Whitney et al. BMC Medical Genomics (2015) 8:18
DOI 10.1186/512920-015-0091-3

BMC
Medical Genomics

RESEARCH ARTICLE Open Access

Derivation of a bronchial genomic classifier for
lung cancer in a prospective study of patients
undergoing diagnostic bronchoscopy

Duncan H Whitney"”", Michael R Elashoff?, Kate Porta-Smith"”, Adam C Gower®, Anil Vachani?, J Scott Ferguson®,
Gerard A Silvestri®, Jerome S Brody®, Marc E Lenburg® and Avrum Spira’

Abstract

from an independent cohort.

independent cohort from a previous study.

with a non-diagnostic bronchoscopy.

Background: The gene expression profile of cytologically-normal bronchial airway epithelial cells has previously
been shown to be altered in patients with lung cancer. Although bronchoscopy is often used for the diagnosis of
lung cancer, its sensitivity is imperfect, especially for small and peripheral suspicious lesions. In this study, we derived a
gene expression classifier from airway epithelial cells that detects the presence of cancer in current and former smokers
undergoing bronchoscopy for suspect lung cancer and evaluated its sensitivity to detect lung cancer among patients

Methods: We collected bronchial epithelial cells (BECs) from the mainstem bronchus of 299 current or former smokers
(223 cancer-positive and 76 cancer-free subjects) undergoing bronchoscopy for suspected lung cancer in a prospective,
multi-center study. RNA from these samples was run on gene expression microarrays for training a gene-expression
classifier. A logistic regression model was built to predict cancer status, and the finalized classifier was validated in an

Results: We found 232 genes whose expression levels in the bronchial airway are associated with lung cancer. We
then built a classifier based on the combination of 17 cancer genes, gene expression predictors of smoking status,
smoking history, and gender, plus patient age. This classifier had a ROC curve AUC of 0.78 (95% Cl, 0.70-0.86) in patients
whose bronchoscopy did not lead to a diagnosis of lung cancer (n = 134). In the validation cohort, the classifier had a
similar AUC of 0.81 (95% Cl, 0.73-0.88) in this same subgroup (n= 118). The classifier performed similarly across a range
of mass sizes, cancer histologies and stages. The negative predictive value was 94% (95% Cl, 83-99%) in subjects

Conclusion: We developed a gene expression classifier measured in bronchial airway epithelial cells that is able to
detect lung cancer in current and former smokers who have undergone bronchoscopy for suspicion of lung cancer.
Due to the high NPV of the classifier, it could potentially inform clinical decisions regarding the need for further
invasive testing in patients whose bronchoscopy is non diagnostic.

Background

Lung cancer remains the leading cause of cancer mortality
in the United States, with an estimated 224,000 new
diagnoses, and 160,000 deaths in 2014, 90% of which are
due to smoking [1]. Recently, the National Lung Cancer
Screening Trial showed that low dose Computed Tomog-
raphy (CT) screening results in a 20% relative mortality
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reduction in high risk individuals [2]. The mortality reduc-
tion, however, was accompanied by a high rate (~96%) of
false-positive CT findings, which in turn has generated
concern for the overutilization of invasive diagnostic pro-
cedures [3].

Patients with suspected lung cancer are often referred
for bronchoscopy where the primary aim is to sample a
suspicious pulmonary lesion for pathological analysis. It
is estimated that 500,000 bronchoscopies are performed
per year in the U.S. [4], of which roughly half are for the
diagnosis of lung cancer. Bronchoscopy is considered to
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be safer than other invasive sampling methods, such as
transthoracic needle biopsy (TTNB), or surgical tech-
niques. However the diagnostic sensitivity of bronchos-
copy is sub-optimal, ranging from 34% (for <2 cm
peripheral nodules) to 88% (for larger, centrally located
lesions) [5]. Adoption of guidance techniques has ex-
panded the applicability of bronchoscopy to more challen-
ging suspicious lesions (i.e., solitary pulmonary nodules
which are often peripheral in the lung), but the overall
clinical sensitivity of bronchoscopy for lung cancer has not
improved substantially [6,7]. When bronchoscopy is non-
diagnostic, physicians are often left with the ambiguity of
whether to pursue further invasive diagnostic procedures,
with associated complications [8,9], or choose imaging
surveillance. In current practice when these invasive pro-
cedures are performed, approximately a third of patients
are determined to have benign disease [10,11], suggesting
that these procedures are avoidable. Methods that reduce
this ambiguity by substantially improving the diagnostic
yield of bronchoscopy could improve patient care.

It has previously been demonstrated that cigarette
smoke creates a molecular field of injury in airway epithe-
lial cells that line the entire respiratory tract [12]. The
reversible and irreversible impact of cigarette smoke on
the bronchial airway transcriptome has been characterized
and a set of gene-expression alterations in the bronchial
epithelium have been identified in current and former
smokers with lung cancer [13]. These cancer-associated
gene expression profiles have previously been shown to
yield a sensitive classifier for detecting lung cancer when
bronchoscopy is non-diagnostic. The high sensitivity of
this classifier, measured in a biospecimen readily access-
ible during bronchoscopy, results in a very low probability
of lung cancer when the test result is negative, and
suggests that physicians might be enabled to confidently
pursue active surveillance and reduce risky invasive proce-
dures in subjects without lung cancer.

We have expanded upon these proof of concept studies
and conducted a prospective, multi-center study to derive
a gene-expression classifier that could directly impact
management of current and former smokers undergoing
bronchoscopy for suspicion of lung cancer. We then
validated the classifier in an independent cohort.

Methods

Training set patient population

Patients were enrolled in the AEGIS trials (Airway
Epithelium Gene Expression In the DiagnosiS of Lung
Cancer), designed as prospective, observational, cohort
studies (registered as NCT01309087 and NCT00746759)
of current and former cigarette smokers with a suspicion
of lung cancer undergoing bronchoscopy as part of their
diagnostic workup. A set of patients from one of the co-
horts (“AEGIS 1”) was selected for the exclusive purpose
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of training a gene expression classifier. All enrolled
patients were followed post-bronchoscopy until a final
diagnosis was made, or for 12 months. Patients were
diagnosed as having primary lung cancer based on cyto-
pathology obtained at bronchoscopy or upon subsequent
lung biopsy (such as TTNB or surgical lung biopsy
(SLB) when bronchoscopy did not lead to a diagnosis of
lung cancer). Patients were diagnosed as having benign dis-
ease based on a review of medical records and follow-up
procedures at 12 months post-bronchoscopy (described in
more detail in Additional file 1). Bronchoscopy was
considered “diagnostic” when clinical samples collected
at the time of the bronchoscopy procedure yielded a
confirmed lung cancer diagnosis via cytology or path-
ology. The study was approved by IRB at each of the
participating medical centers (the ethics committees
and the study protocol numbers for each of the centers
is listed separately; Additional file 2), and all patients
signed an informed consent prior to enrollment.

Sample collection

Physicians at each of 25 participating medical centers
(see Additional file 3) were instructed to collect normal
appearing bronchial epithelial cells (BEC) from the right
mainstem bronchus (or the left side if any abnormalities
were observed on the right) during bronchoscopy using
standard bronchoscopic cytology brushes. Following col-
lection, the cytology brushes were cut and placed in an
RNA preservative (Qiagen RNAProtect, Cat. 76526) im-
mediately after collection and stored at 4°C. Specimens
were then shipped at 4-20°C to a central laboratory for
further processing.

RNA isolation

BECs were separated from cytology brushes using a vortex
mixer and were then pelleted and processed using QIAzol
lysis reagent (Qiagen). RNA was isolated by phenol/
chloroform extractions and purified on a silica membrane
spin-column (Qiagen miRNeasy kit, Cat. #217004) according
to manufacturer’s recommendations. RNA was analyzed
on a NanoDrop ND-1000 spectrophotometer (Thermo
Scientific) to determine concentration and purity, and
RNA integrity (RIN) was measured on a 2100 Bioanalyzer
(Agilent Technologies). Each sample was then stored at
-80°C until processing further on microarrays.

Microarray processing

Total RNA (200 ng) was converted to sense strand
¢DNA, amplified using the Ambion WT Expression kit
(Life Technologies Cat. #4440536), and labeled with
Affymetrix GeneChip WT terminal labeling kit (Affyme-
trix Cat. #900671), (described in more detail in Additional
file 1). The labeled cDNA was hybridized to Gene 1.0 ST
microarrays (Affymetrix Cat. #901085) and analyzed on an
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Affymetrix GeneChip Scanner. Individual CEL files for
each of the patient samples were normalized using the
standard Affymetrix Gene 1.0 ST CDF and RMA [14].

Classifier development

A gene expression classifier was derived in a multi-step
process. Initial modeling consisted of using the training
data to select genes which were associated with three
clinical covariates (gender, tobacco use, and smoking
history) to identify gene expression correlates of these
clinical variables. Lung cancer-associated genes were
then selected, and finally a classifier for predicting the
likelihood of lung cancer based on the combination of
the cancer genes, the gene expression correlates, and
patient age was derived. All aspects of this classifier
development procedure were determined using cross
validation and using only data from the training set
samples.

Clinical Factor Gene Expression Correlates (CFGC)
Covariates of lung cancer in this study population, includ-
ing sex (male/female), smoking status (current/former),
and pack years (<10/>10), were modeled to identify gene
expression correlates for the clinical factors. Empirical
Bayes t-tests were used to identify genes whose expression
was significantly associated with each of the clinical fac-
tors. Next, the significant genes were used to build three
models, one for predicting each clinical factor, using pe-
nalized logistic regression (LASSO) [15]. Finally, the
predicted values from the gene expression models for
gender (GG), smoking status (GS), and pack-years (GPY)
were computed, yielding genomic sex, genomic smoking
status, and genomic pack year measures for each patient.
These three genomic measures were used as new cova-
riates to help in selecting genes with lung-cancer associ-
ated gene expression and in the lung cancer classifier
(described below).

Selection of lung cancer genes

A logistic regression model with lung cancer status (1 =
cancer-positive and 0 = cancer-negative) as the dependent
variable was fit using the training data, CFGC'’s, and pa-
tient age as predictors. This model served as the “baseline”
for subsequent gene expression analysis.

Next an empirical Bayes linear model was fit using
gene expression values as the independent variable and
the logistic regression baseline model residuals as the
dependent variable. The residuals from this baseline
model are a measure of patient cancer status that could
not be predicted on the basis of clinical factors or their
genomic correlates alone. That is, the empirical Bayes
linear model was used to select genes with predictive
potential for lung cancer independent or additive to that
represented by clinical covariates. We note that a gene
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associated with both clinical factors and cancer could still
be selected if the cancer association retained significance
in this model. The top lung cancer-associated genes from
this analysis were grouped using hierarchical clustering.
To reduce the number of genes, for each cluster we se-
lected a small number (2—4) of genes whose average was
highly correlated to the average of all genes in the cluster.
Subsequent modeling used these “reduced” cluster mean
expression values rather than individual gene expression
values. Cross validation was used to select which cluster
means were independently significantly associated with
lung cancer in the context of the other clusters. Overall,
this served to select clusters that cumulatively provided
the best classifier performance, and specific genes that
best represented each of these clusters in a parsimonious
manner. Functional analysis of genes within each of the
cancer clusters was performed using DAVID [16] to iden-
tify biological terms describing the cancer-associated
genes in the classifier.

Lung cancer classifier

A lung cancer classifier was developed using lung cancer
status as the outcome variable and a) the cancer associ-
ated gene expression cluster means, b) patient age, c) gen-
omic gender (GG), d) genomic smoking status (GS), and
e) genomic pack years (GPY) as predictors. The model
was fit using a penalized logistic regression model; the
penalization factor (lambda) was O for the clinical/ gene
expression correlates and 10 for each of the gene expres-
sion cluster means. The resulting model score is on a 0 to
1 scale. A score threshold for predicting lung cancer status
was established to achieve a sensitivity of approximately
90% for patients with a non-diagnostic bronchoscopy. An
evaluation of the benefit of the gene expression classifier
to predict lung cancer compared to clinical factors alone
was performed by generating a “clinical model” that
included age, gender, smoking status, and pack-years (all
determined clinically) in a logistic regression model to
predict lung cancer status. The difference in performance
between the complete gene expression classifier and the
clinical factors classifier to predict lung cancer status was
assessed by comparing the AUC’s of each model in the
training set.

Analysis of an independent test set

Data from a prior study [13] were used as an indepen-
dent test set to assess the performance of the locked
classifier derived in this study. In that study BECs were
collected at bronchoscopy from patients undergoing
bronchoscopy for suspicion of lung cancer, and RNA
was analyzed on microarrays (Affymetrix HG-U133A).
CEL files from that study (n=163) were re-normalized
to produce gene-level expression values using Robust
Multiarray Average (RMA) [14] in the Bioconductor R
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package (version 1.28.1). This processing used the Entrez
Gene-specific probeset chip definition file (CDF) [17] in
place of the standard U133A CDF provided by Affymetrix
in order to facilitate cross-platform analyses. Analyses
were performed using the R environment for statistical
computing (version 2.9.2).

The classifier was applied to patients in the test set
with two modifications to account for the difference in
microarray platforms. First, the HG-U133A RMA ex-
pression values were adjusted by adding a gene-wise
constant defined as the difference between the mean of
the test set samples and the mean of the training set
samples, separately for each gene. This procedure func-
tioned to shift the mean of each gene’s expression levels
in the test set to the mean observed in the training set.
Second, for the classifier genes where a corresponding
HG-U133A probeset was not available (LYPD2 and
RNF150), the gene’s mean expression value in the training
set was used for all of the test set samples.

Statistical methods

Classifier accuracy was assessed using standard measures
of prediction accuracy: the area under the curve (AUC),
sensitivity, specificity, NPV and PPV. Cross-validation,
using a 10% sample hold-out set, was used in the training
set to estimate the performance of the prediction classi-
fiers generated using these approaches [18]. These per-
formance estimates were used to guide the development
of the classifier discovery procedure. A final model was set
prior to performing a one-time analysis of the test set.
Fisher’s exact test was used to calculate statistical signifi-
cance of all categorical variables (i.e., sex, smoking status,
race, mass size, and mass location) and a t-test was used
for continuous variables (i.e., age and smoking history).

Results

Study populations

A set of 299 patients from AEGIS 1 consisting of 223
patients diagnosed with lung cancer and 76 patients
diagnosed with benign disease (Table 1) were used to
derive our gene expression classifier. Characteristics of
the independent test set have been previously described
[13], and are summarized here (Additional file 4). Al-
though the study design was similar to the one described
here, there were some differences in the study popula-
tions. The patients were older on average in the training
set compared to the test set (p<0.001) (although there
was no significant difference in age (p = 0.959) for patients
diagnosed with lung cancer). The training set also con-
sisted of fewer current smokers (p =0.050); and a lower
proportion of patients with <3 cm lesions (p <0.001). In
addition, the prevalence of lung cancer was higher in the
training set (75% versus 48%; p < 0.001).
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Derivation of the classifier and evaluation of performance
Gene expression was associated with current smoking sta-
tus for a large fraction of the genes on the array (6477
genes with p <0.001; top 10 genes reported in Additional
file 5). Three of the top ranked genes (SLC7A11, TKT,
and CLND10) were selected to serve as a logistic
regression-based smoking status classifier based on cross-
validation. This smoking status classifier had an AUC of
0.93 within the training set. An additional CFGC was de-
rived for smoking history, independent of smoking status,
and was based on cumulative smoke exposure, measured
in pack-years. Smoking history (<10 PY vs>10 PY) was
significantly associated with the expression of 531 genes
(p<0.001; top 10 genes reported in Additional file 6).
Two of the top genes were selected to serve as a logistic
regression-based smoking history classifier (RUNX1T1,
AKR1C2) which had an AUC of 0.78 within the training
set. Sex was significantly associated with 339 genes (p <
0.001; top 10 genes reported in Additional file 7). The top
ranked gene (RPS4Y1) was a perfect classifier (AUC =1)
of sex within the training set.

As described in the methods, we identified genes
whose expression is significantly associated with the re-
siduals from the CFGC model for lung cancer. A total of
232 cancer associated genes (Additional file 8) met the
significance criteria (T score>2.7). A pairwise correl-
ation of the 232 genes followed by hierarchical clustering
was examined to identify genes with similar expression
patterns and partitioned the genes into 11 clusters
(Figure 1). Since genes were correlated within each clus-
ter, we hypothesized that the mean of a small set of
genes within each cluster could be used to represent the
cluster in a sparse manner. We optimized the classifier,
using cross validation to estimate the AUC. We selected
genes to represent the gene clusters whose expression was
most strongly associated with lung cancer and determined
that inclusion of clusters 1, 2, 4, 7, 9 and 10 gave the best
AUC. We also determined that beyond 2—4 genes per clus-
ter the performance of the test did not improve. In cross-
validation, AUC = 0.80 (95% CI 0.75 — 0.84) for all patients
in the training set (n =299); for the subset of patients with
non-diagnostic bronchoscopy (n=134) the performance
was similar (AUC = 0.81; 95% CI 0.74 — 0.87).

The final lung cancer classifier was then determined
using the finalized classifier discovery procedure on the
entire training set. The classifier consisted of a combin-
ation of the six cancer gene clusters (represented by 17
genes in total), patient age, and the gene expression corre-
lates (GG, GS, GPY) (Table 2) as predictors. Dichotomous
classification was performed using a score threshold of
0.65 (patients with scores >/= 0.65 were predicted as
cancer-positive and <0.65, cancer-negative). The classifier
had a sensitivity of 93% and specificity of 57% in the train-
ing set and there was no difference in the AUC of the
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Table 1 Clinical and demographic characteristics of the
patients used to train the classifier

Category Sub-category Lung Benign p
cancer  disease
N 223 76
Sex Female 97 26 0.178
Male 126 50
Age (median years) 65 56 <0.001
Race Caucasian 168 59 0.757
African- 47 13
American
Other 5 3
Unknown 3 1
Smoking status Current 101 26 0.107
Former 122 50
Smoking history 43 30 <0.001
(median PY)
Mass size <2.cm 46 23 <0.001
>2 1o <3 cm 30 12
23cm 122 19
ill-defined 10 13
infiltrate
Unknown 15 9
Mass location Central 86 16 0.018
Peripheral 60 30
Central & 60 18
peripheral
Unknown 17 12
Histology Sub-type
SCLC 40
NSCLC 180
Adenocarcinoma 83
Squamous 73
Large cell 6
Mixed/ 18
undefined
Unknown 3
Histology Stage
SCLC Limited 16
Extensive 18
Unknown 6
NSCLC 1 28
2 16
3 42
4 62
Unknown 32

Benign disease Sub-category
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Table 1 Clinical and demographic characteristics of the
patients used to train the classifier (Continued)

Alternative diagnosis 54
Infection 23
Sarcoid 14
Inflammation 7
Fibrosis 4
Other 4
Benign growths 2

Resolution/Stability 22

The classifier training set included 223 patients diagnosed with lung cancer
and 76 patients diagnosed with benign disease. The table lists clinical and
demographic factors for all patients in the training set as well as
characteristics of the lung cancer positive and patients with benign disease.
The p-value for race is calculated for Caucasian versus non-caucasian.

classifier for the entire training set (0.78; 95% CI, 0.73-
0.82), compared with the subset of patients whose
bronchoscopy was non-diagnostic for lung cancer
(AUC =0.78; 95% 0.71-0.85), (see, Additional file 9).
We also found that there was no difference in the AUC
(p=0.62) comparing Caucasians and African-Americans
(the two predominant races in the training set), al-
though the former smoked significantly more (p = 0.03),
with a mean PY difference of 46 versus 38, respectively
(Additional file 10).

The gene expression classifier performed significantly
better (AUC =0.78; 95% CI, 0.73-0.82) than a model
using clinical factors alone (AUC=0.72; 95% CI, 0.67-
0.77) in the training set (p < 0.001). Functional analysis of
the 17 cancer genes is summarized separately (Additional
file 11). Nine of the genes are down-regulated and eight
are up-regulated in association with cancer.

Validation in an independent test set

In the patients with non-diagnostic bronchoscopy (n = 123)
of the independent test set, the AUC of the classifier was
0.81 (95% CI, 0.73 — 0.88), (Figure 2) which was similar to
the performance in patients with non-diagnostic bron-
choscopy in the training set (AUC = 0.78; 95% 0.71-0.85;
p =0.495). The sensitivity was 92% and with a specificity
of 53%, the NPV was 94% (95% CI, 83-99%), (see Table 3).
Interestingly we did not observe any effect of cancer hist-
ology, cancer stage (Table 4), or lesion size (Table 5) on
the classifier’s sensitivity for cancer. Moreover, in the test
set the classifier had an AUC of 0.79 in current smokers
and 0.82 in former smokers, suggesting that smoking sta-
tus does not have a significant effect on classifier perform-
ance (p=0.710). When compared with bronchoscopy
alone, the combination of the gene expression classifier
with bronchoscopy improved the sensitivity from 51% to
96% (p <0.001).
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Figure 1 Pairwise correlation of genes with cancer-associated gene expression. The correlation between all possible pairs of genes with cancer-
associated gene expression (n = 232) were assessed to identify groups of genes that share a similar pattern of gene expression. Unsupervised
hierarchical clustering was used to group correlated genes into 11 clusters, with the dendrogram threshold level to establish clusters indicated on
the y-axis (green line). Genes were selected from the clusters in a parsimonious manner to predict lung cancer status using linear regression. The
classifier genes came from specific clusters (outlined in blue), using 2-4 genes from each cluster. Clusters 4 and 7 contain genes which were
up-regulated in lung cancer, and clusters 1, 2, 9, and 10 were down-regulated in lung cancer.

Table 2 Description of the gene expression classifier®

Feature®, (x;) Coefficient, (b;) Genes within features

Age 0.0623

GG 0.5450 RPS4Y1

GS 0.1661 SLC7A11  CLND10 TKT

GPY 3.0205 RUNX1T1 AKR1C2

CA (1) -0.4406 BST1 cD177.1 CD177.2

CA (2 —-0.3402 ATP12A  TSPAN2

CA 4 0.1725 GABBR1  MCAM  NOVA1 SDC2
CA (7) 0.5670 CDR1 CGREF1  CLND22 NKX3-1
CA (9) -0.3160 EPHX3 LYPD2

CA (10) -0.3791 MIA RNF150

Intercept (bo) 33173

JGenomic gender was defined as GG =1 (female) if RPS4Y1 < 7.5, 0 (male)
otherwise. The predicted genomic smoking (GS) value was derived, where

x =40.8579-0.4462*SLC7A11-2.1298*CLND10-1.8256*TKT, and genomic
smoking GS =e*/(1+ €"). The predicted genomic pack years (GPY) value was
derived, where x =—5.1429 + 2.1891*RUNX1T1 -0.9506*AKR1C2, and genomic
pack years GPY = exp(x)/(1 + exp(x)). The generalized equation for the prediction
classifier was: Score = &’/(1+ &), where, y = b, + Z(b/*x), where by is the intercept,
b; is the coefficient, and x; is the feature (as shown).

PFeatures include patient age (as reported), GG, GS, GPY as described in the
methods, and CA (i), the lung cancer gene clusters (shown in Figure 1).

Discussion

Previous work has demonstrated that there are persist-
ent gene-expression alterations in normal epithelial cells
from the bronchial airway that are associated with
exposure to cigarette smoke and the presence of lung
cancer in current and former smokers [12,19-21]. These
cancer-associated differences can be used to derive clas-
sifiers capable of accurately detecting lung cancer in
these relatively non-invasively collected biospecimens
obtained during bronchoscopy [13]. In current practice
it is challenging to rule out lung cancer when bronchos-
copy does not lead to a finding of malignancy, and the
false-negative rate can range from 20-70% [5]. Current
guidelines suggest that patients with elevated risk of dis-
ease should be pursued with more invasive follow-up
diagnostic procedures [5], which carry increased risk of
complications [8]. However due to uncertainty these
procedures often performed in patients found to have
benign disease [10,11]. Therefore our goal was to derive a
gene-expression classifier using epithelial cells collected
from the normal-appearing proximal airway during bron-
choscopy that could be used in combination with bron-
choscopy to increase the overall sensitivity and negative
predictive value for lung cancer diagnosis. A classifier with
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Figure 2 ROC curve of patients with a non-diagnostic bronchoscopy
in the test set. The AUC =081 for the 123 patients whose bronchoscopy
did not result in a diagnosis of lung cancer (in which the prevalence of
lung cancer =31%).

high sensitivity and high NPV among current or former
smokers with a non-diagnostic bronchoscopy could
serve to significantly reduce the probability of lung
cancer in this clinical setting, reducing the use of
additional unnecessary invasive procedures in smokers
with benign lung lesions.

In this study, we leveraged a cohort of current and
former smokers undergoing bronchoscopy for suspected
lung cancer from a larger multicenter study to derive a
gene-expression classifier for lung cancer. The classifier
is a multivariate logistic regression model that has high
sensitivity and high NPV. Importantly, we have validated
the performance of the classifier in an independent
cohort, using data from a previously published study of
airway samples collected from smokers undergoing bron
choscopy for suspected lung cancer. The sensitivity is
92% in patients whose bronchoscopy is non-diagnostic
in the test set with a specificity of 53%. The NPV is 94%
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in the test set compared to an NPV of 69% for bron-
choscopy alone suggesting that the classifier could help
physicians reliably identify patients unlikely to have lung
cancer after a non-diagnostic bronchoscopy. Given the
different microarray platform (Affymetrix HU133A) used
in the test set, the analysis was done with a classifier
lacking LYPD2 and RNF150 since these genes were not
measured on that microarray platform. However, the
two genes added to classifier performance during cross-
validation in the training data and the full classifier has
subsequently been validated in two additional datasets
(manuscript in preparation).

The functions of the differentially expressed genes in
the normal appearing airway epithelium in current and
former smokers with lung cancer provide insight into
the biology underlying the field of injury (see Additional
file 8). Among genes that are suppressed, there are a
number involved in the immune response, including
CD177 and BSTI1, suggesting an impaired immune
response in the airway of smokers with lung cancer. The
gene TSPAN2, whose expression is depressed by p53
knockdown and is associated with poor prognosis in
lung adenocarcinomas [22], was also expressed at lower
levels in patients with cancer. Also EPHX3, a gene
involved in xenobiotic metabolism, processing of carcin-
ogens in tobacco smoke, and carcinogenesis in other
epithelial cancers is down-regulated [23]. Among the
classifier genes that are up-regulated in lung cancer,
NOVAL1 and CDRI are predominantly expressed in neu-
rons, but are also expressed in tumors and are associated
with para-neoplastic antibodies in several malignancies,
including small-cell lung cancer [24-28]. Furthermore,
MCAM which is up-regulated in lung cancer, is expressed
in basal bronchial epithelial cells [29]. MCAM is also
strongly and transiently up-regulated in tracheal epithe-
lium during repair [30], is required for tracheal epithelial
regeneration [31], and is up-regulated in the bronchial epi-
thelium of patients with COPD [32] and asthma [33]. A
number of classifier genes that regulate cell growth and
proliferation are up-regulated in patients with lung cancer,
including SDC2, and NKX3-1 as well as the cell-cycle-
arrest mediator CGREF1. Finally the CFGC genes selected

Table 3 Performance of bronchoscopy, classifier, and the combined procedures in the test set

Category Bronchoscopy Classifier” Classifier & bronchoscopy combined
N, total 163 123 163
N, Lung cancer 78 38 78
N, Benign disease 85 85 85

51% (40-62%)
100% (95-100%)
69% (60-77%)
100% (90-100%)

Sensitivity (95% Cl)
Specificity (95% Cl)
NPV (95% CI)
PPV (95% Cl)

92% (78-98%)
53% (42-63%)
94% (83-98%)
47% (36-58%)

96% (89-99%
53% (42-63%
94% (83-98%

)
)

( )
65% (56-73%)

*The performance of the classifier was evaluated in patients in which bronchoscopy did not result in a finding of cancer (n=123).



Whitney et al. BMC Medical Genomics (2015) 8:18

Page 8 of 10

Table 4 Sensitivity of bronchoscopy, the classifier, and the combined procedures for patients with lung cancer

in the test set

Histology Sub-type N Bronchoscopy sensitivity Classifier sensitivity Combined sensitivity
All cancers 78 51%" 92%° 96%"
SCLC 14 64% 100% 100%
NSCLC 64 48% 91% 95%
Adenocarcinoma 18 33% 83% 89%
Squamous 27 56% 92% 96%
Large cell 4 25% 100% 100%
Undefined 15 60% 83% 93%
Histology Stage
SCLC
Limited 9 78% 100% 100%
Extensive 5 40% 100% 100%
NSCLC
1 14 36% 100% 100%
2 2 50% 100% 100%
3 25 52% 92% 96%
4 22 55% 80% 91%
Unknown 1 0% 100% 100%

Of 163 patients who underwent a diagnostic bronchoscopy procedure for suspicion of lung cancer, 78 were diagnosed with cancer. A lung cancer diagnosis was
made at bronchoscopy (a) in 40 patients (51%; 95% Cl, 40-62%), and in the remaining lung cancer patients where no diagnosis was made at bronchoscopy, (b)
the classifier correctly predicted 34 of them (89%; 95% Cl, 75-96%). The classifier combined with bronchoscopy (c) yielded a detection of 74 of 78 (95%; 95% Cl, 87-98%)
patients with lung cancer. The sensitivities of bronchoscopy, the classifier, and the combined procedures are also shown for lung cancers according to sub-type

and stage.

to predict smoking status (SLC7A11, CLDN10, TKT) and
smoking history (RUNX1T1, AKR1C2) in our classifier
have been previously reported as being altered by tobacco
smoke exposure, confirming the robust effect of smoking
on airway epithelium biology [12,19,34].

Our discovery approach extends earlier work on gene-
expression based lung cancer diagnostics [13] primarily in
the explicit modeling of clinical covariates as components
of the predictive model prior to selection of features with
lung cancer-associated expression. It is known that the re-
sponse to environmental insults and other clinical factors
can vary substantially between individuals. Therefore our
approach was to use gene expression to capture the
patient-level physiological response to an environmental
insult (e.g., cumulative smoke exposure), as this response

Table 5 Sensitivity of bronchoscopy, the classifier, and
the combined procedures in the test set stratified by
size of suspicious lesions

Mass size* N Bronchoscopy Classifier Combined

sensitivity sensitivity sensitivity
<3 cm 99 44% 87% 93%
>3cm 48 58% 94% 98%
lI-def 16 38% 100% 100%
Infiltrate

*Includes patients diagnosed with lung cancer and those with benign disease.

may be more reflective of disease risk than the actual
reported values [35]. Additionally, the use of gene ex-
pression data to predict critical data inputs (such as pa-
tient sex) minimizes potential for data entry errors in
clinical practice. Another component of our approach
was selecting genes whose expression is associated with
cancer after accounting for the modeled clinical factors.
We hypothesized that this approach would help ensure
that the information about the likelihood of cancer cap-
tured by the genes with cancer-associated gene expres-
sion is independent from the information about cancer
captured by the modeled clinical factors. An additional
important aspect of our classifier discovery approach was
our methodology to identify patterns of independent
cancer-associated gene expression through clustering and
then to model cancer as the additive effects of each of the
cancer-associated gene expression modules. This is in
contrast to selecting only genes that are globally top-
ranked according to their association with cancer which
could potentially result in selecting an entire panel of
genes that reflect a single cancer-associated molecular
process. Previous studies to derive a gene expression clas-
sifier to predict risk of lung cancer in normal appearing
airway epithelial cells have described similar results with
high sensitivity and NPV when bronchoscopy is non-
diagnostic [13]. While there are no common genes in that
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classifier compared to the one described here, we believe
that our new classifier represents similar mechanisms of
action given the strong performance in the independent
test set. However, the differences in the specific genes
selected in the classifier described here may be due to dif-
ferences in the feature selection process, specifically, the
method of accounting for gene expression strongly associ-
ated with clinical covariates while selecting cancer genes.

Conclusion

We have derived a gene expression classifier for lung can-
cer in current and former smokers using cells from the
proximal airway that can be used in conjunction with
bronchoscopy for suspected lung cancer. We have vali-
dated the performance of this classifier in an independent
test set. The classifier adds substantial sensitivity to the
bronchoscopy procedure resulting in high NPV. This clas-
sifier can be used to aid in decision-making when bron-
choscopy is non-diagnostic by identifying patients who are
at low risk of having lung cancer.
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