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Abstract

Background: Genome-scale metabolic models provide an opportunity for rational approaches to studies of the
different reactions taking place inside the cell. The integration of these models with gene regulatory networks is a hot
topic in systems biology. The methods developed to date focus mostly on resolving the metabolic elements and use
fairly straightforward approaches to assess the impact of genome expression on the metabolic phenotype.

Results: We present here a method for integrating the reverse engineering of gene regulatory networks into these
metabolic models. We applied our method to a high-dimensional gene expression data set to infer a background
gene regulatory network. We then compared the resulting phenotype simulations with those obtained by other

relevant methods.

Conclusions: Our method outperformed the other approaches tested and was more robust to noise. We also
illustrate the utility of this method for studies of a complex biological phenomenon, the diauxic shift in yeast.

Keywords: Inference and interrogation of regulatory network, Metabolic modeling, Saccharomyces cerevisiae

Background

The modeling of biological systems has come a long way
for gene regulation, signaling networks and metabolism,
but even the most cutting-edge models still focus on one
subsystem at the time. The integration of the many sub-
systems that function together, with the development of
modeling paradigms, is the next step in the process, and
promising results have already been obtained [1]. For
example, [2], constructed a whole-cell model by connect-
ing 28 individual models, one for each of the relevant cell
functions. The resulting model included more than 1200
experimentally observed parameters. Impressive as it is,
the development of this model required a huge effort for a
single organism. We aimed to develop a general methodol-
ogy that can be adapted to different organisms very easily
through minor modifications. We aimed to retain as much
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information as possible concerning external and internal
effects on genotype-phenotype interactions. For exam-
ple, computational techniques have recently been used
to optimize the yield of substrates produced by microor-
ganisms for industry [3] and to study gene-metabolism
interactions in medicine [4].

We focus here on the integration between metabolic
models and gene regulatory networks for studies of
growth phenotypes. Metabolic models represent the
chemical reactions required for growth and sustenance
[5], whereas gene regulatory networks comprise the bio-
logical programs responsible for regulating cell function
[6]. We aimed to use data analysis and mathematical mod-
eling tools to improve both the quantity and quality of
biological hypotheses relating to these two subsystems.

Related approaches include: pFBA [7] which involves
two-level optimization together with post-processing and
the detection of redundant fluxes, E-flux [8] in which
the linear constraints on fluxes are derived from gene
expression data for control and a specific conditions,
GIMME [9], which uses gene expression data and a
regulatory metabolic objective to detect inconsistencies
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in fluxes, and iFBA [10], in which a kinetic model
of E. coli catabolite repression has been integrated
into a simplified metabolic model. The iFBA approach
requires the setting of a number of Ordinary Differen-
tial Equations(ODE) with their kinetic parameters, which
decreases the generality of the model. Another integra-
tive approach is PROM [11] in which gene expression
data sets are used to compute the conditional probabil-
ity of an enzyme being expressed given that its regulators
are perturbed, these probabilities then being used to con-
strain a flux balance analysis model. Similarly, TRFBA
uses gene expression data and a piece-wise linear model
to formulate an optimization program accounting for
gene expression [12]. One of the main drawbacks of all
these previously described methods is the need to deter-
mine which TFs regulate each gene. These approaches
are therefore dependent on the quality of the curated
network.

We used a statistical reverse engineering method,
hLICORN [13], to infer the targets of a given set of reg-
ulators at the genome scale. We then assessed the effect
of a regulator on its inferred targets in a particular data
set, using the CoRegNet [14] tool, which has functions
for scoring the activating or repressing effects of a reg-
ulator. The derived score, or “influence’, represents the
transcriptional state of the cell and forms the basis for
posterior integration with metabolic models. CoRegNet
allows prior knowledge from various sources to be inte-
grated into the model, in accordance with the recom-
mendations of the DREAMS5 consortium [15]. Despite the
many and varied publications on gene regulatory network
inference [15], few efforts have been made to integrate
these inference methods into other systems biology tools.

We based our metabolic analysis on phenotype sim-
ulations. We used a well-documented model of yeast
metabolism iTO977 [16]. We assembled the inferred gene
regulatory and metabolic model together in a rational
manner, to simulate growth phenotype and exchange
fluxes in an algorithm that we call CoRegFlux. We tested
our solution against other state-of-the art methods in a
rigorous experimental setting for model benchmarking
and comparison [17].

Methods

The CoRegFlux workflow can be summarized as fol-
lows: inference of the gene regulatory network from tran-
scriptomic data, network interrogation to predict enzyme
activity in a given context and, finally, adjustment of the
metabolic model for phenotype simulation. The complete
workflow is presented in Fig. 1 along with a step-by-step
description for a case study in S. cerevisae in the sections
below, data and source code can be downloaded from
http://github.com/i3bionet/CoRegFlux.
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Genetic regulatory network inference

The first step of our algorithm is the inference of a
genome-scale regulatory network. This network captures
the interactions between regulators (TF and/or kinases)
and target genes, which, in our case, encode metabolic
enzymes.

For this purpose, we use CoRegNet [14], a Bio-
conductor package suitable for reverse-engineering and
analyisis of large biological networks. Briefly, CoReg-
Net is a workflow that use the algorithm [13, 18]
to mine candidates GRNs set of co-activators and co-
inhibitors for each genes. h-LICORN splits genes into
regulator and target sets, then discretizes gene expres-
sion on the basis of a specified threshold and uses a
frequent itemset mining algorithm to find the regulatory
elements for each target. In a second step, it determines
for each gene the best sets among those candidates by
running a regression model. The continuous data can be
used alone to refine the original network by selecting for
each target the gene regulatory network (GRN) with the
best R? score based on the linear model used to esti-
mate the expression. However, CoRegNet can also refine
GRNs by incorporating evidence into the network using
an integrative selection algorithm and applies it to the
selection of local GRN models. Each GRN is scored by
the inference method h-LICORN and by each of the inte-
grated dataset. Following this, to each GRN is associated
as many scores as they are integrated regulatory and coop-
erative datasets in addition to the network inference R?
score, all which range from 0 to 1. Finally, for each gene,
the GRN with the maximum merged score is selected.
The refined network obtained is then transformed into a
cooperativity network, based on the common targets of
regulators.

We began by selecting a data set containing enough gene
expression samples to obtain a representative network
of gene regulation in yeast: Many Microbe Microarray
Database (M3D) [19]. This database contains data from
247 experiments measuring gene expression under differ-
ent conditions in microarray assays. The data were col-
lated, normalized and averaged (in the case of replicates)
for 5520 probes mapping onto ORE.

We used CoRegNet to infer a representative regulatory
network for yeast. This network should provide insight
into the regulators that work together in the performance
of a particular biological function. We enriched the net-
work by searching the Yeastract database [20] for known
TF-target interactions, and the Biogrid database [21] for
known protein-protein interactions. The inferred CoReg-
Net network has a data structure extending beyond infor-
mation about regulator-target and regulator-regulator
cooperativity [14], see Fig. 2. It also represents the regula-
tory state of the cell for a given gene expression sample, as
explained below.
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Fig. 1 The CoRegFlux workflow, in which a training gene expression data set is used to infer a coregulatory network (in this case from the M3D
database [19]). Using this inferred network, we calculated the influence scores of the regulators (i.e. TFs, kinases). We then used these scores to train
a linear model for predicting gene expression from influence scores. This model can use context-specific influence scores to predict the activity of
metabolic genes in a robust manner. Using these predictions, the model employs a continuous-value version of the Gene-Protein-Reaction rules
and a function to translate gene activity into flux bounds. The bounds obtained are then input into a linear program to obtain fluxes congruent with

)

Regulator activity
score

Influence of training
data set

20

— gimulated

/yu

6 4 2 0 2 1 6 8

biomass
10

0.0

me

Simulate phenotype

Network interrogation and influence score

The bipartite graph generated makes it possible to
generate a low-dimensional representation of the tran-
scriptomic data. Nicolle et al. [22] introduced the notion
of regulator influence. Here, the impact of a regulator
on its targets is represented by the scaled difference of
the mean expression levels of its activated and repressed
targets. This score is given by the expression

)A(A —XR
AT 1)
ny + ng

where X4 and Xz are the means of the activated and
repressed targets of regulator j respectively. The variables

s4, SR represent the respective standard deviations and
ny, ng represent the number of genes contained in
the respective set. The influence score accounts for the
effect of a regulator on its targets according to the
regulator-target relationships inferred using hLICORN
and additional data-sources integrated in the network
as evidences using the CoRegNet Bioconductor package.
Briefly, this measure is based on a Welch't-test between
the expression of the activated and repressed targets genes
in a given samples.

Thus, a data set of thousands of gene expression
measurements is reduced to just dozens or hundreds
of activity scores (one score for each regulator with a
significant influence). In the case of the M3D data set,
the influence score was computed for the set of TFs and
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Fig. 2 Co-regulatory network representing the M3D data set. Nodes are TF and kinases, grey edges denote co-regulatory interactions discovered by
h-Licorn only. Red edges are TF-Target interactions confirmed by Yeastract, blue edges are protein-protein interactions confirmed by Bio-grid

kinases as given by [20] (200304 possible TF-target inter-
actions) and the S. cerevisiae Kinase and Phosphatase
Interactome resource [23] (262354 possible P-P interac-
tions), with a total of 567 potential regulators.

Using this background knowledge of the network and
scores, over a wide range of conditions, we aim to predict
gene expression and, by extension, the enzymatic activity
of proteins encoded, in a metabolic model. We argue that,
unlike gene expression alone, influence provides a robust
portrait of the transcriptomic state of the cell, improving
predictions of the behaviour of targets [22]. We used
the inferred network and calculated regulator influences
to train a linear regression model over a set of training
samples K. In this training set the gene expression level of
a target in a given sample is a function of the influence of
its regulators:

Xik = Z Bilik (2)

j€Pa(;)

where x; is the expression level for enzyme i in sample &,
Pa (x;) is the set of regulators of i in the network and I
is the influence of regulators j in sample k. The objective
of the linear regression is to calculate the regression coef-
ficients ;. For our purposes, we trained the linear model
on the M3D data set. Thus, the beta coefficients cap-
ture the general relationship between gene expression
and influence over a wide range of conditions. The lin-
ear regression model is then used to predict the level of
expression of a gene encoding a given enzyme in the set
of context-specific samples of interest. For this, we cal-
culate influence for the samples of interest and predict
the gene expression of the metabolic genes with 2. In this
study, we used the data set of [24], from a study in which
a yeast strain was subjected to various oxygen concentra-
tions. Using the inferred network, we calculated influence
scores for this data set. According to the CoRegFlux work
flow, we used influence to predict enzyme activity for each
sample, based on a linear regression model. We limited
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predictions to the enzymes present in the genome-scale
metabolic model of yeast [16]. These predictions sum up
all the available regulatory information for yeast, as given
by the inferred network, along with the context specificity
of TF influences.

Metabolic model adjustment

We then translated the predicted enzymatic activities into
bounds, corresponding to the extent to which the enzyme
encoded by the gene can catalyse a given reaction. These
bounds can be used to constrain a linear program rep-
resenting the metabolic fluxes of a stoichiometric model
under the assumption of steady state, a method known as
flux balance analysis [25]. The algorithm is as follows:

1. We transform the gene-protein-reaction (gpr) rules,
which relate enzyme and enzyme complexes to a
given reaction in the model. The original rules are in
boolean form and our substitution follows a
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continuous approximation similar to [26, 27]. Thus
the conversion is:

(a) OR sentences, which represent isoenzymes
regulating the same reaction are subsituted by
a function max(), which returns the
maximum of the expression of the
corresponding enzymes.

(b) AND sentences, which represent the
formation of enzyme complexes are
substituted by a function min() which returns
the minimum of the expression of the
corresponding enzymes.

(c) If the enzyme expression is not available, the
enzyme is discarded from the rules.

We denote the evaluation of a gpr rule for an
enzyme-associated reaction by gpry (X,req), with
Xprea being the set of predicted gene expressions as a
function of the influence scores.

All conditions
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Fig. 3 Absolute relative error and objective function for CoRegFlux for different values of theta over all conditions (top left). Values of error and
objective function for each condition/oxygenation level (top right, middle left and right, bottom left and right). Bayesian optimization yielded a
single optimum for all conditions except an oxygen concentration of 0.5, for which no solution better than the FBA solution was found
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2. Using the continuos gpr rules we adjust the fluxes
bounds for each gpr-associated flux, denoted v by
the following relation

V' <ln (1 + exp (gprr (Xpred) + 9)) (3)

where we introduce the parameter 6 to account for
enzymatic action over the reaction. We assume this
parameter is condition-specific. We chose the
activation function, known as softplus [28], to convey
the non-linear relationship between gene expression
and protein concentrations. Unlike other non-linear
activation functions, like sigmoids, the softplus has a
range of (0, +00) making it straightforward to use as
flux bounds.

With these new constraints, the flux values and biomass
yield can be calculated by solving the linear program asso-
ciated with the model. We used the R package sybil [29]
to find the flux distribution optimizing growth under the
new bounds.

Bayesian optimisation of the parameters

If we wish to adjust parameter 6 such that the observed
phenotype matches the simulated fluxes, a Bayesian opti-
mization algorithm can be used. Bayesian optimization
provides an effective out-of-the box solution for a non-
linear optimization problem [30]. For the data set of
Rintala et al., we ran CoRegFlux, varying the value of
parameter 6 over a uniform grid of 10 points in the inter-
val (-10,10). We then applied the R optimization package
[31], to maximize the objective:
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max |:_ log ( |V§bservlejB — simulated| )]
o observed

This function reaches its maximum when the simu-
lated biomass yield Vﬁmulm ; is closest to the observed
growth rate Vfbs erved- We chose to use this function, to
improve appreciation of the effect of the parameter value
on approximation error. We used the default settings of
the Bayesian optimization package [31] to estimate opti-
mal values of 0 for each condition. The results are shown
in Fig. 3, in which, for each condition, the value of the
parameter increases as it approaches the optimum value
(reducing the relative error). If we continue to increase the
parameter, the relative error of the solution settles at the
value for the flux balance analysis model. A special case
occurs when oxygen concentration is 0.5 . In this case, the
flux balance analysis solution underestimates the growth
yield, and the method is unable to find an optimum value
for the parameter. For all other cases, a clear optimum
value is identified.

Results

We evaluated the results generated by our method in
terms of the accuracy with which they predicted exchange
fluxes and to illustrate the use of this approach in a rele-
vant case study. We performed robustness tests to deter-
mine whether influence gave a more reliable picture of the
regulatory state of the cell. As our case study we choose
the diauxic shift, a complex biological process involving
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Fig. 4 Results for robustness analysis in all conditions and for five different noise levels. The normalized error, corresponding to the difference
between observed and simulated exchange fluxes, is shown on the y axis. A log10 transformation was applied to the data to improve readability.
CoRegFlux had a lower median error than two other state-of-the-art methods, TRFBA and pFBA
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major changes in transcriptional and metabolic elements
in yeast.

Robustness tests

We evaluated the robustness of our method to random
permutations of gene expression, as recommended by
[17]. We set our 6 parameter to its optimum value for each
condition, and we then tested five different noise levels
for each condition. The mean squared error for exchange
fluxes was calculated as described by [17]; Fig. 4 shows
a boxplot for the base 10 logarithm of the error. We also
considered the results generated by competing methods:
GIMME, E-Flux, pFBA, TRFBA and PROM [12]. Our
method had a better median performance and a smaller
variance than the other methods. As all tests were per-
formed in the wild-type strain, PROM [11] displayed no
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variation, as this method was designed for prediction for
knockout strains and does not seem to take regulatory
information into account for the wild type.

Case study

We used diauxic shift as a case study, with the gene expres-
sion measurements of [32] corresponding to 12 time
points (9 before and 3 after glucose depletion). We com-
pared this data set with that of [33], for seven samples dur-
ing the diauxic shift. We plotted influence score heatmaps
for both data sets. We used canonical correlations anal-
ysis to compare the correlation between sample points
in the two different data sets. We alternated between
gene expression and regulatory influence, and the corre-
sponding correlation plot is shown in Fig. 5. Plots based
on regulatory influence separated two distinct clusters of

a
R 7 ¥ - Y.V~ =S
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| (I -
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: Gene expression

= Darts ot al — Braver ot g
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0 Bafore Glucose deplation 8 After glucosa dapletion

Fig. 5 In a, heatmap for influences for the data set of Derisi et al,, in b, heatmap for the dataset of Brauer et al. Positive influences are shown in red
and correspond to an upregulation of targets, whereas negative influences are shown in blue and correspond to the downregulation of targets. At
¢, the correlation between samples based on gene expression is shown (calculated by canonical correlation analysis). At d, the equivalent
correlation plot based on influence scores is shown. Samples obtained before and after glucose depletion can be clearly differentiated on the basis
of influence scores, whereas the relationship is less clear for gene expression
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samples, corresponding to the samples taken before and
after glucose depletion, except for the sample taken at
t=9 h [32] appearing closer to a post-depletion state (it
should be noted that the authors of the paper reported
regulatory changes beginning a few minutes before glu-
cose depletion). Another interesting point is that of
t=10 h in [32], for which the influence profile seems more
similar to those obtained before glucose depletion, which
may point to a growth-state. These interesting patterns
were not evident in analyses of regulator gene expression,
in which the separation between pre- and post-depletion
samples was less clear.

We matched the sample points to the different reg-
ulatory phases identified by [34], with metabolic states
attributed to the phases -2.1 and -0.6 h before glucose
depletion and 0.8 and 4 h after glucose depletion. In
our case, the last gene expression sample from [32] was
taken at t=1.25 h after glucose depletion. With these
phases in mind, we adjusted the glucose and ethanol
exchange bounds to those for the metabolomic data set
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of [34] and parametrized our CoRegFlux models with the
growth rates reported for each phase in [34]. As shown
in Fig. 6 top-left, the pre- and post-glucose depletion
models had different optimal values for the parameter 9,
again reflecting the information about the regulatory state
of the cell provided by the influence score. We further
investigated the differences between CoRegFlux model
output and flux balance solutions. The differences are
shown in tables bottom-right and bottom left of Fig. 6,
in which FBA fluxes and CoRegFlux fluxes are compared
in fold change for the pre- exhaustion and post exhaus-
tion respectively, we chose to present only those fluxes
that experience more than a two-fold change. The tables
show increased ethanol excretion (reaction ETHxt0), in
fact ethanol excretion is predicted as 0 by FBA, along with
increase transport of metabolites to the mitochondria for
the pre-glucose exhaustion phase at -0.6 h which matches
the observations of [34] . In the post-glucose depletion
state at 0.8 h, CoRegFlux predicts an increase in fluxes reg-
ulated by ACC1 and FASI1 genes, which are important in
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Fig. 6 Showed in a are the results of calibrating the softplus parameter for the different diauxic phases, two before and two after glucose depletion,
the relative errors (red) and objective function (blue) values are plotted. In b the log(Biomass) results of a dynamic FBA simulation of growth using a
normal FBA model(red) a CoRegFlux model(blue) and comparison with the smoothed growth curve from the experimental data set(green). Table

¢ provides a comparison in fold-change between the fluxes obtained by an FBA model and a CoRegFlux model before glucose depletion (t=-0.6 h),
positive fold change implies that the CoRegFlux models finds solutions with more mass going through the reaction than FBA, negative values imply
reduced flux through the CoRegFlux model compared to FBA. Table d is analogous to the previous table but with post-glucose depletion conditions
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the production of Acyl CoA, which oxydizes and becomes
Acetyl-CoA, primary precursor of ATP production by the
TCA cycle post shift [35]. Finally we assessed the util-
ity of our model for dynamic growth simulations using
a dynamic FBA formulation as in [36]. We used the ini-
tial biomass, glucose and ethanol concentrations from [34]
and computed the metabolite consumption and growth
rate at each time step. We compared the results of using a
normal FBA model constrained only to the initial glucose
uptake rate (but allowing ethanol consumption), to the
results using CoRegFlux models. We proceed as follows:
one of the previously constrained models was assigned to
the corresponding time points, then at the switch points
between diauxic phases, the current biomass and metabo-
lite concentrations was used as initial conditions for the
next model. The derived growth curves are presented in
top right of Fig. 6, where we see that the FBA model both
over-estimates growth and does not initiate the second
phase of diauxic growth. The CoRegFlux model on the
other hand, follows more closely the smoothed growth
curve provided by the authors of said study.

Discussion and conclusions

We propose CoRegFlux, a new algorithm for integrating
gene regulatory network inference with constraint-based
metabolic models. Our method provided better median
predictions with a lower variance prediction than other
state-of-the-art methods for predicting exchange fluxes
under different levels of perturbation of gene expression
data. One of the limitations of this method is that it
cannot determine the optimal parameter value for sys-
tems in which the normal FBA solution underestimates
biomass yield, although it should be pointed out that FBA
overestimates the growth rate in most cases [37]. From
the robustness tests and the case study, we can conclude
that influence score calculation is a reliable way to assess
the overall effects of gene regulation. This advantage of
the influence score places it among other approaches to
dimensionality reduction for gene expression such as net-
work component analysis [38]. The importance of having
a clear idea of the transcriptomic state of the cell has been
demonstrated in studies of metabolism and responses to
particular conditions. For example, recent results have
suggested that at least 70% of the total variance in pro-
moter activity across conditions can be accounted for by
global transcriptional regulation in E. coli [39].

As mentioned above, this method has potential applica-
tions in research, industry and medicine, and its improve-
ment would therefore be worthwhile. For example, it
would be interesting to include different models of gene
regulation as additional predictors of enzyme activity.
Future research studies could also include metabolic net-
work learning, with a view to the development of a
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data-driven integrated algorithm. Finally, this method is
designed to serve as a basis for the in-silico optimization of
biological objectives, of potential value for experimental
design in systems and synthetic biology.
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