disease
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min 6.7 kb), compared with a median size was 52.9 kb
(max 2.1 Mb, min 1.1 kb) in 965 controls. We identified
29 rare genic CNVs (CNV with at leaset one gene map-
ping to the dosage altered region ) in 25 of 153 VSD
cases (16.3 %). Nighteen duplication CNVs involved 172
genes while 10 deletion CNVs affected 113 genes (Fig. 1).
We also detected 32 intergenic CNVs but these were ex-
cluded from further analysis (Additional file 1: Table S9).
24.1 % (7/29) of the genic CNVs were less than 100 kb,
34.4 % (10/29) were from 100 kb to 500 kb and 41.3 %
(12/29) were larger than 500 kb as shown in Additional
file 1: Figure S3. Parental testing revealed that six CNVs
were inherited from unaffected parents, reducing the
likelihood that these are clinically significant. Three
CNVs were confirmed as de novo: one deletion of
57.9 kb at Xp22.2 involving EGFL6 gene (Additional file 1:
Figure S4) and two duplications of 156.0 kb at 14q32.12,
and of 117.8 kb in 7p14.2, which were experimentally
confirmed; the two CNV gains were found in same
subject.

CNVs larger than 1 Mb

Five VSD cases revealed CNVs larger than 1 Mb (as shown
Additional file 1: Table S5). Case 1 and 2 (NS255 and
NS7783) had deletion at 22q11.2 (DiGeorge Syndrome).
Case 3 (NB245) carried an 11.9 Mb duplication at
16p13.11-p11.2 involving 105 genes. This duplication was
detected in a neonate with VSD, ASD and unexplained
seizure. Case 4 (NA082) had a 10 Mb deletion at 4q34.3-
q35.1 and a 18 Mb duplication at 3q26.32-q29. Both
termed 4q loss and 4q syndrome are known to be asso-
ciated with cardiovascular abnormalities [25]. Case 5
(NA252) had a 1 Mb loss at Xq21.1 and deletion at
Xq21.1-q21.31 has been reported in patients with cardiac
and renal anomalies [26]. The Xq21.1 deletion region
encompasses the genes CYSLTRI, GPRI74, LPAR4,
MIR4328, P2RY10 and ZCCHCS.

CNVs putatively associated with VSD

All of the identified 29 rare CNVs, putatively causally as-
sociated with VSDs were placed on the chromosomal

Table 2 Genes involved in CNVs related to in heart development
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map of the genome (Additional file 1: Figure S5). These
CNVs comprised mostly subtelomeric or centromeric
imbalances and distributed on chromosomes such as
2p, 2q, 3p, 4q, 6p, 15q, 16q, 21q and 22q and most of
these CNVs located on chromosomes 2, 3, 4, 7, 16 and
X. The CNVs sizes identified in our VSD study are
much smaller than those deposited in CHD wiki, which
reports three regions (4q-ter, 15q26.2, 16q22) and one
gene (TBXI) related to CHD. Twelve of the 29 CNVs
(41.3 %) affect regions known to be ASD, VSD or general
heart disease-related in DECIPHER and ISCA (Table 1).

CNV comparison in isolated and complex VSD

We compared CNVs within the 100 isolated VSD patients
with those 44 complex VSD patients (Additional file 1:
Table S6). There was a trend towards increased CNV size
in patients with complex VSD, but the difference did not
reach statistical significance. There was no significant
difference in rare CNV numbers (average CNV count
for each case) for either deletions or duplications.

Enrichment of CHD related genes

Several lines of evidence support the enrichment of
CHD related genes within the CNVs detected in VSD pa-
tients. First, we found that PAX3 and LBX1 (in duplications)
and CRKL, GPIBB, PDLIM3, TBX1, TXNRD2 (in deletions)
were annotated in the MGI database and CHD wiki as
associated with CHD. Evidence from the literature and
from GO signal pathway analysis further supported this
notion (Tables 2 and 3). Second, the enrichment ana-
lysis revealed 25 genes of 285 genes within both dupli-
cation and deletion CNVs detected in this study enriched
in transcription factor, chromatin binding and three of five
biological processes associated with heart development or
cardiovascular system development are the main functions
for candidate genes (Table 4). Third, the top two networks
constructed by IPA analysis for the 285 genes include
networks of cardiovascular disease and network of her-
ediary disorder (Score 46: 25 genes) (Fisher's exact test,
P =3.42E-08 to 3.79E-02) (Additional file 1: Table S7).
Top transcription regulators (NANOG, TP53, SOX2,

Data resource Gene number Hit no./total Gene list for gain (172 genes) Gene list for loss (113 genes)
gene in our study in our study

MGl database 147 7/285 PAX3, LBX1 CRKL®, GP1BB®, PDLIMS3, TBX1®,
TXNRD2P

Candidate genes§ 202 9/285 PAX3, LBX1, MYH11, FGF12 CASP3, CRKL®, PDLIM3, TBX1°,
TXNRD2P

Genes derived from GO:0072538(cardiovascular 1957 9/285 PAX3, LBX1, MYH11, PRKCB, CYSLTR1, LPAR4, CRKL®, TBX1°,

system development) IGFBP7 TXNRD2P

SCHD wiki (47 genes), UCSC Genome Browser (104 genes), literatures (51genes); the overlapping genes between different datasets were merged. Pgenes which

were included in CNVs related to DiGeorge syndrome
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Table 3 Genes involved in CNVs related to cell surface receptor signaling pathway and heart development

Known signal pathway® Gene number  Hit no/total  Gene list for gain (172genes)  Gene list for loss (113 genes)
gene in this study in this study

AKT pathway (VEGF, Insulin, MAPK; ErbB) (KEGG) 423 5 CACNG3, CHP2, PRKCB CASP3, CRKL®

FGF pathway (regulation of actin cytoskeleton) (KEGG) 212 ] - CRKL®

Hedgehog-Bmp pathway (KEGG) 56 1 BMP5 -

Notch pathway (Netpath) 100 2 ENT CASP3

Notch pathway (KEGG) 44 0 - -

TGF-BMP pathway (KEGG) 84 ] BMP5 -

Wnt pathway (Netpath) 121 1 PRKCB -

Wnt pathway (KEGG) 264 3 CACNG3,CHP2,PRKCB -

total 1304 14/285

2CHD-related pathway from KEGG and Netpath, the overlapping genes between different datasets were merged

Pgenes which were included in CNVs related to DiGeorge syndrome

POUSFI, IRFI) inferred by IPA analysis were listed in
the Additional file 1: Table S8 and Additional file 1:
Figure S6C. As a homeobox, NANOG regulates several
transcription factors [27] such as EN1, SOX2, LBX1 and
ZFP42 in our dataset (P =4.91E-03), which controls cel-
lular growth, organic growth and development.

Discussion

Genomic imbalance, including known genomic disorders,
contribute to the genetic etiology of congenital malforma-
tions such as CHD. In previous studies, syndromic
chromosome abnormalities explained 6-9 % of CHD
[28]. We found that Down syndrome (4 cases, 2.5 %),

Table 4 Significantly enriched gene ontology (GO) terms from the genes involved in CNVs of VSD patients

D Name Genes Genes Genes in P-value
input  Annotation
Molecular Function
1 GO:0003682 chromatin binding HIRA,SOX2, PRKCB, ING2,TP63, BCL6,PAX3 7 394 1.12E-04
2 GO:0043565  sequence-specific DNA binding PAX3, EN1, SOX2, TBX1, TP63, LBX1, BCL6 7 741 7.04E-03
3 GO:0003700 sequence-specific DNA binding HIRA, EN1, SOX2, PAX3, TBX1, TP63, LBX1, BCL6 8 1052 8.35E-03
transcription factor activity
4 GO:0001071 nucleic acid binding transcription HIRA, ENT, SOX2, PAX3, TBX1, TP63, LBX1, BCL6 8 1053 841E-03
factor activity
Biological Process
1 GO:0007507 heart development MYHT11, TXNRD2, CRKL, FGF12, PDLIM3, TBX1, 9 466 9.36E-06
LBX1,CASP3,PAX3
2 GO:0072358 cardiovascular system development MYHT11,TXNRD2,CRKL,FGF12,PDLIM3,TBX1,LBX1,CASP3, 10 889 1.85E-04
PRKCB,PAX3
3 G0O:0072359 circulatory system development MYH11,TXNRD2,CRKL,FGF12,PDLIM3,TBX1,LBX1,CASP3, 10 889 1.85E-04
PRKCB,PAX3
4 GO:0042127  regulation of cell proliferation SOX2,CASP3,PAX3,BCL6, COMTIGFBP7,LBX1,IL4R TP63,TBX1,CHP2 11 1338 1.21E-03
5 GO:0045596 negative regulation of cell SOX2, MED15, TBX1, TP63, LBX1, IL4RBCL6 7 527 7.52E-03
differentiation
Cellular Component
1 GO:0005667 transcription factor complex SOX2, PAX3, LBX1, ING2,TP63 5 343 740E-03
2 G0O:0044427 chromosomal part BCL6, PLK1, NDE1, ING1, TP63, HIRA 6 596 1.00E-02
Mouse Phenotype
1 MP:0003421 abnormal thyroid gland development  PAX3, TBX1,CRKL 3 14 1.14E-02
2 MP:0020135 abnormal heart ventricle thickness MYH11, TXNRD2, PAX3, LBX1, BCL6 5 126 3.50E-02
3 MP:0006284 absent hypaxial muscle PAX3, LBX1 2 3 371802
4 MP:0004914 absent ultimobranchial body PAX3, TBX1 2 3 371802

P-value: Corrected by Bonferroni and cutoff is 0.05
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DiGeorge syndrome (2 cases, 1.2 %) and Trisomy X
syndrome (2 cases, 1.2 %) contributed to up to 5 % of
cases of VSD, consistent with the previous report [23, 24].
In addition, we identified large CNVs (> 1 Mb) (3/161,
1.9 %) including 4q34.3-q35.1, 3q26.32-q29 and 16p13.11-
p11.2, which are associated with CHD as reported by
DECIPHER and ISCA. Other CNV regions identified in
our study such as 4q-ter, 15q26.2, and 16q22 had also
been reported in the CHD wiki. We did not identify
any significant difference in size, number or genic con-
tent of rare CNVs between complex VSDs and isolated
VSDs. Some previous reports had reported a higher rate
of CNVs carried in patients with CHD plus extracardiac
or developmental abnormalities[5], but some claimed no
significant increase[29]. We believe it likely that the genes
affected by the CNVs are more important to cause VSD
than CNV size or number, but the sample size might be
too small to identify differences between isolated and
complex VSDs.

Our interpretation suggests that critical genes contrib-
ute to the development of CHD by altered expression
due to duplication or deletion CNVs. The genes identi-
fied in both de novo and recurrent CNVs were likely to
be CHD-related genes. For example, we found a de novo
deletion at Xp22.2 including EGFL6. EGFL6 involved in

Table 5 The 18 candidate genes for VSD identified in this study
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the regulation of cell cycle, proliferation and develop-
mental processes has been previously reported as a can-
didate gene for human developmental disorders and is
expressed during embryonic development [30]. 16p13.11
duplication is recurrent in our cohort, it had also been re-
ported to be significantly associated with CHD recently
[31]. MYH11 is the proposed candidate gene at this inter-
val as defects in this gene underlie aortic aneurysm familial
thoracic type 4 (AAT4) [MIM: 132900] and also contribute
to familial thoracic aortic aneurysm and dissection (TAAD)
and patent arterial duct (PDA). Our study suggests that
EGFL6 and MYHII may be dosage sensitive genes in-
volved in embryonic heart development. Furthermore, we
specifically evaluated genes involved in CNVs detected in
patients with VSD. We identified 15 genes previously
known to be associated with CHD or in CHD-related sig-
nal pathways (Tables 2 and 3). Among them, CRKL, TBX1,
TXNRD?2, GP1BB were known to be involved in DiGeorge
syndrome. MYHI11, TXNRD2, PAX3, LBXI and BCL6
were associated with abnormal heart ventricle thickness
(MP: 0020135). BMP5, ENI, PRKCB, CACNG3 and
CHP2 were clustered in CHD related signaling pathways.
Importantly, CASP3, CRKL, FGFI12, LBX1, MYHII,
PDLIM3, TXNRD2 and TBX1 are related to heart develop-
ment (GO: 0007507) and also cardiovascular system

Gene Gene Annotation CNV type Hits into gene set Phenotype(individual number)
CRKL v-crk avian sarcoma virus CT10 oncogene homolog-like loss LLS'ON iVSD (2) cVSD(1)
LBX1 ladybird homeobox 1 gain $40 iVSD

PAX3 paired box 3 gain 20 iVSD

TBX1 T-box 1 loss e iVSD (2) cVSD(1)
PDLIM3 PDZ and LIM domain 3 loss - ASD

TXNRD2 thioredoxin reductase 2 loss . iVSD (2) cVSD(1)
GP1BB glycoprotein Ib (platelet), beta polypeptide loss LS iVSD (2) cVSD(1)
CASP3 caspase 3, apoptosis-related cysteine peptidase loss *xt ASD

MYHT1 myosin, heavy chain 11, smooth muscle gain 20 ivSD

BMP5 bone morphogenetic protein 5 gain * 420 iVSD

ENT engrailed homeobox 1 gain * 420 cVsD

PRKCB protein kinase C, beta gain * 420 cVsD

FGF12 fibroblast growth factor 12 gain *0 ASD

HIRA histone cell cycle regulator loss 480 iVSD (2) cVSD(1)
Sox2 SRY (sex determining region Y)-box 2 gain 40 ASD

DGCR2 DiGeorge syndrome critical region gene 2 loss Ao iVSD (2) cVSD(1)
PLKT polo-like kinase 1 gain 40 cVsD

EGFL6 EGF-like-domain, multiple 6 loss A de novo cVsD

Note: = MGI database, ¢ Genes within Geneset reported in literature and CHD wiki

A Prioritized by Gene set from literature and CHD wiki
*Genes within GO and KEGG pathway

4 Prioritized by Gene set from GO and KEGG pathway
o Genes significantly enriched by IPA

iVSD: isolated VSD; cVSD: complex VSD
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development (GO: 0072358). It was inferred that these
candidate genes might have effects on a wide range of car-
diac tissues and regulate heart development at different
stages.

Two types of molecular functions including chromatin
binding and transcription factor complex were revealed
through unbiased gene priority and enrichment analysis
for all genes within CNVs of VSD patients and 5 bio-
logical processes via GO annotations, which indicated to
be related to VSD. Transcription factors including LBX1,
PAX3, EN1, SOX2 and TBX1 with confirmed effects on
cardiogenesis were detected in our data set. LBX1 is
a homeodomian-containing transcription factor re-
quired for the diversification of heart precursor cells
in Drosophila and its expression had been described
in cardiac neural cells and in migrating muscle pre-
cursor cells [32]. The overexpression of LbxI mRNA
resulted in enlarged somites, an increase in cell prolif-
eration by upregulating MyoD and lack of differenti-
ated muscle [33]. PAX3, as a key regulatory factor in
controlling the migrating of myogenic precursor cells,
genetically acted in the upstream pathways of LbxI and
Msx1. Pax3 also directly activate MyoD expression. The
rising levels of Pax3 and LbxI result in enlarged muscle
precursor cell population and then increase the bias for
myogenic differentiation [34]. Additionally, a transcrip-
tion regulation loop (NANOG-SOX2-OTC4) associated
with downstream cascade regulation on GATA4, NKX2.5,
MESP to modulate heart development (Additional file 1:
Figure S6C). As the first formed organ, the genesis of
heart involves a very complex series of morpho-
genetic interactions [35] and the transcription factors
are essential for cardiogenesis at different embryonic
stages.

As reported in the recent exome sequencing of CHD,
de novo mutations in chromatin markers played a vital
role in regulating cardiac development genes [36]. Seven
genes (HIRA, SOX2, PRKCB, ING2, TP63, BCL6 and
PAX3) in this study were enriched in chromatin binding
pathway (GO: 0003682) (P =1.12E-04)which are worthy
of being investigated in more detail in future studies.

Based on our cohort, chromosomal imbalances account
for 5.2 % (8/154) and rare CNVs account for 16.9 % (26/
154) of the cases. No significant difference was detected in
terms of CNV diagnostic yield between complex and
isolated VSD patients, indicating that both populations
should be tested for genomic imbalances. Although the
VSD-related candidate genes (as shown in Table 5) need
further studies to confirm their involvement in VSD
pathogenesis, our findings demonstrated that high-density
microarray analysis is a useful tool to uncover potential
underline genomic causes for VSDs and extended enrich-
ment and pathway analysis indicate possible convergence
on pathways during cardiogenesis.

Page 9 of 10

Conclusions

In this pilot study, we identified genomic imbalances
had an important contribution to the genetic burden of
patient with VSD, which was consistent with the previ-
ous report in CHD. The rare CNVs VSD patients carried
were interpreted and classified for clinical utility by
comparing the population CNV database and patient-
derived CNV database. CNV analysis of VSD patient in
this study firstly showed genetic status of VSD on copy
number variant and no significant difference between
isolated VSD and complex VSD indicated that both pop-
ulations need equal CNV tests. Furthermore, we applied
gene enrichment and pathway analysis for understanding
the relevant genes involved and the potential relevance
of CNV with heart development, which may delineate
the genetic etiology and pathways of VSDs.

Additional file

[ Additional file 1: Supplemental material. (DOCX 4259 kb) ]
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