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Abstract

Background: High-throughput biotechnologies have been widely used to characterize clinical samples from
various perspectives e.g., epigenomics, genomics and transcriptomics. However, because of the heterogeneity of
these technologies and their outputs, individual analysis of the various types of data is hard to create a comprehensive
view of disease subtypes. Integrative methods are of pressing need.

Methods: In this study, we evaluated the possible issues that hamper integrative analysis of the heterogeneous disease
data types, and proposed iBFE, an effective and efficient computational method to subvert those issues from a feature
extraction perspective.

Results: Strict experiments on both simulated and real datasets demonstrated that iBFE can easily overcome issues
caused by scale conflicts, noise conflicts, incompleteness of patient relationships, and conflicts between patient
relationships, and that iBFE can effectively combine the merits of DNA methylation, mRNA expression and microRNA
(miRNA) expression datasets to accurately identify disease subtypes of significantly different prognosis.

Conclusions: iBFE is an effective and efficient method for integrative analysis of heterogeneous genomic data to
accurately identify disease subtypes. The Matlab code of iBFE is freely available from http://zhangroup.aporc.org/iBFE.

Keywords: DNA methylation, Gene expression, miRNA expression, Integration, Diagnosis, Prognosis, Cancer
stratification

Background
With the development of high-throughput genomic
technologies, it has become easy and cost-effective to
comprehensively characterize clinical samples by a wide
range of genomic data, e.g., depicting cancer samples
from epigenomic, genomic and transcriptomic perspectives.
Large-scale efforts conducted by The Cancer Genome Atlas
(TCGA) have already applied this strategy to study over 20
cancers from thousands of patients, with a large amount of
epigenomic, genomic, transcriptomic and clinical data col-
lected from the same patients [1–4]. While the availability
of such a wealth of well-structured data makes the status of
patients be characterized comprehensively and subtly, it
also presents important challenges for the analysis
methodology. Because of the great heterogeneity of
technologies and biological data, individual analysis or

simple concatenation of all the available datasets often
cannot generate desired results [5]. Although independ-
ent analyses of single datasets were commonly adopted,
the inconsistent conclusions underscore the necessity
of unbiased integrative methods. Due to the exacer-
bated “curse of dimensionality” [6], i.e., the number of
measures is greatly larger than the number of patients,
direct concatenation may generate worse results. The
currently developed integrative methods for analysis of
multiple genomic data of the same patients can gener-
ally be classified into three groups [7, 8]. The first
group of methods is based on matrix factorization [9–13].
The second group of methods is based on Bayesian
models [14–16]. A major issue with the factorization and
Bayesian approaches is that they generally require proper
data preprocessing and normalization techniques. The
computation of these approaches is also complicated. Re-
cently, Wang et al. proposed a new type of integrative
methods based on network fusion, which achieves the
state-of-the-art performance regarding both accuracy and
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computational speed as demonstrated in [5]. However, it
is still unknown what factors interfere with integrative
analysis and what are the pitfalls of the current integrative
analytical methodology while dissection of issues that
interfere with integrative analysis and identification of al-
ternative methods is essential for boosting the translation
of advances of high-throughput genomic technologies to
personalized medicine.
In this study, we explicitly interrogated factors that in-

hibit integrative analyses of multiple data types for both
disease class discoveries and classifications [17]. By iso-
lating those possible factors, we identified that the scales
of measurement, the noise types and sizes, and the com-
pleteness and concordance of patient relationships in
different data types are important issues that prevent in-
tegrative. And the currently available methods cannot
overcome all the issues. Motivated by the great power of
feature extraction methods for unbiased and unsuper-
vised analyses in single datasets [18], we proposed a
novel integrative approach Based on Feature Extraction
(referred to iBFE below). Simulations suggested that
iBFE can overcome all the issues identified in this study.
Applications of iBFE to integrating the DNA methyla-
tion, mRNA expression and miRNA expression datasets
of lung and kidney cancers produced by TCGA suggest
that iBFE not only can successfully integrate the diverse
data types but also can identify disease subtypes that
have distinct survival profiles. Because iBFE is simple,
flexible, unsupervised and unbiased, it is readily to
extend to integrate more types of genomic datasets to
improve the disease diagnosis and prognosis.

Methods
Overview of the iBFE method
The iBFE method is motivated by the observation that
the accuracy of disease class discovery and classification
can be significantly improved in the feature space ex-
tracted from the original data [18–20]. The pipeline of
iBFE consists of three steps: i) extract features from indi-
vidual type of datasets; ii) concatenate the extracted fea-
tures; iii) extract new features from concatenated
features. When the three steps were finished, the newly
constructed features of patients can be used as inputs to
do disease class discoveries and classifications by other
algorithms e.g., k-means [21, 22] and support vector
machines [23, 24].
First, iBFE uses Pearson and Spearman correlations

to extract features from individual data types. Given a
single dataset XMxN

(1) , in which xij
(1) represents the j-th

variable of the i-th patient (i ranged from 1 to M, and j
ranged from 1 to N), PMxM

(1) and SMxM
(1) are constructed

from X(1). P(1) is the similarity matrix of patients con-
structed by Pearson correlation coefficients [25, 26],
i.e., pab

(1) is the Pearson correlation coefficient of xa-
(1) and

xb-
(1). Here xa-

(1) and xb-
(1) represent values of all the vari-

ables of the a-th and b-th patients, respectively. Similar
to P(1), S(1) is the similarity matrix of patients con-
structed by Spearman correlation coefficients [27, 28].
The advantage of Pearson correlation coefficients in
feature extraction has been demonstrated and validated
previously [18]. The introduction of Spearman correl-
ation coefficients here is to employ its distribution-
independent property, which is important for handling
issues caused by scale and noise during integration.
Both of Pearson correlation coefficients and Spearman
correlation coefficients have values ranged from −1 to
1, which can provide consistent scales for different data
types.
Given K types of datasets, in the second step, P(k)

and(k), k = 1,…,K, are concatenated into YMx2MK, i.e.,
YMx2MK = [P(1)S(1) … P(k)S(k) … P(K)S(K)], where the rows of
Y represent patients while the columns of Y are the ex-
tracted features by Pearson correlation coefficients and
Spearman correlation coefficients. Because P(k) and S(k)

are naturally normalized to the region from −1 to 1, con-
catenation at this step will not suffer from issues encoun-
tered during direct concatenation of the original datasets.
In the third step, a new similarity matrix of patients

ZMxM is constructed by calculating the Pearson correl-
ation coefficients of the rows of Y, i.e., zij is the Pearson
correlation coefficient of yi- and yj-, where yi- and yj-
represent the i-th and j-th rows of Y, respectively. ZMxM

is the final features extracted by iBFE from the K types
of original datasets. In practice, the original datasets
generally consist of thousands of variables because
thousands of genes are measured at the epigenomic,
genomic and transcriptomic levels by high-throughput
biotechnologies. By mapping the original datasets into
feature space spanned by profiles of patient similarities,
iBFE extracts the patterns embedding within patient re-
lationships. Further, the calculation expense is also
greatly reduced.
In summary, the algorithm of iBFE can be outlined as

follows:

� Step I: calculate P(k) and S(k) for X(k), k = 1,…,K;
� Step II: construct Y = [P(1) S(1) … P(k) S(k) … P(K)

S(K)];
� Step III: construct Z by calculating the Pearson

correlation coefficients of rows of Y.

Here we named the iBFE using both Pearson and
Spearman correlation coefficients as iBFE1. To evaluate
the performance of iBFE that only employs Pearson or
Spearman correlation coefficients, we also constructed
iBFE2 that only uses Pearson correlation coefficients
and iBFE3 that only uses Spearman correlation
coefficients.

Ren et al. BMC Medical Genomics  (2015) 8:78 Page 2 of 12



Simulating datasets that dissect possible issues
interfering with integration
We evaluated the factors that may affect integration of
different types of datasets for disease class discovery and
classification by simulation. Because simulation can
highlight one possible factor while controlling the influ-
ence of other factors, it provides an ideal tool to evaluate
the impacts of single factors on integration although
some simulations may be not quite realistic. According
to our experience, we hypothesize that the following fac-
tors that may affect integrative analyses: i) scales of mea-
surements in different datasets; ii) noise types of
different datasets; iii) noise sizes; iv) completeness of pa-
tient relationships that is revealed by single datasets; v)
concordance of patient relationships revealed by each
dataset. To evaluate their roles during integrative ana-
lyses, we constructed five simulated datasets (Fig. 1).
By simulated dataset 1 (SD1), we evaluated the im-

pacts of scale conflicts of measurements on integrative
analyses. We simulated 100 patients that are character-
ized by 100 variables for simplicity. The first 50 patients
belong to cluster 1, with the first 50 variables all one and
the other 50 variables all zero. The second 50 patients
belong to cluster 2, with the first 50 variables all zero

and the other 50 variables all one. All the 100x100 mea-
surements are disturbed by noise sampling from a stand-
ard normal distribution. We named this prototype data
as data 0 (SD1-D0), the hidden real data. Two types of
observed data are generated from SD1-D0. Type 1 of
SD1 (SD1-T1) is constructed by transforming SD1-D0 to
its qth power, i.e., xij

(SD1-T1) = (xij
(SD1-D0))q. Type 2 of SD1

(SD1-T2) is constructed by xij
(SD1-T2) = q^(xij

(SD1-D0)). Here
q is a parameter to control the scale difference between
the two data types. The power-law and exponential func-
tions are used to simulate the issues caused by scales of
different measurements.
By simulated dataset 2 (SD2), we evaluated the im-

pacts of different noise types on integrative analyses.
The prototype SD2-D0 is the same as SD1-D0 ex-
cept that the noise is not added. The observed SD2-
T1 and SD2-T2 are constructed based on SD2-D0 by
adding noise sampled respectively from a normal
distribution with means zero and standard deviation
q and from a uniform distribution from zero to q,
where q is the parameter to control the size of
noise.
By simulated dataset 3 (SD3), the impacts of different

noise sizes are evaluated. The prototype SD3-D0 is the

Fig. 1 Graphic representations of the simulation process. A total of five simulated datasets were generated. Each dataset was simulated by firstly
constructing two prototype data types and then adding noise (represented by the shadows in the figure with different shadow types representing
different noise types). Simulated dataset 1 (SD1) simulated the impacts of different scales on the integrative analyses through scaling in different ways
of the same prototype dataset adding the same type and size of noise. SD2 simulated the impacts of different types of noise on the
integrative analyses through adding different types of noise to the same prototype dataset. SD3 simulated the impacts of different sizes of
noise through adding different sizes but the same type of noise to the same prototype dataset. SD4 simulated the impacts of incompleteness of patient
relationships through constructing partially clustered prototype datasets. SD5 simulated the impacts of conflicting patient relationships
through constructing conflicting clustered prototype datasets
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same as SD2-D0. The observed SD3-T1 and SD3-T2
are constructed based on SD3-D0 by adding noise sam-
pled from a normal distribution with means zero and
different standard deviations.
By simulated dataset 4 (SD4), we evaluated the im-

pacts of incomplete patient relationships embedded
in single data types on integrative analyses. Two
prototype datasets, i.e., SD4-D0-1 and SD4-D0-2, are
constructed. SD4-D0-1 simulates 100 patients by 100
variables for simplicity, in which the first 50 patients
form a cluster with the first 50 variables all one and
the other 50 variables all zero. The relationships of
the other 50 patients are not defined in SD4-D0-1
and the corresponding variables are all zero. In SD4-
D0-2, the relationships of the first 50 patients are
not defined (with all the corresponding variables
zero) but the other 50 patients are defined as an-
other cluster (with the first 50 variables all zero and
the other 50 variables all one). SD4-D0-1 and SD4-
D0-2 together define the complete relationship of
the 100 patients. SD4-T1 and SD4-T2 are con-
structed from SD4-D0-1 and SD4-D0-2 respectively
by adding noise sampled from a normal distribution
with means zero and standard deviation q.
By simulated dataset 5 (SD5), the impacts of con-

flicting patient relationships embedded in different
data types are examined. Two prototype datasets,
i.e., SD5-D0-1 and SD5-D0-2, are constructed. SD5-
D0-1 simulates 100 patients by 100 variables for
simplicity, in which the first 50 patients form cluster
1 with the first 50 variables all one and the other 50
variables all zero, whereas the other 50 patients form
cluster 2 with the first 50 variables all zero and the
other 50 variables all one. In SD5-D0-2, the first 30
patients and the last 30 patients form a cluster and
the middle 40 patients form another cluster. SD5-
D0-1 and SD5-D0-2 define two clusters individually
but together they define four clusters of the 100 pa-
tients. SD5-T1 and SD5-T2 are constructed from
SD5-D0-1 and SD5-D0-2 respectively by adding
noise sampled from a normal distribution with
means zero and standard deviation q.
Real datasets generally have many noisy features that

are helpless to identify disease subtypes and many pa-
tients that cannot be definitely classified to a certain
disease subtype. And different disease subtypes also
have different sizes. We constructed another five realis-
tic simulation datasets by adding these properties to
SD1-SD5. Based on SD1-SD5, the size of the second
disease subtype was doubled, 50 unclassified patients
were added, and additional features (10 times of the
number of informative features) that were sampled
from the normal distributions were added to each sim-
ulated datasets.

Evaluating iBFE and other integrative methods on
simulated datasets
We use three types of metrics to evaluate those factors
interfering with integrative analyses and the performance of
various integrative methods to overcome the interfering
factors in different situations. The first type of metrics ex-
amines the intra-class consistency and inter-class discrimin-
ation of patients based on the respective features
constructed by individual integrative methods. Two mea-
sures are employed: Pearson correlation coefficients and
the Gaussian kernel constructed based on the Euclidean
distance of the extracted features. The second type of
metric examines the performance of each integrative
method for disease class discovery, i.e., clustering patients
into subtypes. The widely used k-means algorithm (imple-
mented in Matlab 8.1) is applied 1000 times to the features
extracted by each integrative method with k = 2 on SD1-4
and k = 4 on SD5. The clustering scheme with the mini-
mum sum of point-to-centroid distances is selected as the
final clustering for evaluation. Normalized mutual informa-
tion between the true clusters and each clustering scheme
generated by different integrative methods are calculated to
demonstrate their performance [5]. The third type of metric
evaluates the performance of each integrative method for
predicting disease classes of patients when the disease sub-
types of some patients are known. The widely used random
forest algorithm [29] is used as the classifier because ran-
dom forest is robust and accurate and can be applied to
both linearly and nonlinearly classified situations. To re-
duce biases caused by over-fitting, the leave-one-out cross-
validation scheme is used [30].
Three integrative analysis methods are included in the

evaluation, i.e., direct concatenation [5], similarity network
fusion (SNF) [5] and iBFEs. Direct concatenation is in-
cluded because it is the most intuitive method to integrate
various types of datasets to comprehensively characterize
diseases. Inclusion of direct concatenation can obviously il-
lustrate the impacts of those suspicious factors on integra-
tive analyses. SNF is the state-of-the-art algorithm recently
proposed for integrative analyses [5], which demonstrates
excellent performance in combining multiple genomic
datasets to predict subtypes and survival of various cancer
patients. Especially, SNF is demonstrated to outperform
other integrative methods like iCluster [31] which is based
on pre-selection of genes. Direct concatenation was imple-
mented by the matrix concatenation operation in Matlab.
The Matlab code of SNF was downloaded from http://
compbio.cs.toronto.edu/SNF/SNF/Software.html.

Evaluating iBFE on the DNA methylation, mRNA
expression and miRNA expression datasets of lung and
kidney cancers produced by TCGA
The DNA methylation, mRNA expression and miRNA
expression datasets of lung squamous cell carcinoma
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(106 patients) and kidney renal clear cell carcinoma (122
patients) produced by TCGA are included to evaluate
the performance of iBFE on real datasets [1, 4]. These
two TCGA datasets are also involved in the evaluation
of performance of SNF and other integrative methods
[5]. Because TCGA repository contains multiple plat-
forms for each data type, the platform corresponding to
the largest number of available individuals and describ-
ing both tumor samples and controls whenever possible
was enrolled in data building. For expression data, the
Broad Institute HT-HG-U133A platform was included
in the lung cancer dataset, and the UNC-Illumina-
Hiseq-RNASeq platform was included in the kidney
cancer dataset. For miRNA expression data, the
BCGSC-Illumina-GA-miRNAseq platform was included
in the lung and kidney cancer datasets. For the methyla-
tion data, the JHU-USC-Human-Methylation-27 plat-
form was included in both datasets. Patients’ clinical
information was also included to evaluate the prognostic
power of the proposed integrative analysis method.
Three types of metrics are used to evaluate the per-

formance of iBFE. The first type of metrics also exam-
ines the intra-class consistency and inter-class
discrimination of patients and the Pearson correlation
coefficients and Euclidean distances are employed. Be-
cause the true clustering schemes are not available for
these two real datasets, the second and third types of
metrics used on the simulated datasets cannot be used
again. We proposed an alternative measure to evaluate
the performance of iBFE for disease class discovery and
prediction. First, k-means is applied 1000 times to obtain
the clustering scheme on each cancer dataset with k ran-
ging from 2 to 10. Then the k-means clustering scheme
that is the most stable is selected as the true subtypes of
patients to calculate the leave-one-out accuracy of the
iBFE features, which serves as the second type of evalu-
ating metric. The third type metric is to examine
whether the integrative analyses can identify disease sub-
types that have significantly different survival probability.
Although factors out of the genomic measurements may
also affect survival probability, prognosis prediction
based on genomic data may be helpful for clinicians.

Results
Factors interfering with integrative analyses highlighted
by simulations
We evaluated the performance of the intuitive direct
concatenation method and the state-of-the-art method
SNF on each type of simulated datasets. Given the con-
trolling parameters, the simulations were repeated 100
times, and the averages of evaluating metrics were re-
corded for comparison. We observed that all the five
factors can interfere with integrative analyses, influen-
cing all the metrics including intra-class consistency,

inter-class discrimination and accuracy of clustering and
classification.
The different scales of two data types interfere with in-

tegrative analyses significantly when the controlling par-
ameter q becomes large. When q is small, the scales of
two data types are close to each other. And the two data
types can be treated as two replicates of the same data-
set. Thus, both direct concatenation and SNF can clearly
identify the true patient relationships and demonstrate
good performance for both class discovery and classifica-
tion. However, when q is large, although direct concat-
enation and SNF still demonstrate acceptable
discrimination of higher intra-class patient similarity
than that of inter-class, the accuracy of clustering by k-
means based on either the concatenated features or the
constructed features by SNF is significantly reduced. For
example, when q = 20 (Fig. 2a and Table 1), the normal-
ized mutual information between clustering scheme pro-
duced by direct concatenation and the true patient
clustering scheme is only 0.0354, whereas the normal-
ized mutual information between clustering scheme pro-
duced by SNF and the true scheme is 0.00519.
Therefore, scale issues significantly impair the accuracy
of clustering based on multiple data types. For disease
class prediction, direct concatenation demonstrates a
good performance (94 % accuracy) when q = 20 while
SNF shows dissatisfied performance (52 % accuracy).
The noise types and sizes also influence the integration

of different data. Direct concatenation generally pro-
duces worse clustering and classification results than
those based on single data (Fig. 2b and c and Table 1).
Although SNF can sometimes improve the classification
accuracy in leave-one-out cross-validation, the accuracy
of clustering is significantly reduced (Table 1).
When the complete patient relationships are defined

only by the combination of different data types and indi-
vidual data type reveals only partial information of pa-
tient relationships, it is demonstrated that direct
concatenation can significantly improve the intra-class
consistency, the inter-class discrimination, and the ac-
curacy of clustering and classification (Fig. 2d and
Table 1). SNF also performed well with this situation,
with the accuracy of classification slightly better than
that of direct concatenation. However, the clustering ac-
curacy of SNF is much lower than that of direct concat-
enation (Fig. 2d and Table 1).
When the patient relationships are conflictingly de-

fined by the different data types, patients are in fact clus-
tered to more than one class. For example, in SD5
(Fig. 2e), data1 defines two classes and data2 also defines
two classes. However, the two clustering schemes are
conflicting and in fact the patients form four distinct
classes. The performance of direct concatenation is af-
fected in this situation, with both the accuracy of
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clustering and classification reduced significantly (Fig. 2e
and Table 1). In particular, the leave-one-out accuracy of
classification is reduced to unsatisfied 63 %. SNF can ob-
tain better classification accuracy (93 %) but the cluster-
ing accuracy is unsatisfied. The normalized mutual
information between the true clustering scheme and the
SNF clustering results became as low as to 0.12 (Fig. 2e
and Table 1). Therefore, conflicting patient relationships
defined by different data types impair the performance
of both direct concatenation and SNF.
In summary, the performance of direct concatenation

seems to be resistant to the incompleteness of patient
relationships of individual data types, but it can be heav-
ily affected by the discrepancy of scales, noise types,
noise sizes, and the conflicts of the patient relationships.
SNF significantly improves the classification accuracy in
the situations of incomplete and conflicting patient rela-
tionships, but its clustering performance is heavily af-
fected by these factors.

Performance of iBFE on simulated datasets
We then applied iBFEs to the simulated datasets to
evaluate whether iBFE can surmount these disturbing
factors. On SD1, i.e., datasets that simulate scale issues,
iBFE1 achieves better results than direct concatenation
and SNF, regarding all the evaluation metrics including

intra-class consistency, inter-class discrimination and ac-
curacy of clustering and classification (Fig. 2a and
Table 1). The leave-one-out classification accuracy of
iBFE1 is comparable to or better than direct concaten-
ation, and the clustering accuracy of iBFE1 also approxi-
mates to 1, significantly higher than those of direct
concatenation and SNF. On SD2 and SD3, i.e., datasets
that simulate different noise types and sizes, iBFE1 also
outperforms direct concatenation and SNF regarding al-
most all the evaluation metrics (Fig. 2b and c and
Table 1). On SD4 that simulates incomplete patient
relationships, iBFE1 demonstrated better intra-class
consistency and inter-class discrimination but the accur-
acy of clustering and classification is slightly lower than
those of direct concatenation and SNF (Fig. 2d and
Table 1). On SD5 that simulate conflicting patient rela-
tionships, iBFE1 outperformed direct concatenation and
SNF regarding almost all the metrics (Fig. 2e and
Table 1). On those realistic simulation datasets, iBFE1
also demonstrated superior performance (Fig. 3). iBFE2
that uses only Pearson correlation coefficients and iBFE3
that uses only Spearman correlation coefficients also
demonstrated similar performance compared to iBFE1
that uses both Pearson and Spearman correlation coeffi-
cients (Figs. 2 and 3 and Table 1). Because iBFE1 uses
more information than iBFE2 and iBFE3, it is generally

Fig. 2 Heatmaps of patient similarity on simplistic simulation datasets. Patient similarity was measured by Pearson correlation coefficients. A, results on
SD1 (issue of scales); B, results on SD2 (issue of noise types); C, results on SD3 (issue of noise sizes); D, results on SD4 (issue of incomplete
patient relationships); E, results on SD5 (issue of conflict patient relationships). iBFE1: integration by using both Pearson and Spearman correlation
coefficients; iBFE2: integration by using only Pearson correlation coefficients; iBFE3: integration by using only Spearman correlation coefficients
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Table 1 Performance comparison of different integrative analyses on simulated datasets. The average of each metric was
presented and the standard deviation was not shown because the metric values are very stable between different numerical
repeats

Scale issue Data1 Data2 Concatenation SNF iBFE1 iBFE2 iBFE2

PCCintraclass 0.023 ± 0.0011 0.025 ± 0.0019 0.031 ± 0.0034 0.17 ± 0.0067 0.30 ± 0.012 0.23 ± 0.014 0.28 ± 0.015

PCCinterclass −0.0018 ± 0.00021 −0.0067 ± 0.00033 0.0068 ± 0.00035 0.15 ± 0.0054 −0.30 ± 0.013 −0.21 ± 0.015 −0.26 ± 0.015

PCCintraclass-PCCinterclass 0.024 ± 0.0014 0.031 ± 0.0020 0.024 ± 0.0035 0.021 ± 0.012 0.60 ± 0.022 0.44 ± 0.024 0.54 ± 0.025

Simintraclass 0.02 ± 0.0023 0.02 ± 0.0022 0.02 ± 0.0023 0.97 ± 0.004 0.32 ± 0.011 0.23 ± 0.012 0.29 ± 0.010

Siminterclass 0 ± 0.0 0 ± 0.0 0 ± 0.0 0.97 ± 0.005 0.22 ± 0.012 0.17 ± 0.013 0.22 ± 0.013

Simintraclass-Siminterclass 0.02 ± 0.0023 0.02 ± 0.0022 0.02 ± 0.0023 0.00057 ± 0.0011 0.10 ± 0.022 0.06 ± 0.025 0.07 ± 0.023

ACC_rfLOO 0.59 ± 0.057 0.95 ± 0.032 0.94 ± 0.045 0.52 ± 0.062 0.99 ± 0.035 0.99 ± 0.036 0.99 ± 0.036

NMI_kmeans 0.035 ± 0.0085 0.035 ± 0.0089 0.035 ± 0.0093 0.0052 ± 0.0012 0.93 ± 0.054 0.92 ± 0.051 0.93 ± 0.055

Noise type

PCCintraclass 0.025 ± 0.0031 0.066 ± 0.0022 0.13 ± 0.014 0.013 ± 0.0029 0.32 ± 0.034 0.23 ± 0.030 0.31 ± 0.031

PCCinterclass −0.0040 ± 0.00097 −0.049 ± 0.0012 0.097 ± 0.0023 −0.011 ± 0.0058 −0.32 ± 0.031 −0.22 ± 0.029 −0.29 ± 0.033

PCCintraclass-PCCinterclass 0.029 ± 0.0032 0.12 ± 0.0024 0.033 ± 0.016 0.024 ± 0.0067 0.64 ± 0.061 0.45 ± 0.059 0.60 ± 0.063

Simintraclass 0.02 ± 0.0023 0.02 ± 0.0025 0.02 ± 0.0026 0.99 ± 0.0007 0.27 ± 0.012 0.25 ± 0.015 0.28 ± 0.013

Siminterclass 0 ± 0.0 0 ± 0.0 0 ± 0.0 0.99 ± 0.0014 0.16 ± 0.009 0.15 ± 0.011 0.16 ± 0.011

Simintraclass-Siminterclass 0.02 ± 0.0023 0.02 ± 0.0025 0.02 ± 0.0026 0.00021 ± 0.0020 0.11 ± 0.020 0.10 ± 0.026 0.12 ± 0.023

ACC_rfLOO 0.54 ± 0.023 0.98 ± 0.015 0.97 ± 0.021 0.93 ± 0.013 0.96 ± 0.015 0.95 ± 0.016 0.96 ± 0.018

NMI_kmeans 0.015 ± 0.0021 0.82 ± 0.0023 0.024 ± 0.0033 0.0042 ± 0.00056 0.83 ± 0.017 0.82 ± 0.018 0.82 ± 0.015

Noise size

PCCintraclass 0.023 ± 0.0031 0.048 ± 0.0015 0.026 ± 0.0033 0.0070 ± 0.00067 0.13 ± 0.038 0.09 ± 0.023 0.11 ± 0.031

PCCinterclass −0.0041 ± 0.00009 −0.028 ± 0.0012 −0.0071 ± 0.00013 −0.0045 ± 0.00021 −0.13 ± 0.037 −0.08 ± 0.025 −0.10 ± 0.033

PCCintraclass-PCCinterclass 0.027 ± 0.0031 0.076 ± 0.0024 0.033 ± 0.0034 0.012 ± 0.00069 0.26 ± 0.065 0.17 ± 0.049 0.21 ± 0.061

Simintraclass 0.02 ± 0.0014 0.02 ± 0.0011 0.02 ± 0.0015 0.99 ± 0.00002 0.26 ± 0.015 0.19 ± 0.016 0.23 ± 0.017

Siminterclass 0 ± 0.0 0 ± 0.0 0 ± 0.0 0.99 ± 0.00003 0.20 ± 0.017 0.16 ± 0.016 0.18 ± 0.018

Simintraclass-Siminterclass 0.02 ± 0.0014 0.02 ± 0.0011 0.02 ± 0.0015 0.00016 ± 0.0006 0.06 ± 0.027 0.03 ± 0.030 0.05 ± 0.033

ACC_rfLOO 0.59 ± 0.051 0.84 ± 0.034 0.82 ± 0.054 0.86 ± 0.041 0.91 ± 0.052 0.90 ± 0.053 0.91 ± 0.055

NMI_kmeans 0.024 ± 0.0081 0.58 ± 0.043 0.028 ± 0.0097 0.0019 ± 0.00091 0.56 ± 0.062 0.55 ± 0.055 0.57 ± 0.063

Partial clustering

PCCintraclass 0.049 ± 0.0038 0.046 ± 0.0042 0.06 ± 0.0021 0.027 ± 0.0023 0.13 ± 0.05 0.10 ± 0.04 0.12 ± 0.06

PCCinterclass 0.0010 ± 0.00085 −0.0011 ± 0.00092 −0.016 ± 0.0034 −0.025 ± 0.0026 −0.11 ± 0.023 −0.10 ± 0.024 −0.12 ± 0.025

PCCintraclass-PCCinterclass 0.048 ± 0.0043 0.048 ± 0.0047 0.079 ± 0.0070 0.053 ± 0.0049 0.24 ± 0.067 0.20 ± 0.062 0.24 ± 0.073

Simintraclass 0.02 ± 0.0041 0.02 ± 0.0044 0.02 ± 0.0063 0.99 ± 0.00011 0.27 ± 0.019 0.23 ± 0.020 0.25 ± 0.022

Siminterclass 0 ± 0.0 0 ± 0.0 0 ± 0.0 0.99 ± 0.00012 0.21 ± 0.021 0.18 ± 0.021 0.20 ± 0.021

Simintraclass-Siminterclass 0.02 ± 0.0041 0.02 ± 0.0044 0.02 ± 0.0063 0.00040 ± 0.00022 0.061 ± 0.033 0.052 ± 0.035 0.057 ± 0.038

ACC_rfLOO 0.86 ± 0.028 0.87 ± 0.026 0.93 ± 0.016 0.96 ± 0.029 0.90 ± 0.023 0.89 ± 0.031 0.91 ± 0.035

NMI_kmeans 0.65 ± 0.033 0.61 ± 0.032 0.90 ± 0.028 0.63 ± 0.035 0.57 ± 0.031 0.55 ± 0.035 0.59 ± 0.039

Conflicting clustering

PCCintraclass 0.095 ± 0.0052 0.095 ± 0.0051 0.095 ± 0.0061 0.032 ± 0.0063 0.62 ± 0.023 0.53 ± 0.033 0.59 ± 0.035

PCCinterclass −0.017 ± 0.0047 −0.020 ± 0.0049 −0.019 ± 0.0062 −0.0099 ± 0.0067 −0.20 ± 0.019 −0.18 ± 0.021 −0.19 ± 0.022

PCCintraclass-PCCinterclass 0.11 ± 0.011 0.12 ± 0.012 0.11 ± 0.013 0.042 ± 0.015 0.82 ± 0.037 0.71 ± 0.045 0.78 ± 0.051

Simintraclass 0.038 ± 0.0061 0.038 ± 0.0062 0.038 ± 0.0061 0.99 ± 0.00005 0.31 ± 0.024 0.27 ± 0.025 0.30 ± 0.029

Siminterclass 0 ± 0.0 0 ± 0.0 0 ± 0.0 0.99 ± 0.00007 0.11 ± 0.021 0.10 ± 0.020 0.12 ± 0.023
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more robust and often gives out clearer patterns of pa-
tient relationship (Table 1). Therefore, iBFE surmounts
all the difficulties caused by the five factors regarding al-
most all the evaluating metrics, and it significantly out-
performs direct concatenation and SNF on situations
with discrepancy of scale, noise and subtype definitions.

Performance of iBFE on real lung and kidney cancer
datasets
The performance of iBFE was further evaluated on real
lung and kidney cancer datasets produced by TCGA.
Similar to the results on simulated datasets, iBFE also
demonstrated superior intra-class consistency and inter-
class discrimination on both the lung and kidney cancer
datasets (Fig. 4, Table 2 and Additional file 1 and

Additional file 2). Based on individual clustering
schemes, direct concatenation, SNF and iBFE all
achieved accuracy close to 1 (Table 2).
Of the 106 lung cancer patients, 12 patients were

identified to form a single cluster by all the three
methods (See Additional file 1). Survival analysis dem-
onstrated that these 12 patients showed significantly
better prognosis than other patients (p = 0.00255, log-
rank test for Kaplan-Meier survival functions). Within
the other 94 patients, no methods identified clusters
that have significantly different survival probability.
This observation suggested that the performance of
direct concatenation, SNF and iBFE is consistent when
the signal/noise ratio is adequately high in the data-
sets. The discrimination of patients with better

Table 1 Performance comparison of different integrative analyses on simulated datasets. The average of each metric was
presented and the standard deviation was not shown because the metric values are very stable between different numerical
repeats (Continued)

Simintraclass-Siminterclass 0.038 ± 0.0061 0.038 ± 0.0062 0.038 ± 0.0061 0.00019 ± 0.00010 0.20 ± 0.037 0.17 ± 0.039 0.18 ± 0.042

ACC_rfLOO 0.42 ± 0.020 0.51 ± 0.023 0.63 ± 0.031 0.93 ± 0.063 0.96 ± 0.034 0.94 ± 0.031 0.95 ± 0.036

NMI_kmeans 0.46 ± 0.033 0.49371 ± 0.034 0.84626 ± 0.045 0.11654 ± 0.081 0.92 ± 0.052 0.91 ± 0.053 0.92 ± 0.055

The best performer was highlighted with the darkest color
PCCintraclass: average Pearson correlation coefficients of patients within the same classes; PCCinterclass: average Pearson correlation coefficients of patients from
different classes; Simintraclass: average similarity of patients within the same classes measured by the Gausian kernel;Siminterclass:average similarity of patients
from different classes measured by the Gausian kernel;ACC_rfLOO: accuracy of leave-one-out cross-validation by random forest; NMI_kmeans: normalized
mutual information between the true patient relationships and the clustering results by k-means

Fig. 3 Heatmaps of patient similarity on realistic simulation datasets. Compared to simplistic simulations, realistic simulations added many noisy
features and unclassified patients and the class sizes were also equal. Patient similarity was measured by Pearson correlation coefficients. A, results
on SD1 (issue of scales); B, results on SD2 (issue of noise types); C, results on SD3 (issue of noise sizes); D, results on SD4 (issue of incomplete
patient relationships); E, results on SD5 (issue of conflict patient relationships). iBFE1: integration by using both Pearson and Spearman correlation
coefficients; iBFE2: integration by using only Pearson correlation coefficients; iBFE3: integration by using only Spearman correlation coefficients
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prognostics was mainly contributed by the DNA
methylation data because clustering based on only
methylation data also generated the same result but
clustering based on mRNA expression or miRNA ex-
pression data did not obtain similar results. The

normalized mutual information between clustering
schemes generated by individual data types and inte-
grative methods suggested that iBFE extracted more
information from the DNA methylation data than dir-
ect concatenation and SNF.

Fig. 4 Survival curves of lung cancer subtypes revealed by different data types and integration methods

Table 2 Performance comparison of different integrative methods on lung and kidney cancer datasets produced by TCGA

Lung Methylation mRNA miRNA Concatenation SNF iBFE

PCCintraclass 0.20 0.10 0.11 0.15 0.12 0.65

PCCinterclass −0.13 −0.05 −0.06 −0.10 −0.06 −0.39

PCCintraclass-PCCinterclass 0.33 0.15 0.17 0.25 0.17 1.04

Distintraclass 160.41 142.37 22.57 218.65 0.02 2.81

Distinterclass 239.13 157.70 26.40 287.85 0.02 6.29

Distinterclass/Distintraclass 1.49 1.11 1.17 1.32 1.18 2.24

ACC_rfLOO 0.99 0.97 0.97 1.00 0.98 1.00

Kidney

PCCintraclass 0.10 0.15 0.11 0.07 0.16 0.37

PCCinterclass −0.05 −0.07 −0.05 −0.04 −0.12 −0.19

PCCintraclass-PCCinterclass 0.15 0.22 0.16 0.11 0.27 0.56

Distintraclass 207.37 164.80 22.90 277.16 0.02 3.48

Distinterclass 226.39 193.05 25.64 295.57 0.02 4.97

Distinterclass/Distintraclass 1.09 1.17 1.12 1.07 1.52 1.43

ACC_rfLOO 0.98 0.98 0.96 0.93 1.00 0.95

The best performer was highlighted with the darkest color
PCCintraclass: average Pearson correlation coefficients of patients within the same classes; PCCinterclass: average Pearson correlation coefficients of patients from
different classes; Distintraclass: average Euclidean distance of patients within the same classes;Distinterclass:average Euclidean distance of patients from different
classes;ACC_rfLOO: accuracy of leave-one-out cross-validation by random forest based on the clustering labels by k-means
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Of the 122 kidney cancer patients, either direct concaten-
ation or SNF did not identify patient clusters that showed
significantly different prognosis. However, through cluster-
ing all the patients into three classes (so did direct concat-
enation and SNF), iBFE identified two classes of patients
that had significantly good (p = 0.00892, log-rank test for
Kaplan-Meier survival functions) or poor (p = 0.00017, log-
rank test for Kaplan-Meier survival functions) prognosis
against other patients (Fig. 5). The mRNA expression data
contributed mainly to the identification of patient clusters
with good or poor prognosis. The mRNA expression data
individually suggested the existence of patient clusters with
good or poor prognosis but the p-values ((p = 0.02109 for
good prognosis and p = 0.00042 for poor prognosis, log-
rank test for Kaplan-Meier survival functions) were higher
than those of iBFE. The miRNA expression data individu-
ally identified a cluster with poor prognosis with high
p-value (0.03033). The DNA methylation data individu-
ally did not identify clusters with significantly different
prognosis. The normalized mutual information between
clustering schemes generated by individual data types
and integrative methods suggested that iBFE extracted
more information from the mRNA expression data
than direct concatenation and SNF. These results sug-
gest that iBFE can identify and merge the signals em-
bedded in diverse data types to accurately identify
disease subtypes and predict prognosis.

Discussion
The rapid developments of high-throughput biomedical
technologies have made it possible and cost-effective to
comprehensively characterize patients with various dis-
eases from multiple levels [1, 2, 4, 5, 10, 14]. This will
greatly advance the development of personalized medi-
cine and makes hopeful promises for accurate diagnosis
and prognosis [5, 10, 17, 31]. However, the heterogeneity
behind the biological processes involved in the measure-
ments and the distinct technologies also raise significant
challenges for the integrative analyses [5]. Although dir-
ect concatenation is the simplest and the most intuitive
method to adopt and some alternative methods have
been proposed, the performance of these methods is not
satisfactory and factors that hamper their performance
are unclear. In this study, we dissected the possible dis-
turbing factors and evaluated their impacts on integra-
tive analyses by simulation, which clearly illustrate those
restricting factors. Inspired by the simulation results and
the fact that disease class discovery and prediction can
often obtain better results in the feature space extracted
from the original data [18–20], we proposed a novel
method, called iBFE, for integrating diverse genomic
data types towards accurately diagnosis and prognosis.
Evaluation on both simulated and real datasets suggests
that iBFE can overcome those restricting factors success-
fully. IBFE can identify patient clusters that show

Fig. 5 Survival curves of kidney cancer subtypes revealed by different data types and integration methods
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significantly different prognosis, which is important for
understanding the subtypes of diseases and for improv-
ing patients’ health.
The principles behind iBFE are simple. Upon the fea-

ture extraction concept, iBFE employs Pearson and
Spearman correlation coefficients as the atomic opera-
tions to subvert the difficulties posed by discrepancy of
scales, noise and embedded patient relationships. Be-
cause Pearson correlation coefficients and Spearman
correlation coefficients have no parameters to tune, iBFE
is also parameter-free. Furthermore, because of the sim-
plicity, iBFE is flexible to include other feature extraction
to further improve the integrative analysis. . The same as
direct concatenation and SNF, iBFE is also unsupervised.
The usage of iBFE does not require any prior informa-
tion of the datasets and patients. And moreover, iBFE
improves the computing efficacy by transforming the
original data of thousands variables into a small number
of variables All these properties of iBFE greatly facilitate
the application of iBFE in practice.

Conclusions
In conclusion, we evaluated those restricting factors that
hamper integrative analyses of diverse genomic datasets
generated by various biomedical technologies, and pro-
posed a simple, flexible and powerful method to over-
come these restricting factors. Examinations on both
simulated and real datasets suggest that the new method
can effectively and efficiently identify disease subtypes
and predict prognosis.
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