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Abstract

Background: Uncertainties exist in many biological systems, which can be classified as random uncertainties and
fuzzy uncertainties. The former can usually be dealt with using stochastic methods, while the latter have to be

handled with such approaches as fuzzy methods.

Results: In this paper, we focus on a special type of biological systems that can be described using ordinary
differential equations or continuous Petri nets (CPNs), but some kinetic parameters are missing or inaccurate. For this,
we propose a class of fuzzy continuous Petri nets (FCPNs) by combining CPNs and fuzzy logics. We also present and
implement a simulation algorithm for FCPNs, and illustrate our method with the heat shock response system.

Conclusions: This approach can be used to model biological systems where some kinetic parameters are not
available or their values vary due to some environmental factors.

Keywords: Fuzzy uncertainties, Fuzzy continuous Petri nets, Uncertain kinetic parameters, Fuzzy simulation

Background
Modeling and simulation is one of the main techniques
that are used to study biological systems from a compu-
tational point of view [1-3]. It plays an essential role in
understanding the mechanisms of biological systems and
for making predictions for new biological experiments.
So far, a variety of approaches have been proposed
for modeling different types of biological systems. These
approaches generally can be classified in the follow-
ing three categories: (1) qualitative approaches such as
Boolean networks [4], fuzzy rules [5] and (qualitative)
Petri nets [6]; (2) quantitative approaches such as dif-
ferential equations, Bayesian networks [7] and stochas-
tic/continuous Petri nets [8]; and (3) hybrid approaches
by combining qualitative and quantitative methods such
as fuzzy stochastic Petri nets [9]. It is natural to employ
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quantitative (qualitative) approaches when quantitative
data are (not) available. However, for many biological sys-
tems, not all required quantitative data can be measured
completely and precisely, so some kinetic parameters can-
not be accurately estimated. In such a case, if we confine
ourselves to qualitative methods, any available quantita-
tive data become useless; however if we adopt quantitative
methods, some kinetic data are missing or inaccurate.
In order to make full use of all the available data for a
biological system, hybrid methods could be a good option.

The uncertainties in biological systems usually come
from their intrinsic internal noises and external environ-
mental factors, or are caused by measurements. These
uncertainties can be further classified according to their
sources in two categories: random uncertainties and fuzzy
uncertainties. If there are insufficient or missing data for
a biological system, the modeling of the system could be
accompanied with fuzzy uncertainties. Random uncer-
tainties usually can be dealt with using stochastic methods
such as stochastic Petri nets or stochastic differential
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equations, while fuzzy uncertainties have to be handled
with such methods as fuzzy methods.

In this paper, we focus on a class of biological sys-
tems, which can be described using ordinary differen-
tial equations (ODEs) or continuous Petri nets (CPNs)
[10], but have some inaccurate or missing kinetic param-
eters. Because of the existence of fuzzy uncertainties
caused by insufficient data, we may have to combine
fuzzy methods with quantitative methods such as ODEs
to accomplish a trustworthy modeling of such a class
of biological systems. In order to achieve this, we are
going to propose a class of fuzzy continuous Petri
nets (FCPNSs).

Petri nets have been widely used in systems biology
these years and have been extended in many ways, e.g.,
stochastic Petri nets by associating a stochastic time
delay with each transition [11], and continuous Petri
nets (CPNs) by associating deterministic rates with tran-
sitions and allowing tokens on places to be real val-
ues [12]. The underlying semantics of a CPN is a set
of ODEs, which means a CPN model is nothing else
than a graphical representation of a set of ODEs. By
doing so, biologists can easily construct biological mod-
els described by ODEs and the constructed models are
less error prone. On the other hand, fuzzy logic [13] was
proposed to deal with fuzzy uncertainties, and has been
applied in many fields. Fuzzy logic has also been combined
with differential equations (DEs), and different types
of fuzzy DEs have been proposed [14, 15]. This offers
good means to cope with quantitative systems involving
uncertainties.

In this paper, we aim at the modeling of uncertain
biological systems, and propose a class of biologically
interpreted FCPNs by allowing some kinetic parameters
to be fuzzy numbers. Considering the fact that analytical
methods are impossible for large models [14], we present
an appropriate algorithm for simulating large FCPNs. We
illustrate the application of our method with a medium-
sized model.

We believe that our approach can be applied in the
following biological scenarios.

e For a biological model, if some of its kinetic
parameters are not available, thus precluding ODE
simulation, we can still use FCPNs to quantitatively
analyze the model by giving an uncertain band of any
output, rather than crisp values.

e For a biological model where some of its parameters
vary due to environmental effects or other factors
and stochastic methods are not appropriate, then we
can represent each variable (or uncertain) parameter
as a fuzzy number. By running fuzzy simulation, we
can obtain an uncertain band of an output, which
describes the effect of the variable parameters.
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Taking into account the fact that many ODE and CPN
models of biological systems do exist and intrinsic uncer-
tainties are associated with many biological systems, we
believe that FCPNs offer a new means for reexamining
these existing ODE and CPN models, revealing potentially
new insights into the corresponding biological systems.

Our fuzzy modeling approach vs parameter estimation
methods. Parameter estimation is an essential step in
constructing quantitative (biological) models, which aims
to infer kinetic parameters from experiment observations
[16]. In contrast, our approach is one of the fuzzy model-
ing approaches, which aims to derive the uncertainties of
outputs from the uncertainties of input parameters. In this
paper, we will present a workflow for using our approach,
where we will clearly see that parameter estimation can be
considered as a key step of our fuzzy modeling approach.

The structure of the paper is as follows. In the section
of methods, we describe fuzzy sets and continuous Petri
nets. In the section of results and discussion, we present
a class of fuzzy continuous Petri nets together with a
fuzzy simulation algorithm, and discuss how to use the
approach for modeling and analyzing biological systems
illustrated by a medium-sized biological model. Finally,
the conclusions are given.

Methods
In this section, we introduce fuzzy sets and continuous
Petri nets.

Fuzzy sets
Fuzzy sets, proposed by Zadeh [13], are a generalization of
classical sets and can handle uncertainty associated with
imprecision and vagueness. Fuzzy theory is different from
probability theory that deals with randomness.

A fuzzy set £ is defined on a universal set X by its
membership function

g 1 X —[0,1], 1)

which maps a real value I (x) € [0,1] to each element
x € X. That is, in a fuzzy set, each element has a member-
ship degree between 0 and 1, which is different from any
element in a crisp set, whose membership degree is either
Oorl.

The «-cut of a fuzzy set € atalevel @ € [0,1] is defined
as the crisp subset of X with all the elements whose mem-
bership degree is greater than or equal to the given «, i.e.,

v = Il () > a,x € X, € [0,1]). (2)

A fuzzy number is a special convex normalized fuzzy set
over the real set R. Many different types of fuzzy num-
bers have been defined such as triangular, trapezoidal and
bell-shaped fuzzy numbers. A triangular fuzzy number,
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denoted by € = (a,b,¢),a < b < ¢, is defined as (see
Fig. 1):

0 lfx S a,
xX—a M
) _ e ifa <x =< br
ng(x) = = ifb<x<c @
0 else.

Its a-cut for any o € [0, 1] is simply written as
b =la+ab—a),c—ac—b). “

In the following, we arbitrarily chose to consider trian-
gular fuzzy numbers to illustrate our approach, without
loss of generality. We denote by I' the set of triangular
fuzzy numbers whose lower bound is greater than 0, i.e.
a > 0.

The extension principle is a powerful tool of fuzzy
logic, which offers a general procedure for extending crisp
domains to fuzzy domains. Assume f : X — Y, and 4 is
a fuzzy set on X such that

A=z 0) /(1) + 3 (02)/(x2) + ..o+ g (o) / ().

Then, applying the extension principle yields the follow-
ing fuzzy set

B=f(A) = pui 00/ 01)+uz 02/ )+ . A1z 0m) ),

wherex; € X,y, €Y,y =f(x:),i=1,2,...,n.
The extension principle will be used in the paper to
achieve fuzzy simulation of FCPNs.

Fuzzy differential equations (FDEs). As a typical class

of FDEs, a differential equation with fuzzy parameters can
be defined as

dx/dt = f(t,x(t), O),

{ /dt = f(&x(®), C) )

x(tp) = xo,

p(x) 1
1

\ 4

0 4 b C x

Fig. 1 A triangular fuzzy number, & = (a,b, ¢). a is only allowed to be
greater than O for the biological applications
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where C is a fuzzy parameter, represented as a fuzzy
number.

The analytical solution of Eq. 5 can be obtained via a
family of differential inclusions [17], or by considering
dx/dt as the fuzzy generalized derivative [18]. However,
all these existing analytical methods are only applicable
for one or two equations. In order to address a number
of FDEs, numerical methods have to be employed. In this
paper, we will present a numerical approach for solving
fuzzy differential equations.

Continuous Petri nets

Petri nets (PNs) [19] are weighted, directed, bipartite
multigraphs. A PN consists of places, transitions (both
of which are called nodes) and arcs (or edges) that con-
nect nodes of both types. In the biological scenario, places
may represent chemical species or their compounds, e.g.,
genes, mRNA, proteins or protein complexes; transitions
may represent any kind of chemical reactions (e.g. associ-
ation, disassociation, translation or transcription) or any
positive/passive behavior such as molecular movement
[20, 21]. The tokens on places represent the number of
molecules or the concentration levels of species, which
only allow discrete integers.

For modeling a variety of scenarios, PNs have been
extended in many ways, one of which is continuous Petri
nets (CPNs) by allowing tokens on places to be real val-
ues to represent the concentration of species. The formal
definition of a CPN is given as follows [11].

A CPNisasix-tuple N =< P, T,F,f,v,My >, where

P is a finite, non-empty set of continuous places.

T is a finite, non-empty set of continuous transitions.
F C (P x T)U (T x P) is a finite set of directed arcs.
f:F— R:{ is a function that assigns a non-negative
real number to each arca € F. Rg denotes the set of
non-negative real numbers.

e v:T — H isa function that assigns a firing rate
function /4, to each transition ¢ € T, whereby
H:=Ur {ht|ht : ]R(J)r‘.[I — ]R} is the set of all firing
rate functions, and v(¢) = k; for all transitions ¢t € T.
R denotes the set of real numbers. *¢ denotes the
preplaces of transition t.

e My:P— Ra‘ gives the initial marking, which assigns
a non-negative real number to each place p € P.

In a CPN, besides the continuous token values on places,
the transitions are also continuous. That is, each transition
is associated with a firing rate function and can continuou
sly fire during simulation, if its preplaces allow to do so.

In fact, the underlying semantics of a CPN is a sys-
tem of ODEs, where each equation describes the con-
tinuous token change on a given place, i.e., continuously
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increasing by its pretransitions’ flow and decreasing by its
posttransitions’ flow. An equation for a place p takes the
following form:

d) _

1= 2 S6pv =3 o),

tep tep®

where *p and p*® denote the pretransitions and posttransi-
tions of place p, respectively.

Besides, the rate function related to each transition can
be further written in the following form:

t,0) R S R, ©6)

where 6 is a rate constant (also called kinetic constant).
For example, Fig. 2 gives a CPN model of a decay-
dimerization network, which includes the following four
biochemical reactions:
6
ry ZSl —1> @
6
ry:S1 481 = S

r3 : Sy ﬁ) S1+ 81

6.
ra ZSQ —4> S?,
100 |
S r1
2 2
10
‘i / 9 Ss
10 g
SQ T4
Fig. 2 A Petri net model of a decay-dimerization network [26]. This
network consists of a degradation reaction (r1), two reversible
dimerization reactions (r, and r3), and a conversion reaction (r4)
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This CPN model generates the following set of ODEs
under the mass action semantics.

dSy/dt =2 % (63 % S2) — (61 % S1) — 2 (62 % S7),
dSy/dt = (62 % S7) — (03 % S2) — (64 % S),
dSs/dt = (04 % S»).

If we run numerical simulation of the CPN model, we
obtain the simulation result that is illustrated in Fig. 3 by
taking the species Sy as an example.

Results and discussion

In this section, we present a class of fuzzy continuous
Petri nets together with a fuzzy simulation algorithm, and
discuss how to use the approach for modeling and ana-
lyzing biological systems illustrated by a medium-sized
biological model.

Fuzzy continuous Petri nets

In Eq. 6, the kinetic constant 6 is usually obtained using
parameter estimation methods. If 6 is not precise, the
CPN model will not produce the correct result. In this
case, we have to abandon CPNs or ODEs and turn to
other methods able to deal with uncertainties at the cost
of losing all available data.

To overcome this issue, we may turn to hybrid meth-
ods by replacing the values of those uncertain parameters
with fuzzy numbers. Thus, in such a model, we allow that
some parameters are crisp, but others fuzzy numbers. In
this way, we can make full use of all the available data of
a system. In this case, the rate function of each transition
turns into the following form (either a real value or a fuzzy
number in T'):

+\.t\
h(t,0):Ry  — RUT. (7)
25
20 4
15 4
o
10 - 4
5| i
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time
Fig. 3 A simulation plot of the CPN model in Fig. 2. Parameters:
91 =0.2, 92 = 0.04, 93 = 0.5and 6, =5
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Formally, an FCPN is defined as a six-tuple N =<
P,T,F,f,v,Mp >, where

P is a finite, non-empty set of continuous places.
T is a finite, non-empty set of continuous transitions.
F C (P x T)U(T x P) is a finite set of directed arcs.
f:F — R{ isa function that assigns a non-negative
real number to each arca € F.
e v: T — H isa function that assigns a firing rate
function /4, to each transition ¢t € T, whereby
H := J,cp{h(t,0)} is the set of all firing rate
functions, and v(¢) = k; for all transitions ¢ € T, and
h(t,0) in defined by Eq. (7).
e My:P— RBL gives the initial marking, which assigns
a non-negative real number to each place p € P.

With FCPNs, we can model 6 as a crisp value if pre-
cise quantitative data are available or as a fuzzy num-
ber if the parameter cannot be measured precisely. As
a result, we may use fuzzy analytical or fuzzy simu-
lation methods to obtain an uncertain band for each
output according to the uncertain band of the param-
eters. Therefore, we still obtain a quantitative analysis
of a biological model that lacks some quantitative data.
By presenting FCPNs, we offer a new method for mod-
eling and analyzing biological systems with uncertain
information.

The semantics of an FCPN is described by a combina-
tion of a set of FDEs in the form of Eq. 5 and a set of ODEs.
Due to the existence of a couple of FDEs for a biological
model, we have to resort to a simulation approach to ana-
lyze an FCPN model. Using the extension principle, we
obtain the uncertainty of model outputs according to the
uncertainty of model parameters.

For example, when we replace the crisp values of
parameters 63 and 64 with the fuzzy numbers given
in Table 1, we obtain an FCPN model for the decay-
dimerization network, which looks exactly the same as
the one in Fig. 2 except of the two fuzzy kinetic param-
eters. Besides, Fig. 4 gives a simulation plot of the
model, which is an uncertain band of an output due
to the uncertain parameters. We can check the correct-
ness of the model by analyzing the uncertain band of
each output.

Table 1 Rate functions of the transitions given in the FCPN
model of Fig. 2

Transition t Rate function h(t,0) Kinetic constant 8
n 01 %5 02

2 0) % S1 % 51 0.04

r3 [ZERY) (0.45,0.5,0.55)

r4 04 % Sy (4.9,5.054)
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Fig. 4 A simulation plot of the FCPN model. See Table 1 for the values
of parameters

Simulation algorithm

A biological model constructed as FCPNs usually gener-
ates a number of ODEs and/or FDEs. Analytical methods
that are applicable for several simple FDEs can hardly be
applied for analyzing such models. Therefore, numerical
simulation becomes essential, especially for larger models.

For achieving numerical simulation of an FCPN model,
we adopt the following idea. We first represent each fuzzy
number as a union of its a-cuts according to Zadeh’s
extension principle. By sampling the «-cut at each « level,
we obtain a combination of samples for all parameters.
For each combination, we run numerical simulation on
the corresponding CPN model at an « level. After run-
ning simulations for all considered « levels, we compose
all the a-cuts to obtain the membership function of each
output at each simulation time point. That is, we obtain
the uncertainties of outputs caused by the uncertainties of
kinetic parameters.

This procedure is given in Algorithm 1 and explained in
depth in the following.

(1) Determine the appropriate number of « levels
to decompose the membership functions of uncertain
parameters (Line 1). Each level is denoted by «;, j =
1,2,...,], where J is the total number of « levels to be
considered. Each parameter takes the same number of «
levels.

(2) For each « level, compute the corresponding «-cut
of each fuzzy number 6;,i = 1,2, .. ., I, according to Eq. 4,
where [ is the total number of fuzzy numbers contained
in the uncertain parameters. Each a-cut is represented as

(9}) = [L/l:, L[{ ] (Line 3). Figure 5 illustrates the result by
o
performing the first two steps.

(3) Discretize each a-cut [L]l-, LI{] and obtain a set of

crisp values for each fuzzy number (Line 4). To do this,
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Fig. 5 Decompose a membership function into its a-cuts for a fuzzy
kinetic parameter. This is done according to Zadeh's extension
principle

we use the same sampling step for simplicity, but of
course we can adopt any other sampling method. But
in order to improve the computational efficiency, we
have to optimize the sampling or even minimize the
sample number. Assume we sample K discretization val-
ues for each a-cut. We then obtain K! combinations of
these sampling values for I fuzzy numbers at each «
level. Thus we have K! x J combinations for all « lev-
els. That is, the time complexity of the algorithm can
be represented as O(KI X ]). For an uncertain model,
the number of its uncertain parameters, i.e. I, usually
can be fixed. Therefore, we should try to decrease both
K and]J.

(4) For each combination ¢ € K! x J, we replace
each fuzzy number with its corresponding sampling
value and then obtain a sample (a set of ODEs)
of the FCPN model (Line 7). After that, we per-
form numerical simulation on the corresponding ODEs
with a numerical integration method such as the
Runge—Kutta method, and obtain simulation results
(Lines 8-9).

(5) We compose the simulation traces of all the «-cuts
to obtain the membership function of each output at each
time point, which is illustrated in Fig. 6 (Lines 11-16). Such
membership function reflects more accurately the effects
of uncertain parameters.

(6) By computing the maximum and minimum values
over all the simulation traces at each time point for each
output, we obtain an uncertain band for the output (Lines
18-21). Such uncertain band roughly reflects the effects of
uncertain parameters.

A more efficient sampling method. The sampling method
we use above involves a large number of samples, i.e., K x J;
however, there may be some redundancy at some « levels.

Fig. 6 Compose a set of a-cuts to form a membership function for an
uncertain output at a time point 7. This is done according to Zadeh's
extension principle

By reducing this redundancy without affecting the accu-
racy, we propose a new sampling method, which works
as follows.

For each fuzzy parameter i, we only discretize the a-
cut at ¢y = O into k crisp values, while for other «
levels, we only consider the start and end points, i.e. L]l.
and Ul’.. Thus we have in total KT + 27 x (J — 1) combi-
nations, which result in the same number of simulation
traces, each of which is denoted by Tr;; for an output.
The new sampling method substantially reduces the num-
ber of samples compared with the method above. When
the « level m is equal to J, we use the same method as
given in Algorithm 1 to compute the membership func-
tion and uncertain band of an output. When m is unequal
to J, we first obtain the traces to be used at this « level,
which consist of the traces in Tr;,; and the others in
Tryk. The latter can be obtained in the following way. If
Vik € [Lf”, L[L’"] for all fuzzy parameters, where v is
the crisp parameter value via discretation at the « level J,
the corresponding trace Tr is selected. After that, we
still use the same method given in Algorithm 1 to com-
pute the membership function and uncertain band of
an output.

A workflow to use FCPNs for modeling biological systems
In this section, we give a general workflow to use FCPNs
to model and analyze biological systems.

(1) Collect quantitative data and qualitative knowledge
for the biological system to be studied. A model usually
consists of two main parts, structure and kinetic param-
eters. We first determine the structure of the model by
means of the available data and knowledge. At this step,
we can obtain a qualitative Petri net model, which can be
read as a set of ODEs in which parameters are not assigned
values. We then divide the kinetic parameters of the model
into two categories: precise or uncertain.
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Algorithm 1 Simulation algorithm for an FCPN model.

Input: An FCPN model.
Output: An uncertain band for each output.
1: for each « level to be considered, denoted by «;, j =
1,2,...,]do
2. for each fuzzy number from the uncertain param-
eters, denoted by 6, i = 1,2,...,1 do
3: Compute its o-cut according to Eq. 4, repre-

sented as (5i)a, = [L]l:, LI{];

4: Discretize each a-cut, [L]Lj, U{ ] and obtain K crisp
values for each fuzzy number;

5. end for

6 for each combination ¢ € K of crisp values for all
fuzzy numbers do

7: Obtain a set of ODEs for each combination;
8: Run numerical simulation on the set of ODEs;
9: Obtain a trace TR, (c e k! );

10.  end for
11:  for each time point t € TT (TT is the simulation
time length) do

12: TRMax/ (7) = MAX el <TR€(‘5));
13 TRMind (v) = min, g (TRﬂ(r));
14:  end for

15: end for

16: Compute the membership function of each output in
terms of TRMax' and TRMin;

17: //Compute the uncertain band for each output;

18: for each time point t € 77T do

19:  UpperBound(t) = maxj:m,m,](TRMax/(T));

20:  LowerBound(t) = minj—1,,. j(TRMin (7));

21: end for

(2) For parameters with sufficient quantitative data, we
can use well-established parameter estimation methods to
obtain their precise values. See e.g., [22, 23] for perform-
ing parameter estimation of biological models described
by ODEs.

(3) For each uncertain parameter, we can adopt two
methods to specify their fuzzy values. (a) Perform param-
eter estimation based on the available incomplete quan-
titative data. When parameter estimation is performed,
we usually specify the initial parameter search space and
then refine this space based on the data. If the data is
insufficient, we cannot obtain a precise parameter value,
although we may be able to reduce the search space. In
this case, we will use the reduce parameter space to spec-
ify the fuzzy value of the parameter. (b) Employ experts
to directly give a fuzzy value for a parameter. If quan-
titative data are not available, we can ask experts to
assign a fuzzy number to a parameter according to their
experience. By assigning values to all parameters, either
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crisp or fuzzy, we obtain a complete FCPN model for a
biological system.

(4) We then run fuzzy simulation using the algo-
rithm given above to obtain uncertain outputs and
analyze them. After the model is validated, we can
use it to explain the corresponding biological phe-
nomena and potentially make predictions for further
experiments.

Case study
In this section, we use a heat shock response model given
in [24] to illustrate the approach presented in the paper.

Modeling

The heat shock response is a highly conserved genetic
network that acts as a main defense mechanism against
cell stress and protein damage. The biochemical reactions
considered in [24] are repeated in Table 2, and the species
involved in the model are explained in Table 3 together
with their initial values [24].

The heat shock factor (ksf) has two phosphoryla-
tion states hsf; and hsfs; these three species can be
converted from one to another by phosphorylation or
dephosphorylation. The heat shock protein (4sp) plays
the key role in preventing misfolding and facilitat-
ing protein folding. The hsp-encoding genes can be
transactivated through the binding of Asf; to the heat
shock element (hse), which forms hsfs_hse. hsp may
also bind to hsf, forming hsp_hsf, or bind to hsf, or
hsfs. hsp can also bind to the heat-induced misfolded
proteins mfp which are the drivers of the whole heat

Table 2 The biochemical reactions involved in the heat shock
response model, adapted from [24]

Species Description
k
r(r): 2hsf £ hsf,
m
kop
r3(rg): hsf + hsf, = hsf3
2m
k3p
r5(rg): hsfs + hse f hsfs_hse
3m
7: hsf;_hse ﬁ) hsf;_hse + hsp
ki
rg(ro): hsp + hsf % hsp_hsf
Sm
no: hsp + hsf, ﬁ) hsp_hsf + hsf
n: hsp + hsfs g hsp_hsf + 2hsf
no: hsp + hsfs_hse ﬁ) hsp_hsf + hse + 2hsf
. kg
ns: hsp —
. kig
ra: prot — mfp
k
rs(rie): hsp + mfp k;D hsp_mfp
1m
ny: hsp_mfp LN hsp + prot

See Table 4 for the values of the kinetic parameters
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Table 3 The species involved in the heat shock response model

Species Description Initial value
hsf Heat shock factor 067

hsf Phosphorylation state of hsf 87 x 1074
hsf3 Phosphorylation state of hsf 12x 1074
hse Heat shock element 29.73
hsf3_hse The binding of hsfs to hse 2.96

hsp Heat shock protein 766.88
hsp_hsf The binding of hsp to hsf 1403.13
mfp The heat-induced misfolded protein 517.352
hsp_mfp The binding of hsp to mfp 71.65

prot Unfolded or native protein 115 x 108

The initial values are taken from [24]

shock response, forming hsp_mfp. mfp is converted
from an unfolded or native protein (prot) induced by
the heat.

According to these reactions, we build a CPN/FCPN
model, depending on the type of parameters, illustrated in
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Fig. 7. From the model, we see that we map each reaction
to a transition of the CPN/FCPN model; a reversible reac-
tion is considered as two irreversible reactions. We also
assume that the principle of mass action applies to each
reaction.

Structural analysis

As a member of the family of Petri nets, FCPNs likewise
enjoy all Petri net analysis techniques. Here we will ana-
lyze T-invariants [6] of our constructed model by feeding
the FCPN model given in Fig. 7 to Charlie [25], an analysis
tool of Petri net models.

Our model in hand is covered by 10 minimal
T-invariants, ie., {(r1,7r2), (r3,7r4), (r5,76), (r8,79),
(s, re)s  (r,7r9,110),  (r1,73,79,111)5 (11,73, 75,19, 712),
(r14, 115, 117), (r7,713) }. Each T-invariant is an elementary
behavioral mode of a system, and reproduces a system
state (or marking) [6]. The first four T-invariants cor-
respond to the four reversible reactions given above,
while the others reveal further elementary behavioral
modes that cannot be easily deduced from the reaction
equations. For example, the T-invariant (r7,r;3) shows

hsf2
0.00087

67) hsf

T10 1 T2 T3 s
2 2 \ 29.78
hse
0.00Qgg
T9

hsf3_hse

14034

hsp-hsf /
7

1.15

hsp-mfp

prot

FCPN one

Fig. 7 A CPN/FCPN model of the heat shock response. Depending on the form of kinetic parameters, the model can be interpreted as a CPN or
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that dissociation (of ksf3_hse) and degradation (of /se)
form an elementary behavioral mode, and in fact this kind
of mode is a basic and widely-seen biological module.
Besides, we can also structure the model using these
T-invariants.

Simulation analysis

We first validate our model with the parameters given in
[24] (see Table 4), and obtain the simulation result. For
example, a plot of hsf;_hse is given in Fig. 8, which is
completely consistent with the one given in [24].

We now illustrate our approach by setting the values
of parameters T and kg to fuzzy numbers. For example,
a plot of hsf;_hse is given in Fig. 9 with four « levels.
With the decrease of « (from 1.0 to 0), the uncertain band
decreases too. That is, bigger uncertainties of inputs cause
larger uncertainties of outputs. In fact, « = 1.0 corre-
sponds to the case that all parameters have crisp values.
This means the plot of Fig. 9a is the same as the one
given in Fig. 8. Besides, Fig. 10 gives a 3D plot of hsf3_hse
for the FCPN model, where we show the curve at each «
level. This figure describes the effects of uncertainties. For
comparison, we give another 3D plot of Asf3, illustrated
in Fig. 11.

Moreover, by composing the simulation results of
all the a-cuts at the simulation end time point, we
obtain the membership function of each output, which
is illustrated in Fig. 12. From this figure, we can

Table 4 Values of the kinetic parameters, obtained from [24]

Parameter Value Unit
kip 349 ml/#s
Kim 0.19 57!
kop 1.07 ml/#s
Kam 107 57!
k3p 0.17 ml/#s
K3m 121 x107° 571
Ky 83 x 1073 57!
ksp 9.74 ml/#s
Ksm 3.56 57!
ke 233 ml/#s
k7 431 % 107 ml/#s
kg 273 x 1077 ml/#s
ko 32x107° 57!
k1o (1 - e%) x 147737 x 145 x 107 571
kiip 332x 1073 mi/#s
Ki1m 444 57!
k2 13.94 57!

Here T is the temperature
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Fig. 8 A simulation plot of the CPN model in Fig. 7. See Table 4 for the
values of the kinetic parameters

clearly observe the uncertain range of each output. For
example, the uncertain range of hsf3_hse is between
26 x 107* and 4.7 x 10~* According to this, we
can carefully check the effects of different uncertain
parameters.

Simulative model checking.
Considering plenty of traces generated by the simulation
of an FCPN model, we want to further check if these traces
are similar or distinct in terms of their shape. By doing
this, we may deduce those parameters that cause severe
changes of the model. To address this issue, we apply PLTL
model checking [16] to analyze traces from the FCPN
model. From Fig. 8, we can see the trace has only one peak,
so we want to check if all the traces have only one peak.
Therefore, we can define the following two queries:

P_[F((d[ Tr] > 0)&F((d[ Tr] < 0)))]

P [F((d[ Tr] > 0)&F((d[ Tr] < 0)&F((d[ Tr] > 0))))]

Here we use the function d(species) to get the deriva-
tive of the concentration of the species at each time point.
The first query checks if there is a peak in a trace 77,
which is evaluated to true for all the traces of the FCPN
model in Fig. 7. However, this query cannot answer the
uniqueness of the peak. So we use the second query to
check if there is a second peak, which is evaluated to false
for all the traces. Of course, we can write more compli-
cated queries to check more complex shapes of traces.
For more details about simulative model checking, please
refer to [16].

Conclusions

In this paper, we present an FCPN approach for mod-
eling and analyzing biological systems with uncertain
kinetic parameters. An FCPN model is equivalent to
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Fig. 9 A two-dimensional simulation plot of hsf;_hse for the FCPN model in Fig. 7. The two fuzzy numbers are given as follows:
kg = (2457 x 1077,2.73 x 1077,3.003 x 1077), T = (41.8,42,422).ac = 1.0,ba =07, ca =04, da =0

a set of both FDEs and ODEs. Considering the fact
that ODE/CPN modeling is widely used in the field
of systems biology and the fact that uncertainties exist
in many biological systems, we believe our approach
could offer a good means to study uncertain biological
systems.

In a next step, we will continue to explore the uncer-
tain modeling issue in the field of systems biology, and
then develop appropriate approaches for solving this
issue. Specifically, we will concentrate on several typical
biological systems and give some case studies with fuzzy
features.

35

30

25

20

hsfs_hse concentration
.
o

Time (seconds) 15000

Fig. 10 A three-dimensional simulation plot of hsf;_hse for the FCPN model in Fig. 7. The same values of the kinetic parameters are used as those

givenin Fig. 9
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Fig. 11 A three-dimensional simulation plot of hsf; for the FCPN model in Fig. 7. The same values of the kinetic parameters are used as those given

in Fig. 9
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Fig. 12 The membership functions of nine species at the simulation end time point. The same values of the kinetic parameters are used as those
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