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Abstract

Background: Exacerbations of chronic obstructive pulmonary disease (COPD), characterized by acute deterioration
in symptoms, may be due to bacterial or viral infections, environmental exposures, or unknown factors.
Exacerbation frequency may be a stable trait in COPD patients, which could imply genetic susceptibility. Observing
the genes, networks, and pathways that are up- and down-regulated in COPD patients with differing susceptibility
to exacerbations will help to elucidate the molecular signature and pathogenesis of COPD exacerbations.

Methods: Gene expression array and plasma biomarker data were obtained using whole-blood samples from
subjects enrolled in the Treatment of Emphysema With a Gamma-Selective Retinoid Agonist (TESRA) study. Linear
regression, weighted gene co-expression network analysis (WGCNA), and pathway analysis were used to identify
signatures and network sub-modules associated with the number of exacerbations within the previous year; other
COPD-related phenotypes were also investigated.

Results: Individual genes were not found to be significantly associated with the number of exacerbations. However
using network methods, a statistically significant gene module was identified, along with other modules showing
moderate association. A diverse signature was observed across these modules using pathway analysis, marked by
differences in B cell and NK cell activity, as well as cellular markers of viral infection. Within two modules, gene set
enrichment analysis recapitulated the molecular signatures of two gene expression experiments; one involving
sputum from asthma exacerbations and another involving viral lung infections. The plasma biomarker
myeloperoxidase (MPO) was associated with the number of recent exacerbations.

Conclusion: A distinct signature of COPD exacerbations may be observed in peripheral blood months following
the acute illness. While not predictive in this cross-sectional analysis, these results will be useful in uncovering the
molecular pathogenesis of COPD exacerbations.
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Background
Chronic obstructive pulmonary disease (COPD) is charac-
terized by progressive airflow obstruction accompanied by
chronic inflammation. It is one of the leading causes of
morbidity and mortality worldwide and is often caused by
environmental exposure such as cigarette smoke [1].
COPD exacerbations, periods of acute deterioration, are a
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major reason for COPD mortality and a major source of
the high healthcare expenditure in patients with COPD.
Acute exacerbations of COPD are characterized by symp-
toms of shortness of breath, cough, and sputum produc-
tion. Although these exacerbations are often caused by
bacterial or viral infections [2] or inhaled particles, the
variability in occurrence within COPD patients and the fa-
milial aggregation of exacerbations indicate that other
factors such as genetics are important in determining
the onset, severity and frequency [3]. Also, the frequency
of acute exacerbations appears to be a stable trait [4],
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supporting genetic susceptibility, and loci associated with
COPD exacerbations have been identified [5,6].
Despite the fact that gene expression data from lung

tissues should provide greater sensitivity to detect the
molecular signature of COPD exacerbations, COPD is a
systemic disease, and blood is more accessible for gen-
omics and biomarkers studies in large scale clinical trials
and potentially in clinical practice than is lung tissue sam-
ples. Previous attempts to study lung disease via whole
blood experiments have been successful while studying
asthma [7] and idiopathic pulmonary fibrosis [8,9]. Further
supporting the use of blood expression profiling, previous
COPD studies have documented differential expression in
overlapping genes from both blood and lung samples
[10,11]. Gene expression in peripheral blood has been as-
sociated with COPD and related phenotypes [12].
Network medicine approaches provide a roadmap to-

wards the understanding of complex diseases by studying
interacting gene sets and pathways, instead of individual
genetic determinants [13,14]. Network medicine tech-
niques have been applied to the study of COPD [15].
We hypothesized that we could identify a signature of

frequent COPD exacerbations using gene expression data
and protein biomarker data, both collected from periph-
eral blood samples. The goal is to use network methods to
understand the molecular pathogenesis of COPD exacer-
bations, and perhaps predict onset through minimally in-
vasive means. This study built upon the prior publications
involving the use of peripheral blood to examine the mo-
lecular pathogenesis of COPD and other complex diseases
[8,11,12], and leveraged the power of network analysis
methods to uncover gene expression signatures.

Methods
Study population
This analysis used expression data from 248 Caucasian
COPD subjects from the Treatment of Emphysema with a
Selective Retinoid Agonist (TESRA), a randomized con-
trolled trial of palovarotene for treatment of COPD (clini-
caltrials.gov identifier NCT00413205) [16,17]. TESRA
subjects were former smokers with COPD who experi-
enced two or fewer exacerbations requiring outpatient
treatment with antibiotics or oral steroids or one exacer-
bation requiring hospitalization within the prior year. The
total number of subjects in the study was 410. In our ana-
lysis, the number of exacerbations in the year prior to en-
rollment was considered both as a linear variable (0,1,2)
and as a binary variable (0 vs. 1 or more). The baseline
blood samples, from which our analysis data were ob-
tained, were collected prior to randomization and any
treatment associated with the clinical trial. Quantitative
emphysema measurements were performed on chest com-
puted tomography (CT) scans, including percent of lung
with attenuation (%LAA) ≤ −910 HU and mean lung
attenuation at the 15th percentile on lung attenuation
curve (Perc15). The baseline phenotype data in our ana-
lyses were obtained prior to randomization and any treat-
ment. All subjects provided written informed consent.
TESRA was approved by the Institutional Review Boards
at all participating centers (see Additional file 1).

Gene expression data
RNA was isolated from whole blood samples collected in
PaxGene RNA tubes (PreAnalytiX, Franklin Lakes, NJ).
Gene expression data were obtained using the Affymetrix
Human Genome U133 Plus 2.0 Array. Data were available
for 309 samples, including 39 replicates, as outlined in
Additional file 2: Table S1. Of the 270 remaining unique
arrays, three were found to be outliers during the quality
control process and were discarded. All 54,675 probes
passing quality control were retained regardless of level of
variance across samples. These data were background cor-
rected and quantile normalized using the robust multi-
array average (RMA) method via the R Bioconductor
package affy [18]. The 249 subjects that self-identified as
Caucasian were included. Using information from a
GWAS, one additional subject was omitted based on a
genetic ancestry that did not cluster with the other
Caucasian subjects, leaving 248 subjects for analysis.

Protein biomarkers
A total of 140 plasma biomarkers were measured in du-
plicate at Rules Based Medicine (Austin, TX) and Quest
Diagnostics (Valencia, CA), as previous described [17].
Biomarker data are available for 245 of the 248 subjects
with associated gene expression data. Any biomarker
with greater than 10% and less than 95% of its values
below the lower limit of quantitation (LLOQ) were con-
verted to a binary present vs. absent variable (n = 25).
Two biomarkers with greater than 95% values below the
LLOQ were excluded from the analysis. An empirical
normal quantile transformation was performed on the
113 remaining continuous biomarker values. Model #1
from Additional file 2: Table S2 was used to assess the
association of biomarker levels with the number of re-
cent exacerbations. Logistic regression was used for the
binary biomarker values, and linear regression was used
for the continuous biomarker values.

Gene expression analysis
Microarray batch effects visible from MDS plots were
addressed by adjusting for the microarray lot number as
a covariate. For each expression probe, biomarker or
module eigengene, we fitted a linear regression model to
detect association with variables of interest using R stat-
istical software (v 3.0.2). In the microarray data analysis,
an empirical Bayes shrinkage method was used to obtain
a moderated t-test statistic and its p-value in the R
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Bioconductor package limma [19]. Adjustment for mul-
tiple testing controlled for false discovery rate (FDR)
[20]. The regression models for each COPD phenotype
are provided in Additional file 2: Table S2.

Weighted Gene Co-expression Analysis (WGCNA)
The WGCNA method was used to identify groups of
probes that have similar expression in the sample popula-
tion, using the R package WGCNA [21]. In order to iden-
tify possible sample outliers, a sample network based on
squared Euclidean distances was built. An iterative ap-
proach was taken, where samples having a standardized
connectivity below −5 were removed [21]. One sample
outlier was excluded using this process, leaving 247 sub-
jects. Signed networks were built using biweight midcorre-
lation as the correlation function, and a soft thresholding
power of 12. WGCNA produces a set of modules (labeled
by color), each containing a set of unique genes. The mod-
ule eigengene is defined as the first principal component
of the expression matrix of the probes within the module.
For association tests, the module eigengenes are included
in the regression models from Additional file 2: Table S2,
similar to the expression probes, and adjustment for mul-
tiple testing was performed using Bonferroni correction,
where the burden is reduced in comparison with a probe-
based analysis. Driver or hub genes within each module
are the probes with both high gene significance (GS) and
high module membership (MM) metrics, represented by
the p-value for the test of gene expression association with
phenotype, and the correlation of gene expression with
the module eigengene, respectively.

Pathway analysis
We examined enrichment of curated gene sets from the
gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) databases in the gene groups
from association tests or the co-expression modules
using a hypergeometric test in the R Bioconductor pack-
age GeneAnswers [22]. In the GO analysis, only the bio-
logical process (BP) category was considered. Further
examination of the gene sets was performed using the
gene set enrichment analysis (GSEA) to examine up-
and down-regulated genes common to previous experi-
ments and curated gene sets within all available MSigDB
collections [23]. The query gene lists (top association
test results or module genes) were preranked according
to their log fold change values from the gene expression
association tests. GSEA was performed on both a set of
all probes and subsets of probes from WGCNA mod-
ules, using a similar concept to the GO and KEGG ana-
lyses. The Cytoscape plug-in EnrichmentMap [24] was
used to plot the relationships between the individual
GSEA results, as well as between the sets of results from
different analyses.
Results
Gene expression association with phenotype variables
Characteristics of study subjects are shown in Table 1.
The top five expression probesets ranked by p-value for
association with number of exacerbations in the past
12 months are provided in Additional file 2: Table S3.
After controlling for FDR, no probes were statistically
significant. The results for all other models are also pro-
vided in Additional file 2: Table S3, where only one
probe across the COPD-related phenotypes was found
to be significant at FDR < 0.05, for the six minute walk
test. This probe did not have a gene annotation and
maps to a region with no obvious biological significance.
Enrichment tests were performed using the set of genes
within the regression results having a p < 0.05 for the ex-
acerbation phenotype (Table 2). Although the KEGG re-
sults demonstrate an enrichment of autoimmune-related
genes, the overall results indicate a lack of specificity, as
demonstrated by the presumably-unrelated diseases repre-
sented. In addition, the GO results are very broad, with
processes related to protein ubiquitination and regulation
of calcium concentration being dominant. To improve
specificity, we used a network approach, whereby genes
with similar characteristics may be grouped prior to path-
way analysis.

Network analysis
A weighted gene co-expression network was constructed as
outlined in Methods. The final network consisted of 32
modules, ranging in size from 30 to 19,748 probes. Two
dendrograms of the module structure are presented in
Additional file 2: Figures S1-S2, as the number of probes
(54,675) dictated that the network be built in two blocks.
There was high correlation within the modules as expected,
with the mean module membership (MM), or mean correl-
ation of gene expression with the module eigengene, vary-
ing from 0.54 to 0.81 across all modules of interest. The
grey module is a grouping of probes with outlying gene ex-
pression profiles and was not considered further.
Tests of association between COPD phenotypes and the

module eigengenes were performed for each model in
Additional file 2: Table S2, and summarized in Figure 1.
Across all phenotype variables and modules, only the
white module (number of probes, n = 57) was significant
after controlling for FDR (q-value = 0.02) for the associ-
ation with the number of exacerbations within the year
prior to enrollment. In addition, four other modules were
nominally significant (p < 0.05) for the association with ex-
acerbations (royalblue n = 118, lightgreen n = 147, dark-
turquoise n = 73, darkgrey n = 65) (Additional file 2:
Table S4). All probesets in these modules had variance
above the lower 5%ile for all probesets. The top mod-
ules associated with both exacerbations phenotypes
were similar (Additional file 2: Table S5).



Table 1 TESRA study subjects

Demographics n = 248 expression (n = 245/248 biomarker) Association with exacerbations

Age (years) 66.4 +/− 7.9 linear regression p-value = 0.11

Gender Female 78 Fisher's Exact Test p-value = 0.86

Male 170

Race Caucasian 100% NA

Former smokers 100% NA

Smoking history (pack-years) 47 +/− 24.3 linear regression p-value = 0.02

BMI 26 +/− 4.7 linear regression p-value = 0.39

COPD outcomes

Exacerbations in past 12 months 0 n = 123

1 n = 102

2 n = 23

FEV1 (L) 1.34 +/− 0.35

FEV1 % predicted 48.8 +/− 9.3

FEV1/FVC 0.43 +/− 0.09

% LAA≤ −910 HU 41.65 +/− 16.2

Perc15 (HU) −946 +/− 23.6

TLC (L) 6.9 +/− 1.4

TLC % predicted 101.6 +/− 15.4

DLCO (mL/min/mmHg) 12.3 +/− 3.9

6 minute walk test (m) 317.5 +/− 111.2

Residual volume % predicted 120.1 +/− 31

Inspiratory capacity (L) 2.4 +/− 0.67

Table 2 Top categories enriched in association results for exacerbation phenotype (gene n = 999)

GO category ID Genes in category p-value FDR q-value

Protein ubiquitination GO:0016567 23 2.78E-008 4.42E-006

Purine ribonucleoside triphosphate catabolic process GO:0009207 17 2.40E-006 4.78E-005

Guanosine-containing compound catabolic process GO:1901069 16 1.04E-006 2.69E-005

Calcium ion homeostasis GO:0055074 15 3.16E-007 1.68E-005

Epidermal growth factor receptor signaling pathway GO:0007173 14 1.18E-007 9.37E-006

Cellular calcium ion homeostasis GO:0006874 14 1.12E-006 2.69E-005

Activation of protein kinase activity GO:0032147 10 2.68E-004 2.66E-003

Negative regulation of protein serine/threonine kinase activity GO:0071901 9 9.97E-007 2.69E-005

KEGG category ID Genes in category p-value FDR q-value

Cell adhesion molecules (CAMs) 04514 13 3.86E-003 1.44E-001

B cell receptor signaling pathway 04662 11 2.72E-004 4.75E-002

T cell receptor signaling pathway 04660 11 5.62E-003 1.54E-001

Antigen processing and presentation 04612 10 1.23E-003 5.73E-002

Chagas disease (American trypanosomiasis) 05142 10 1.20E-002 2.23E-001

Primary immunodeficiency 05340 7 5.37E-004 4.75E-002

Allograft rejection 05330 7 7.66E-004 4.75E-002

Autoimmune thyroid disease 05320 7 5.81E-003 1.54E-001
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Figure 1 Heatmap of module association with phenotype variables (color scale for adjusted p-value). The top number in each cell corresponds
to the FDR q-value and the bottom number is the effect from the linear regression. Variable definitions are listed in Additional file 2: Table S2.
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Lacking similar support across the results for the other
phenotypes, we chose to focus exclusively on the exacer-
bations phenotype for the remainder of the study. The
putative hub genes for the five modules of interest are
highlighted in the lists of module genes in Additional file
2: Tables S6-S10. These hub genes with low gene signifi-
cance (GS) p-values and high module membership
(MM) correlations for the five modules include IGHM
(immunoglobulin heavy constant mu; GS =0.002, MM=
0.9), KLRD1 (killer cell lectin-like receptor subfamily D,
member 1; GS = 0.006, MM= 0.89 and GS = 0.007, MM=
0.88), AFF3 (AF4/FMR2 family, member 3; GS = 0.0014,
MM= 0.8), GPR56 (G protein-coupled receptor 56; GS =
0.00024, MM= 0.8), and GBP5 (guanylate binding protein
5; GS = 0.009, MM= 0.77 and GS = 0.016, MM= 0.77) and
GBP1 (guanylate binding protein 1, interferon-inducible;
GS = 0.028, MM= 0.87).
GO and KEGG pathway analyses were performed on

the five modules above. The results are provided in Table 3
for the white module and Additional file 2: Tables S11-S14
for the other four modules. In contrast to the results for
the overall gene expression association, the enrichment
tests for each module provide more specific functional
signatures, with B cell receptor signaling and autoimmune
disease being enriched in the results for the white module;
B cell pathway is also seen in the lightgreen module re-
sults. The darkgrey and darkturquoise module results are
highlighted by cytokine activity, with the darkgrey module
showing a strong signal for interferon activity and viral re-
sponse pathways.
GSEA was performed on the five modules, and the re-

sults meeting the FDR q-value < 0.25 are provided in
Table 4. B cell, T-cell and viral response signatures dom-
inate the results, with the white, royalblue and darkgrey
modules demonstrating enrichments for viral response
gene sets. EnrichmentMap networks were constructed
for the darkgrey and lightgreen modules, two longest
lists from Table 4. These are shown in Figure 2 and
Additional file 2: Figure S3, respectively. The darkgrey
module network shows multiple highly-connected nodes
related to viral response. An EnrichmentMap network was
also produced using the GSEA results for the set of genes
nominally associated (p < 0.05) with the exacerbations
phenotype (model #1); the GSEA results are provided in
Additional file 2: Table S15 and the EnrichmentMap net-
work is shown in Additional file 3: Figure S4. Many similar



Table 3 Top eight pathway analysis results for white module (unique gene symbols n = 32)

GO category ID Genes in category p-value FDR q-value

B cell receptor signaling pathway GO:0050853 2 0.00072 0.10

Antigen processing and presentation of exogenous
peptide antigen via MHC class II

GO:0019886 2 0.0055 0.13

Antigen receptor-mediated signaling pathway GO:0050851 2 0.011 0.13

Skeletal muscle tissue development GO:0007519 2 0.029 0.18

Skeletal muscle organ development GO:0060538 2 0.031 0.18

Clustering of voltage-gated potassium channels GO:0045163 1 0.0036 0.13

Protein localization to juxtaparanode region of axon GO:0071205 1 0.0048 0.13

Positive regulation of humoral immune response
mediated by circulating immunoglobulin

GO:0002925 1 0.0073 0.13

KEGG category ID Genes in category p-value FDR q-value

B cell receptor signaling pathway 04662 4 7.6E-006 0.00018

Cell adhesion molecules (CAMs) 04514 4 7.4E-005 0.00088

Asthma 05310 2 1.4E-003 0.011

Allograft rejection 05330 2 2.1E-003 0.011

Graft-versus-host disease 05332 2 2.5E-003 0.011

Type I diabetes mellitus 04940 2 2.8E-003 0.011

Intestinal immune network for IgA production 04672 2 3.4E-003 0.012

Autoimmune thyroid disease 05320 2 4.0E-003 0.012
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immune cell gene sets are seen, along with multiple non-
specific results such as cancer gene sets.

Biomarker association with exacerbations phenotype
The association between the number of exacerbations and
each of the plasma biomarkers was tested adjusting for co-
variates and the top ten results are provided in Table 5.
Myeloperoxidase (MPO) was the top result (FDR q-value =
0.096), while club cell-16 (CC-16) showed nominal associ-
ation (p < 0.05).

Discussion
In order to identify genes associated with COPD-related
phenotypes, we initially used standard gene expression
models. Despite the sample size, we found a lack of signifi-
cant results, and a lack of specificity with respect to path-
ways or diseases from the enrichment analyses. However,
network methods were able to group similar probes into
correlated modules with potential common functions, that
were then tested for association with phenotypes of inter-
est. Using these methods we were able to observe im-
munological functions across the modules associated with
acute exacerbations of COPD. In addition, we were able to
recapitulate the molecular signatures of previous studies
involving viral lung infections and exacerbations of asthma,
a related respiratory disease. The ability to uncover such
signatures is limited given that only subjects having two or
fewer exacerbations within the previous year were included
in the study, as a wider range of exacerbation frequencies
would provide greater resolution to detect the molecular
underpinnings of COPD exacerbations. Yet the network
methods added value to address these limitations of the
dataset.
WGCNA allowed for identification of the putative hub

genes for each of the five modules associated with exac-
erbations. These hubs include the immunoglobulin
heavy constant mu (IGHM) gene in the white module,
that codes for the C region of the mu heavy chain (de-
fines the IgM isotype). Lending to its role in lung dis-
ease, IGHM was found to be down-regulated in
idiopathic pulmonary fibrosis (IPF) whole blood samples
versus normal samples [9]. From the royalblue module, the
putative hub was found to be KLRD1 (CD94) that codes
for an antigen preferentially expressed on NK cells. A de-
crease in its expression has been observed in the blood of
COPD patients versus controls [25]. The gene product for
AFF3 from the lightgreen module is a tissue restricted nu-
clear transcriptional activator, formerly known as lymphoid
nuclear protein related to AF4, and it was down-regulated
with respect to controls in BEAS-2B cells (immortalized
human bronchial epithelial cells) treated with low doses of
cigarette smoke condensate [26]. From the darkturquoise
module, GPR56 encodes G protein-coupled receptor 56;
its involvement in COPD has not been previously estab-
lished. Lastly, the hubs from the darkgrey module, GBP1
and GBP5, guanylate binding proteins whose expression is
induced by interferon and are markers of M1 macrophage
population, were found to be down-regulated by cigarette



Table 4 GSEA results for modules associated with exacerbations phenotypes (gene sets with FDR q-value < 0.25 are
shown and viral response gene sets are in bold)

Module name Gene set description ID Set overlap P-value FDR q-value

White (negative)* NAIVE_BCELL_VS_MONOCYTE_UP GSE22886 15 0.084 0.207

CD4_TCELL_VS_BCELL_DN GSE10325 18 0.122 0.230

BCELL_VS_MONOCYTE_DAY7_FLU_VACCINE_P GSE29618 17 0.185 0.216

Royalblue (positive)* NAIVE_VS_PD1LOW_CD8_TCELL_DN GSE26495 28 0.004 0.048

HEALTHY_VS_RSV_INF_INFANT_PBMC_UP GSE34205 15 0.016 0.062

DEURIG_T_CELL_PROLYMPHOCYTIC_LEUKEMIA_DN 18 0.055 0.151

Lightgreen (negative)* BCELL_VS_MDC_DAY7_FLU_VACCINE_UP GSE29618 17 0.006 0.095

CD4_TCELL_VS_BCELL_DN GSE10325 19 0.012 0.05

BCELL_VS_MDC_UP GSE29618 15 0.012 0.043

LUPUS_CD4_TCELL_VS_LUPUS_BCELL_DN GSE10325 20 0.01 0.046

DODD_NASOPHARYNGEAL_CARCINOMA_UP 15 0.023 0.068

BCELL_VS_MONOCYTE_DAY7_FLU_VACCINE_UP GSE29618 21 0.025 0.064

BCELL_VS_MYELOID_UP GSE10325 15 0.045 0.064

NAIVE_BCELL_VS_MONOCYTE_UP GSE22886 17 0.06 0.078

BCELL_VS_MONOCYTE_UP GSE29618 23 0.075 0.121

CAGGTG_V$E12_Q6 16 0.116 0.149

MEMORY_CD4_TCELL_VS_BCELL_DN GSE3982 17 0.137 0.14

Darkturquoise (positive)* NAIVE_VS_PD1LOW_CD8_TCELL_DN GSE26495 26 0.057 0.090

NAIVE_VS_PD1HIGH_CD8_TCELL_DN GSE26495 19 0.158 0.166

Darkgrey (positive)* CTRL_VS_NEWCASTLE_VIRUS_DC_8H_DN GSE18791 30 0.000 0.012

BOSCO_INTERFERON_INDUCED_ANTIVIRAL_MODULE 18 0.003 0.038

UNSTIM_VS_4H_LPS_DC_TRANSLATED_RNA_DN GSE14000 23 0.002 0.030

MOSERLE_IFNA_RESPONSE 17 0.011 0.104

TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_10D_UP 20 0.016 0.094

UNSTIM_VS_NEWCATSLE_VIRUS_DC_18H_DN GSE18791 19 0.013 0.093

UNSTIM_VS_NEWCATSLE_VIRUS_DC_6H_DN GSE18791 31 0.031 0.105

CTRL_VS_NEWCASTLE_VIRUS_DC_10H_DN GSE18791 21 0.013 0.095

CTRL_VS_NEWCASTLE_VIRUS_DC_12H_DN GSE18791 19 0.026 0.134

UNSTIM_VS_4H_LPS_DC_DN GSE14000 24 0.031 0.141

UNSTIM_VS_NEWCATSLE_VIRUS_DC_10H_DN GSE18791 26 0.034 0.161

CTRL_VS_NEWCASTLE_VIRUS_DC_4H_DN GSE18791 22 0.052 0.166

CTRL_VS_NEWCASTLE_VIRUS_DC_6H_DN GSE18791 27 0.054 0.170

BCELL_VS_LUPUS_BCELL_DN GSE10325 17 0.094 0.250

HECKER_IFNB1_TARGETS 21 0.102 0.246

*Positive or negative correlation between module and phenotype.
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smoke in monocyte-derived macrophages [27]. Taken as a
whole, these hubs lend additional evidence to the specific
role of each module: B cell activity for the white and light-
green modules, NK cell activity for the royalblue module,
and macrophage involvement in the darkgrey module.
GO and KEGG pathway enrichment analysis provided

common functions of the module genes, namely the im-
mune system response to bacterial and viral infections.
Additionally, the significant enrichment for B cell and
asthma pathways in the white module are of note, as are
the cytokine and viral response related enrichments in
the darkturquoise and darkgrey modules. However, the
GSEA results were more informative, revealing signatures
of gene expression previously identified in studies involving
lung infections, which is consistent with the infectious eti-
ology of most COPD exacerbations. One example was a



Figure 2 EnrichmentMap network for GSEA results from darkgrey module. Nodes correspond to gene sets and edges correspond to an
overlap of the genes within two sets.
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top result for the darkgrey module (Table 4). The gene
set, BOSCO_INTERFERON_INDUCED_ANTIVIRAL_
MODULE, was a WGCNA module (n = 78 genes) com-
posed of genes downstream of interferon signaling, that
was associated with lung function in a study of sputum
samples of children with acute asthma exacerbations [28].
This study found decreased activation of interferon path-
ways in asthmatic children with chronic airway obstruction
compared with those without airway obstruction. The dark-
grey module may harbor genes associated with differential
responses during exacerbations that perhaps also play a role
in onset, frequency and severity of COPD exacerbations.
Table 5 Biomarker association with exacerbation
phenotype

Biomarker Beta Standard error P-Value FDR q-value

MPO 0.33 0.096 0.00069 0.096

CC_16 0.20 0.098 0.041 0.98

ET1_Z −0.44 0.25 0.074 0.98

HPT 0.16 0.094 0.086 0.98

ENA78 0.18 0.11 0.094 0.98

TNFB −0.32 0.20 0.11 0.98

TP −0.16 0.10 0.12 0.98

TSH 0.15 0.10 0.13 0.98

APOH −0.15 0.10 0.14 0.98

TGFB3 0.30 0.20 0.14 0.98
In another example, the royalblue module enrichment
results include the gene set GSE34205_HEALTHY_
VS_RSV_INF_INFANT_PBMC_UP, genes differentially
expressed in blood samples from healthy infants and
infants suffering from respiratory syncytial virus (RSV)
infection [29]. RSV is a major respiratory pathogen that is
more common in infants; however the elderly and patients
with COPD or other lung diseases are also at risk of devel-
oping RSV infections [2]. Using network analysis methods
and GSEA, we were able to identify modules that contain
genes demonstrating a signature previously seen in the
sputum of patients suffering from acute asthma exacerba-
tions and the blood of patients with respiratory infections.
However, we detected these signatures using expression
data from whole blood of COPD patients, collected
months following exacerbations.
The EnrichmentMap network of GSEA results for the

darkgrey module (Figure 2) shows an overlap between
the asthma exacerbation [28] and the viral-response
gene sets, as would be expected given the virus-induced
nature of many exacerbations. However the relatively
narrow widths of many edges demonstrate that these
gene sets are largely distinct. In the network for the
lightgreen module in Additional file 2: Figure S3, rela-
tively strong connections exist between the nodes, dem-
onstrating an enrichment of B cell pathway activity
within the gene sets. In contrast to the specificity of the
networks for the darkgrey and lightgreen modules, the
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EnrichmentMap for the probe-based analysis gene set
shown in Additional file 2: Figure S4 is less tightly con-
nected with many nodes having zero connections. The
probe-based analysis is less specific than the module ana-
lyses. Although the red sub-network in Additional file 2:
Figure S4 contains several viral response results, the blue
sub-network contains various cancer gene sets, in addition
to infectious diseases.
In the biomarker analysis, we found an association be-

tween MPO and the number of exacerbations, persisting
months following illness. Serum MPO levels have been
shown to be increased in COPD patients during acute
exacerbations [30]. However in contrast to our finding, a
previous study did not find a difference in sputum MPO
levels between patients with stable COPD having fre-
quent (>3/year) or infrequent (<2/year) exacerbations in
the previous 12 months [31]. In addition, a study of
bronchoalveolar lavage samples did not find significantly
higher MPO levels in COPD patients with frequent (≥3/
year) exacerbations as compared to infrequent (<3/year)
exacerbations [32]. Perhaps the peripheral blood based
signature of COPD exacerbations is able to persist due to
systemic modulation of the immune system. Longitudinal
studies have shown a reduction in serum MPO levels dur-
ing treatment for acute exacerbations of chronic bron-
chitis, followed by the return to higher levels following
treatment [33], however no association with the number
of exacerbations or their severity was noted. Taken to-
gether, our finding and the previous studies provide evi-
dence for MPO as part of the molecular signature to be
considered when predicting the onset, severity and fre-
quency of future COPD exacerbations, as it has been pre-
viously established as an inflammatory marker, and
specifically in COPD [34].
The use of gene expression data from whole blood in-

stead of lung tissue samples may limit the ability of our
approach to detect signatures in the specific disease tissue.
However, peripheral blood is more easily accessed than
lung tissue and may provide specific insight into the infec-
tious, immune and inflammatory mechanisms of COPD
exacerbations. Like lung tissue, whole blood is a complex
mixture of different cell types. Complete blood counts
(CBC) with cell differentials are routinely measured in
clinical practice, but were not available in the TESRA
study. However, our analysis was able to distinguish B and
T cell signatures, cell types which would not be discrimi-
nated in a standard CBC. An additional limitation of our
approach involves the use biomarker and gene expression
data as markers of exacerbations in the past year, yet this
may indicate a stable molecular signature differing from
that of lung function and other markers of severity.
Lastly, one potential confounder is the external trigger
of the exacerbation. Regardless of an individual’s genetic
predisposition for exacerbations, a viral, bacterial or
other environmental cause may lead to different signa-
tures. Despite these limitations, we were able to effect-
ively uncover expression signatures of frequent COPD
exacerbations in peripheral whole blood samples.

Conclusions
In this study a distinct signature of COPD exacerbations
was observed in peripheral whole blood months follow-
ing the illness. This signature was correlated with previ-
ous studies involving exacerbations in asthma and viral
lung infections, and therefore, it may be useful in unco-
vering the molecular pathogenesis of COPD exacerba-
tions. The moderate association of MPO and number of
exacerbations adds to the body of information supporting
the use of MPO as a biomarker. Future studies with longi-
tudinal expression data would allow an investigation of
the temporal nature of the network modules, separating
causal modules from the downstream modules demon-
strating expression changes as a result of the disease state.
Similarly, the methods presented here would benefit from
gene expression data obtained during acute exacerbations,
in addition to samples obtained months following the ill-
ness, particularly with respect to prediction. Overall, these
approaches will help to elucidate the genetic component
determining the heterogeneity of onset, severity, and fre-
quency of exacerbations seen in COPD patients.
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