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Abstract

Background: Pichia pastoris shows physiological advantages in producing recombinant proteins, compared to
other commonly used cell factories. This yeast is mostly grown in dynamic cultivation systems, where the cell’s
environment is continuously changing and many variables influence process productivity. In this context, a model
capable of explaining and predicting cell behavior for the rational design of bioprocesses is highly desirable.
Currently, there are five genome-scale metabolic reconstructions of P. pastoris which have been used to predict
extracellular cell behavior in stationary conditions.

Results: In this work, we assembled a dynamic genome-scale metabolic model for glucose-limited, aerobic
cultivations of Pichia pastoris. Starting from an initial model structure for batch and fed-batch cultures, we
performed pre/post regression diagnostics to ensure that model parameters were identifiable, significant and
sensitive. Once identified, the non-relevant ones were iteratively fixed until a priori robust modeling structures were
found for each type of cultivation. Next, the robustness of these reduced structures was confirmed by calibrating
the model with new datasets, where no sensitivity, identifiability or significance problems appeared in their
parameters. Afterwards, the model was validated for the prediction of batch and fed-batch dynamics in the studied
conditions.
Lastly, the model was employed as a case study to analyze the metabolic flux distribution of a fed-batch culture
and to unravel genetic and process engineering strategies to improve the production of recombinant Human
Serum Albumin (HSA). Simulation of single knock-outs indicated that deviation of carbon towards cysteine and
tryptophan formation improves HSA production. The deletion of methylene tetrahydrofolate dehydrogenase could
increase the HSA volumetric productivity by 630%. Moreover, given specific bioprocess limitations and strain
characteristics, the model suggests that implementation of a decreasing specific growth rate during the feed phase
of a fed-batch culture results in a 25% increase of the volumetric productivity of the protein.

Conclusion: In this work, we formulated a dynamic genome scale metabolic model of Pichia pastoris that yields
realistic metabolic flux distributions throughout dynamic cultivations. The model can be calibrated with
experimental data to rationally propose genetic and process engineering strategies to improve the performance of
a P. pastoris strain of interest.
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Background
Recombinant protein production is a multibillion-dollar
business, mainly comprised by therapeutic agents (i.e. re-
combinant biologic drugs) and industrial enzymes [1–3].
These compounds are commonly synthesized in Escheri-
chia coli, Saccharomyces cerevisiae and Chinese Hamster
Ovary cells (CHO) [1, 4–6]; however, there is strong pres-
sure to find cost-effective alternatives to overcome tech-
nical and economic disadvantages of the aforementioned
cell factories, especially in downstream processing [7].
Among the unconventional cell factories used for re-

combinant protein production, the methylotrophic yeast
Pichia pastoris (syn. Komagataella phaffii) has received
special attention thanks to its convenient physiology and
easy handling [8]. There are strong promoters for this
cell factory which are commercially available and that
allow for the controlled expression of heterologous pro-
teins [8]. Unlike E. coli, P. pastoris naturally performs
post-translational modifications [6, 9], which are essen-
tial for most eukaryotic protein functionality [7, 10, 11].
In contrast to S. cerevisiae, P. pastoris exhibits a
Crabtree-negative phenotype, showing a reduced synthe-
sis of undesirable products, like ethanol, in glucose-
limited conditions [12, 13]. It also shows a lower basal
secretion of proteins when compared to other yeasts,
which makes downstream processing easier [13, 14]. Fi-
nally, P. pastoris can be efficiently cultivated up to high
cell densities using fed-batch technology [8], achieving
high titers and productivities. For these desirable fea-
tures, P. pastoris has been widely used for the expression
of recombinant proteins, reaching grams per liter con-
centrations in several cases [9, 15–18]. Most remarkably,
and as proof of its technical feasibility and adequacy,
two recombinant proteins produced in this cell factory
have already been approved by the FDA for medical pur-
poses [10, 19].
Despite its growing acceptance and actual successful

applications, recombinant protein production in P. pas-
toris can be undermined by several cellular processes,
where protein folding and secretion are the most recur-
rent bottlenecks [14, 20, 21]. In addition, limitations
may also be caused by the codon usage of the recombin-
ant protein [22], promoter selection [23], carbon and
oxygen availability in the culture [24, 25] and fed-batch
operational parameters [26], seriously hampering protein
yield, productivity and the economic feasibility of the
process.
Industrially, P. pastoris is commonly grown in fed-

batch cultures in order to maximize the titer and volu-
metric productivity of a desired compound, often a re-
combinant protein [27, 28]. This is achieved by adding a
culture medium in such a way that the microorganism
grows at a desired specific growth rate, which is chosen
to maximize the synthesis of the target product and to

limit the formation of inhibitory compounds [29]. Dur-
ing this and other cultivation systems, the cells adapt
constantly to the changing extracellular environment
and to the limited mass transfer conditions observed at
high densities [30, 31]. Therefore, it is critical to under-
stand how the cell metabolism interacts with the nutri-
tional and environmental stresses exerted by process
conditions to improve bioreactor performance [32]. This
is a complex task, however, since the strain’s characteris-
tics and process variables often require significant
amounts of time and money for characterization and
fine-tuning [12]. Therefore, it is desirable to have a plat-
form to integrate different levels of information from dy-
namic cultivations of P. pastoris that can be used to
elaborate rational hypotheses to increase process
productivity.
Systems biology offers a quantitative and comprehen-

sive approach to address this task [33]. In particular,
Genome-Scale dynamic Flux Balance Analysis (GS-
dFBA) [34–36] is a modeling framework that allows the
simulation of metabolism during non-stationary (batch
or fed-batch) cultures. GS-dFBA models couple the dy-
namic mass balances of the extracellular environment of
the bioreactor with comprehensive mathematical repre-
sentations of cellular metabolism called Genome Scale
Metabolic Models (GSMs). These structures represent
the cell’s entire metabolism as a set of underdetermined
constrained mass-balances [30, 37, 38]. GSMs have been
employed to understand cellular behavior under differ-
ent environmental conditions, to map over omics data,
and to define a metabolic engineering targets [39, 40].
There are currently five published GSMs of P. pastoris
[41–45] which have been developed to help the strain
optimization process with a special emphasis on recom-
binant protein production. Moreover, one of these
models has been successfully employed to improve re-
combinant protein production in P. pastoris [46], valid-
ating these frameworks as strain engineering tools for
this particular yeast.
GS-dFBA models usually contain several parameters,

whose values can be obtained by regression of experimen-
tal data. These parameters are used as inputs to obtain
flux distributions throughout cultivations, so their values
need to be reliable. To ensure this, pre- and post-
regression diagnostics have been employed to determine if
a certain parameter is supported by the observed data or
not [47, 48]. These analyses consist in verifying the
model’s capacity to explain the behavior of a system
(goodness-of-fit) and the presence of the following para-
metric limitations: (i) low or no impact on the state vari-
ables (sensitivity), (ii) strong correlations with other
parameters of the model (identifiability) and (iii) lack of
statistical significance (significance). A model is consid-
ered robust if it has the capacity to explain different
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conditions, while containing only sensitive, identifiable
and significant parameters.
Here, we present a robust dynamic genome-scale

metabolic model of P. pastoris in glucose-limited, aer-
obic batch and fed-batch cultivations. To assemble the
dynamic modeling framework, we started by selecting
one of the available genome-scale metabolic models [43]
and manually curated it to yield realistic flux distribu-
tions. Then, we included it in a set of mass balances
representing the main compounds present in culture
supernatant. Once assembled, the model was calibrated
using experimental data from eight batch and three fed-
batch cultivations. Next, we employed pre/post regres-
sion diagnostics to determine sensitivity, significance
and identifiability problems in the model. In order to
avoid the aforementioned statistical limitations, prob-
lematic parameters were fixed (i.e. removed from the ad-
justable parameter set) based on the pre/post regression
diagnostics, yielding reduced and potentially robust
model structures. Potentially robust model structures
consisted in the original model formulation with less ad-
justable parameters. After evaluating these reduced
models for each type of cultivation, we chose the one
that presented fewer parametric limitations after being
re-calibrated with the available data. These reduced
models yielded no (or just a few) significance, sensitivity
or identifiability problems when calibrating new data
and they could predict bioreactor dynamics in condi-
tions like the ones used for their determination. Finally,
we carried out simulations to assess the potential of the
model to study P. pastoris metabolism under industrially
relevant conditions, and to select molecular and process
engineering strategies to improve recombinant protein
production.

Methods
Model construction
The structure of the model was based on an existing
dFBA framework developed by Sanchez et al. for S. cere-
visiae [48], which divides the fermentation time into
short integration periods where a metabolic steady state
could be assumed [35, 49]. The model considers the evo-
lution of seven state variables throughout batch and fed-
batch glucose-limited aerobic cultivations: culture vol-
ume as well as the concentrations of glucose, biomass,
ethanol, arabitol, citrate and pyruvate. It consists of
three linked blocks that are solved iteratively; (i) the kin-
etic block, (ii) the metabolic block and (iii) the dynamic
block (Fig. 1). First, the initial conditions of the system
enter into the kinetic block to determine the specific
consumption and production rates of the species in-
volved in the analysis according to kinetic expressions.
These rates are included as constraints to the corre-
sponding exchange reactions of the metabolic model.
The constrained model is then passed to the metabolic
block of the framework, where the flux distribution in-
side the cell is determined. This procedure includes the
calculation of the specific growth rate, which is passed
along with the other exchange rates to the dynamic
block as consumption and production terms in the mass
balances. Here, the concentration of the state variables is
updated and then incorporated into the kinetic block for
the calculation of instantaneous exchange rates. This
cycle iterates throughout the cultivation yielding the cul-
ture profile and instantaneous flux distributions that can
be saved for further analysis. The model is included in
Additional file 1 and its latest version can be found on-
line at https://github.com/fjsaitua/RY-dFBA/tree/master/
main%20P_pastoris%20dFBA:

Fig. 1 Iterative structure of the model. V refers to culture volume [L], FIN is the feeding policy used in fed-batch cultures, X, S and P are biomass,
limiting substrate and Product concentration in [g/L] respectively
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Kinetic block
The kinetic block sets the uptake and production rates
for all the compounds in the model. First, the glucose
uptake rate vGð Þ is determined using Michaelis-Menten
kinetics [50].

vG ¼ vG; Max⋅G
KG þ G

ð1Þ

Here, G is the glucose concentration in the medium
[g/L], vG;Max is the maximum glucose uptake rate
[mmol/gDCW · h] and KG is the uptake half activity con-
stant of this substrate [g/L]. Once determined, �vG
[mmol/gDCW · h] is included as the lower bound of the
corresponding exchange reaction in the model since
substrate consumption is represented with a negative
flux through this reaction.
Then, the lower bounds of the exchange reactions (lb)

associated with the remaining k compounds ( lbk ) are
fixed. We considered ethanol, pyruvate, arabitol and cit-
rate dynamics, besides glucose consumption and bio-
mass formation.

lbk ¼ vPk k ¼ 1…4 ð2Þ
These parameters are redefined during the fed-batch

phase; therefore, they have two values during this type of
cultivation.
Finally, the kinetic block fixes the non-growth associ-

ated maintenance ATP (mATP, a flux through the cyto-
solic ATP hydrolysis reaction in the model), which
accounts for the energy drain caused by cellular pro-
cesses not related with the generation of new cell mater-
ial, such as osmoregulation, shifts in metabolic
pathways, cell motility, etc. [51, 52].

Metabolic block
The metabolic block receives a constrained GSM from
the kinetic block and solves an optimization problem to
determine specific growth rate and the flux distribution
in the cell. The GSM consists of a set of m metabolites
and n reactions grouped in a Stoichiometric Matrix, S
(m x n), that represents the cell’s entire metabolism. If
accumulation of metabolites is neglected, a mass balance
can be stated according to equation (3):

S⋅v ¼ 0
s: t:
lb < v < ub

ð3Þ

Where v is a vector of metabolic fluxes in [mmol/
gDCW · h], and lb and ub are the lower and upper bounds
for each component of the flux vector.
The metabolic block solves a bi-objective Quadratic

Programming (QP) problem between maximization of
growth rate and minimization of the total absolute sum

of fluxes [53], subjected to the constraints imposed by
the stoichiometric matrix mentioned above [51]:

Min α⋅
Xn
i¼1

v2i − 1−αð Þ⋅μ
s:t:
S⋅v ¼ 0
lbi≤vi≤ubi i ¼ 1…n

ð4Þ

In this formulation, α, the suboptimal growth coeffi-
cient, is an adjustable parameter from the model used to
modulate the importance of the two – biologically rele-
vant – competing objectives [48, 52, 54]. In our analysis,
“optimal growth” occurs when the objective function of
the cell is biomass maximization (α = 0). However, when
α > 0, the calculated growth rate is lower than the theor-
etical maximum derived from biomass maximization, at
the same glucose uptake rate. In this sense α is consid-
ered as a “suboptimal growth coefficient”; it is worthy to
note that we do not refer to the optimality of the flux
distribution vector, which is actually optimal, given the
convexity of the problem in the metabolic block (Equa-
tion 4 - See Additional file 2 for details).
The minimization of total fluxes adds a quadratic term

to the objective function, which has the practical benefit
of eliminating Type III pathways [55] from the flux dis-
tribution, which arise from the multiplicity of solutions
of a LP problem. These pathways appear as high fluxes
(often taking the value of the upper bound of a particu-
lar flux) through closed cycles of reactions. This mis-
leads pathway analysis because despite the mass balance
around each participating metabolite is satisfied, the
fluxes are thermodynamically infeasible [55]. The use of
Quadratic Programing makes pathway analysis easier
since these large cycling fluxes undermine the
minimization of the total fluxes term in the objective
function (Equation 4), so they will be forced to a mini-
mum by the optimization software and the flux distribu-
tion will be “cleaned” from these unrealistic fluxes. This
is especially significant in large networks because these
cycles are more recurrent.
In this study, we employed a curated version of the

iPP668 model developed by Chung and collaborators
[43], called iFS670 (Additional files 3 and 4). In this up-
dated version, we incorporated the arabitol biosynthesis
pathway and the stoichiometric reactions for the produc-
tion of three recombinant proteins (FAB fragment,
Human Serum Albumin and Thaumatin). The arabitol
synthesis pathway was included because it was a major
compound in the culture supernatant of our experi-
ments. Moreover, the reversibility of cytosolic reactions
involving redox cofactors and mitochondrial symporters
was checked according to Pereira et al. [56] in order to
obtain a more realistic flux distribution through the
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central metabolism. This was done because the initial
flux distributions obtained with the un-modified iFS670
model presented the exact same problems as the
iMM904 model of Saccharomyces cerevisiae on Pereira’s
work, suggesting that the central metabolism structure
of the iPP668 model was based upon the aforementioned
S. cerevisiae model. These problems were caused by: (i)
the lack of a flux through the oxidative branch of the
Pentose Phosphate Pathway; (ii) the presence of a flux of
a cytosolic NAPDH dependent isocitrate dehydrogenase
(which was the responsible of producing cytosolic
NADPH); (iii) an unrealistic flux through mitochondrial
symporters; and (iv) almost no mitochondrial formation
of α-ketoglutarate. These model limitations are incon-
sistent with previous P. pastoris fluxomic studies in
glucose-limited aerobic conditions [24, 57, 58].
FBA problems were solved using the Constraint-Based

Reconstruction and Analysis (COBRA) toolbox [59, 60],
which employs the programming library libSBML [61]
and the SBML toolbox [62]. Finally, we used Gurobi
6.0.2 as an optimization solver.

Dynamic block
The dynamic block consists of a set of ordinary differen-
tial equations (ODEs) that account for the volume
change of the culture and the mass balances of biomass
and the species considered by the model:

dV
dt

¼ F tð Þ−SR ð5Þ

d V �Xð Þ
dt

¼ μ⋅ V �Xð Þ−SR⋅X ð6Þ

d V �Gð Þ
dt

¼ F tð Þ⋅GF−vG⋅MWG⋅ V �Xð Þ −SR⋅G ð7Þ

d V �Pkð Þ
dt

¼ vPk �MWPk ⋅ V �Xð Þ−SR⋅Pk ð8Þ

Where V is volume [L], t is time [h], F tð Þ is the feed
function for the fed-batch phase in [L/h]. SR is a constant
sampling rate [L/h] determined from each cultivation to
emulate the remaining volume of the culture considering
sampling, since this value is used for the calculation of the
feeding profile during the feed phase. During the batch
phase of the fed-batch cultures, we collected between 15
and 20% of the reactor volume in samples. For batch culti-
vations, F tð Þ was eliminated from the mass balances. X is
the biomass concentration [g/L], μ is the specific growth
rate [h−1] (obtained from equation 4), G is the extracellu-
lar concentration glucose [g/L], GF is the feed’s glucose
concentration [g/L], PK is the k-th extracellular product
concentration in [g/L], vPk is the corresponding produc-
tion rate [mmol/gDCW · h] and MW accounts for the cor-
responding molecular weight [g/mmol].

The set of equations was solved in Matlab 2013a
(Mathworks, USA) using the solvers ode113 and ode15s
for batch and fed-batch cultures respectively.

Model parameters
The lower, upper and initial values of the parameters of
the model used in all the calibrations are presented
Table 1. The lower and upper bounds of vG;max , Ks, and
mATP were chosen according to literature [29, 43, 63]
while the rest of the bounds were selected to ensure that
the algorithm had enough search space. To do this, the
upper bounds of the rest of the parameters were set at
higher values than the observed experimental rates, also
taking into account reported values [24, 57, 58]. In
addition, initial estimated parameter values were chosen
to attain a feasible simulation.

Model calibration with experimental data
Strains
Four P. pastoris strains were employed in this study: a
parental GS115 strain (Invitrogen) and three recombin-
ant strains constructed according to the instructions of
the manufacturers harboring respectively one, five and
eight copies of the gene encoding for the sweet protein
thaumatin. Even though the strains were transformed,
thaumatin was not detected at concentrations higher
than 100 μg/L in the cultivations. Therefore, due to its
small contribution to the overall mass balance, thauma-
tin production was left out of the analysis and none of
the parameters of the model were associated with it.
Nevertheless, a mass balance for a recombinant protein
can be easily added to the framework.

Experiments
The batch model was calibrated with aerobic glucose
limited cultivations of the four strains available; each
cultivation was performed twice. On the other hand, the
fed-batch model was calibrated with data from three cul-
tures of the strain with one copy the recombinant gene,
under the same environmental conditions of the batch
cultivations.

Cultivation conditions
Each batch or fed-batch culture started from a 2 [mL]
cryotube of the corresponding strain kept at −80 °C. A
pre-culture was grown overnight at 30 °C in shake flasks
with 50 [mL] of the inoculum medium. After reaching 1
OD600, the whole broth was added to 450 [mL] of fresh
medium to reach an initial volume of 500 [mL] in 1 L
bioreactors. Culture conditions were kept at 30 °C and
pH = 6.0. Dissolved Oxygen was maintained above 40%
saturation during all the cultivation period. Aerobiosis
was achieved by a triple split-range control action,
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including agitation (200–800 [RPM]), air flow (0.25–1.0
[L/min]) and pure oxygen flow (0–1.0 [L/min]) [64]. pH
was controlled using phosphoric acid 20% [v/v] and so-
dium hydroxide 20% [v/v]. The temperature was con-
trolled with a mixture of hot and cold water, using the
glass jacket of the reactors. Lastly, foam was controlled
manually using silicone antifoam 10% [v/v]. Glucose
starvation was detected when a sudden decrease of the
CO2 composition in the off-gas occurred, and it was
confirmed each time using Benedict’s reagent. For fed-
batch experiments, the feed F(t) was designed to track a
variable growth rate for a predefined time. This feed can
be calculated from the reactor’s glucose and biomass
mass balances, as detailed in the literature [65]:

F tð Þ ¼ μset tð Þ
GF ⋅YSX

⋅V iXi⋅ exp
Z t

ti

μset tð Þdt
� �

ð9Þ

with GF the glucose feed concentration [g/L], YSX the
experimental glucose-biomass yield [gDCW/g] calculated
using the genome-scale model, ti the time at which the
feed started for a given cultivation [h], Vi and Xi the vol-
ume [L] and biomass [g/L] values at ti, respectively, and
μSET(t) is the time-dependent user-defined growth rate
at which the fed-batch culture is grown. The latter was
defined as follows:

μset tð Þ ¼ μmax−μmin

� �
⋅e−Ct þ μmin ð10Þ

Where μMAX = 0.1 [1/h], μMIN = 0.07 [1/h] and C =
0.07 [1/h]. Therefore, μSET(t) decays exponentially from
0.1 to 0.07 [1/h], which has been found to increase (in
contrast to constant growth rates in the feed phase) the

final biomass concentration in fed-batch cultivations of
E. coli and S. cerevisiae performed in our laboratory [66].

Culture media
The culture media employed in these studies were
based on Tolner et al. [67]. Inoculum: Glucose 10 [g/
L], (NH4)2SO4 1.8 [g/L], MgSO4 · 7H2O 2.3 [g/L],
K2SO4 2.9 [g/L], trace elements solution 0.8 [ml/L],
histidine 0.08 [g/L], sodium hexametaphosphate 5 [g/
L] and biotin 0.32 [mg/L]. Batch cultures: Glucose
50 [g/L], (NH4)2SO4 9 [g/L], MgSO4 · 7H2O 11.7 [g/
L], K2SO4 14.7 [g/L], trace elements solution 4 [ml/
L], histidine 0.4 [g/L], sodium hexametaphosphate
25.1 [g/L] and biotin 1.6 [mg/L] and sodium hydrox-
ide NaOH 1 [g/L]. Feeding medium: Glucose 500 [g/
L], MgSO4 · 7H2O 9 [g/L], trace solution 12.5 [g/L],
histidine 4 [g/L] and biotin 0.1 [g/L]. Sodium hydrox-
ide was added to all the media until a pH of 6 was
reached.

Analytical procedures

Sampling and biomass determination Samples of
~6 mL were periodically collected (every 2–3 h) from
all fermentations. Biomass was measured by optical
density (OD) at 600 nm using an UV-160 UV-visible
spectrophotometer (Shimadzu, Japan). Biomass con-
centration was determined using the linear relation-
ship: 1 OD600 = 0.72 [g/L] using the methodology from
[68]. Then, samples were centrifuged at 10.000 rpm
for 3 min and the supernatant stored at −80 °C for fur-
ther analysis.

Table 1 Parameters of the model

Symbol Name Units LB Initial value UB

vG,max Maximum glucose uptake rate mmol/gDCW·h 0 2.5 10

KG Half saturation constant for glucose uptake g/L 0 10−4 10−3

vEtOH,B Ethanol minimum secretion rate (batch) mmol/gDCW·h 0 0.5 3

vPyr,B Pyruvate minimum secretion rate (batch) mmol/gDCW·h 0 0.1 2

vArab,B Arabitol minimum secretion rate (batch) mmol/gDCW·h 0 0.2 2

vCit,B Citrate minimum consumption rate (batch) mmol/gDCW·h 0 0 2

vEtOH,FB Ethanol minimum consumption rate (fed-batch) mmol/gDCW·h 0 0 2

vPyr,FB Pyruvate minimum consumption rate (fed-batch) mmol/gDCW·h 0 0 2

vArab,FB Arabitol minimum consumption rate (fed-batch) mmol/gDCW·h 0 0 2

vCit,FB Citrate minimum consumption rate (fed-batch) mmol/gDCW·h 0 0 2

αB Sub-optimal growth coefficient (batch) [−] 0 0 10−3

αFB Sub-optimal growth coefficient (fed-batch) [−] 0 0 10−3

mATP Non-growth associated ATP mmol/gDCW·h 0 2 10

TFed Time when secondary metabolite consumption
starts in fed-batch cultures

h 20 25 32
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Extracellular metabolite concentration analyses Glu-
cose, ethanol, arabitol, citrate and pyruvate extracellular
concentrations were quantified in duplicate by High-
Performance Liquid Chromatography (HPLC), as de-
tailed in Sánchez et al. [48], with the exception of the
working temperature of the Anion-Exchange Column
(Bio-Rad, USA), which was lowered from 55 °C to 35 °C
for better resolution.

Objective Function For model calibration, we mini-
mized the sum of square errors between the experi-
mental data (Additional files 5 and 6) and the
simulation output by searching the parameter space,
with the enhanced scatter search algorithm (eSS) [69],
which has been successfully used to solve complex
bioprocess optimization problems [70–72]. The ob-
jective function J used in the minimization was nor-
malized by the maximum corresponding measured
variable to give all data a similar weight:

J ¼ min
θ

Xm
i¼1

Xn
j¼1

Xij
mod−Xij

exp

maxj Xexp
ij

� �
0
@

1
A

2

ð11Þ

With θ representing the parameter space, m the number
of measured variables, n the number of measurements
per variable, Xij

mod the dFBA output of variable i and
measurement j, Xij

exp the corresponding experimental

value and maxj Xexp
ij

� �
the maximum value measured

for variable i.

Pre/Post regression analysis
Once the initial calibration of the model was completed,
statistical tests were performed in order to determine if
the initial model formulation had sensitivity, identifiabil-
ity or significance problems [47].
Sensitivity corresponds to the impact that model pa-

rameters have on the state variables or process output.
The relative sensitivity of parameter k on the state vari-
able i (gik) was calculated according to the following
formula

gik t; θkð Þ ¼ θk
Xi tð Þ ⋅

dXi tð Þ
dθk

ð12Þ

Where Xi(t) is the ith state variable in time t and
θk is the kth parameter. With all gik values, we
formed a sensitivity matrix g(t) for each experimental
time, in which the kth column denotes the sensitivity
of the kth parameter on the state variables. These
matrices were averaged to obtain a single normalized
score of the sensitivity of parameter k on the state
variable i during the cultivation. Furthermore, if the
score of each variable was under 0.01 for a given

parameter, this parameter was considered insensitive
and a candidate to be fixed (or left out of the adjust-
able parameter set) in the reparametrization stage.
Identifiability refers to the possibility of unambiguously

determining the parameter values by fitting a model to ex-
perimental data. If parameter identifiability is not properly
assessed, misleading parameter values can be obtained after
model calibration. To calculate identifiability, we deter-
mined the correlation between the columns of the sensitiv-
ity matrix using the corrcoef function from Matlab, which
yielded a correlation coefficient matrix (C). A pair of pa-
rameters j and k was considered to be correlated (therefore
not-identifiable) if the absolute value of the number at the
(j, k) position in the correlation coefficient matrix was
higher than 0.95 ( Cjk

�� ��≥0:95� �
).

To determine parameter significance, we started by
calculating the Fisher Information Matrix (FIM) [73]

FIM ¼
Xn
j¼1

gTj Qjgj ð13Þ

Here, gj is the sensitivity matrix for measurement j, n
is the number of samples, and Qj is a weighting matrix
given by the inverse of the measurement error covari-
ance matrix assuming white and uncorrelated noise.
Hence, the variances for each estimated parameter were
calculated as in [73, 74]

σ2k ¼ FIM−1
kk ð14Þ

which was used to determine the confidence interval
(CI) with 5% significance for the kth parameter as
follows:

CIk ¼ θ̂k � 1:96σk
h i

ð15Þ

Here, θk is the estimated value of the corresponding
parameter. Finally, coefficients of confidence (CC) were
calculated as follows:

CCk ¼ Δ CIkð Þ
θ̂k

¼ 2⋅1:96σ

θ̂k

ð16Þ

Δ(CIk) is the CI’s length. A parameter was not signifi-
cant if the confidence interval contained zero, i. e. if the
absolute value of the CC was equal or larger than 2.

Reparametrization
A reparametrization procedure called HIPPO [75]
(Heuristic Iterative Procedure for Parameter
Optimization, http://www.systemsbiology.cl/tools/) was
applied to overcome parametric statistical limitations in
the model.
First, HIPPO performed sensitivity and identifiability

tests on the initial calibration results for each dataset.
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Then, model parameters were fixed one by one until
the non-fixed subset presented none of the statistical
limitations. Finally, significance was determined for
the remaining parameter set, also called the reduced
model structure. If all the remaining parameters were
significantly different from zero, the resulting struc-
ture is considered to be an a priori robust candidate
for cross calibration with the available data.

Cross calibration of robust structure candidates derived
from the reparametrization stage using the available
datasets
After reparametrization of the model derived from each
dataset, a potentially robust structure was generated.
This structure was recalibrated with the rest of the data-
sets to assess its robustness. It is worthy to note that the
parameters left out of the calibration were either fixed
according to values reported in literature, assumed to be
zero or fixed at the mean value achieved in the calibra-
tions. This was done to avoid assuming a minimum pro-
duction of compounds in batch cultivations and to
ensure model convergence for parameters that had no
reported values in literature (Table 2). For example, fix-
ing feed phase consumption rates at zero does not allow
consumption of batch by-products and yielded poor fed-
batch fittings (data not shown).
The reduced modeling structures were evaluated ac-

cording to four parameters:

I. Relative difference between calibration objective
functions (JDIFF):

JDIFF ¼ 1
n
⋅
Xn
i¼1

J i;Reduced−J i;Original
J i;Original

ð17Þ

Where n corresponds to the number of cultures of each
type, J i;Original is the calibration objective function
(Equation 11) achieved for dataset i using the
original model structure and J i;Reduced is the
calibration objective function achieved in dataset i
using a reduced, a priori robust, modeling structure.

II. Percentage of Significance issues; refers to the
number of times a parameter is found to be non-
significant out of the total of significance determina-
tions performed for a structure. For instance, if a
model structure had 6 parameters and 8 datasets
were used to calibrate it, a total of 48 significance
determinations were performed for that particular
model.

III.Percentage of Sensitivity issues; refers to the
number of times one of the estimated parameters
shows low or no impact over state variables (average
relative sensitivity ≤ 0.01) out of the total sensitivity
determinations performed.

IV.Percentage of Identifiability issues; corresponds
to the number of times a pair of parameters presents
a strong correlation (≥0.95), out of the total
parameter pairs of a modeling structure. If p is the
number of parameters of the model and n is the
number of datasets used for its calibration, the total
of parameter pairs for which identifiability was
determined is:

Total pairs ¼ p⋅ p−1ð Þ
2

⋅n ð18Þ

Finally, the modeling structure that presented the low-
est JDIFF and fewest statistical limitations was used as a
robust structure candidate for the corresponding type of
culture.

Robustness check of the chosen modeling structure
Once a candidate for a robust structure was determined
for the batch and fed-batch configurations, we tested its
robustness (absence of parametric problems) by calibrat-
ing it with new experimental data. For the batch model,
we employed fermentation data from P. pastoris GS115
strain grown with 40 [g/L] of glucose as carbon source
at T° = 25 °C and pH = 6. The robustness of the fed-
batch model was assessed with a glucose-limited cultiva-
tion consisting of a 60 [g/L] glucose batch phase and an
exponential feed using 500 [g/L] of glucose. The
medium was added in the feeding phase in order to

Table 2 Values at which problematic parameters were fixed in
the cross-calibration stage

Parameter Fixation value Units Reference

vG,max 6 mmol/gDCW·h [63]

KG 0.0027 g/L [63]

vEtOH,B 0 mmol/gDCW·h -

vPyr,B 0 mmol/gDCW·h -

vArab,B 0 mmol/gDCW·h -

vCit,B 0 mmol/gDCW·h -

vEtOH,FB 1.21 mmol/gDCW·h *

vPyr,FB 0.14 mmol/gDCW·h *

vArab,FB 0.15 mmol/gDCW·h *

vCit,FB 0.008 mmol/gDCW·h *

αB 0 [−] [85]

αFB 0 [−] [85]

mATP 2.18 mmol/gDCW·h [43]

TFed 22 h *

Parameters marked with ‘-’ in the reference column indicate that no a priori
value was assumed for that particular parameter, which is the case for the
batch minimum secretion rates. ‘*’ means that the value of a particular
parameter was fixed at the mean value achieved in the calibrations, because
no information about them could be found in the literature
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achieve an exponentially decreasing growth rate from
0.1 to 0.07 [1/h].

Model validation
Finally, the predicting capability of the model was evalu-
ated for conditions similar to the ones used in the initial
calibrations (training set).
The robust batch model was first calibrated with the

two cultivations of the strain harboring one copy of the
thaumatin gene, obtaining a characteristic parameter set
for that strain. Then, these parameters were used to pre-
dict the course of a different batch cultivation performed
in the same conditions (30 °C and pH 6).
This procedure was also applied for the fed-batch

model. Here, the bioreactor dynamics was simulated
using the parameters obtained in the best calibration
within the training dataset (the one in which the calibra-
tion objective function was minimal compared to the
rest of the calibrations) using the robust modeling struc-
ture obtained previously. This prediction was compared
with experimental data of a different fed-batch
cultivation.

Goodness of fit
For both the robustness check and validation datasets,
the goodness of fit was determined by two scores: the
mean normalized error (MNE) and the Anderson-
Darling test [76]. The MNE quantifies the difference be-
tween model simulations and experimental data; the
closer the difference is to zero, the better the fit. In
addition, the sign of MNE shows whether the model
over (+) or underestimates (−) the observed data (equa-
tion 19).

MNEi ¼
X

j¼1

n
Xmod

ij −Xexp
ij

� �

n⋅ maxj Xexp
ij

� � ð19Þ

with n the number of time points measured for vari-
able i.
The Anderson-Darling test was used to verify if the re-

siduals between simulations and experimental data

Xmod
ij � Xexp

ij

� �
were normally distributed. If they were,

the differences between them can be attributed to meas-
urement noise and not to model inadequacy. The failure
of this test by one of the model’s state variables (p-value
< 0.05) indicates that a different mathematical relation
than the one used in the model may underlie its dynam-
ics. Therefore, the results of this test may be used to
confirm or update the kinetic expressions associated
with the consumption and production of compounds.

Simulation
Analysis of the metabolic flux distribution during key stages
of a dynamic cultivation
After the calibration of the fed-batch model with the
dataset used for checking its robustness, we evaluated
the central metabolic flux distributions at three different
stages of the cultivation: exponential growth during the
batch phase (~20 h), ethanol and arabitol consumption
during glucose starvation phase (~27.5 h) and controlled
growth during the feeding phase (~45 h).

Discovery of beneficial knock-out targets for the overpro-
duction of recombinant Human Serum Albumin (HSA)
To show the potential applications of the model, gene tar-
gets for the overproduction of the recombinant Human
Serum Albumin (HSA) were determined by simulating the
growth and protein secretion of single knock-out strains of
P. pastoris in batch cultivations. To do this, we included in
the Metabolic Block a second quadratic programing prob-
lem consisting in the Minimization of Metabolic Adjust-
ment (MOMA) algorithm [77], which states that, after a
genetic perturbation, the cell will attempt to redistribute its
metabolic fluxes as similar as possible to the parental strain.
Mathematically, equation 4 of the metabolic block is
employed in order to obtain the parental flux distribution
v0 at a given instant.

Min α⋅
Xn
i¼1

v20;i− 1−αð Þ⋅μ0
s:t:
S⋅v0 ¼ 0
lb0;i≤v0;i≤ub0;i i ¼ 1…n

ð20Þ
Then, the k reactions associated with gene j are

blocked:

lbl;j ¼ ubl;j ¼ 0 l ¼ 1…k ð21Þ

Finally, the MOMA algorithm was applied using the
flux distribution of the parental strain v0 to calculate the
knockout distribution vKO as the Euclidean distance be-
tween them, considering that the actual model has the
corresponding deletion.

MOMA :
Min v0−vKO;j

� �2
s:t:
S⋅vKO;j ¼ 0
lbi≤vi;KO;j≤ubi i ¼ 1…n

ð22Þ
The hypothetical parental strain was characterized

using the parameters obtained above plus the growth
rate dependent specific HSA productivity (qP) of P.
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pastoris strain SMD1168H grown on glucose, as re-
ported by Rebnegger et al. [78], (Fig. 2). In each iteration
of the model, the minimum HSA production was fixed
according to this relationship, which was fitted with a
third degree polynomial. Other kinetic expressions could
be employed to represent the qP vs μ relationship, de-
pending on the strain and protein being produced [26].
We simulated one batch cultivation for each gene in

the model and compared their final protein and biomass
concentrations with those of the parental strain. The
candidates that reached a higher HSA concentration
than the parental strain were manually analyzed and
some of them were proposed as candidates to improve
HSA production. It is important to mention that we
used a set of parameters derived in this study to
characterize the growth kinetics of the HSA producing
strain used in the simulations. Therefore, the predictions
derived from this work should be assessed carefully and
considered only as an example of the applicability of our
modeling framework.

Evaluation of different feeding policies in silico to improve
recombinant protein production considering specific
information about the strain and process setup
Simulations were run using the parameters obtained in
the calibration used for intracellular flux analysis and
adding the qP vs μ relation for HSA biosynthesis in the
mass balances. The process limitations (based on our
setup) were a maximum reactor volume of 1 L, and a
maximum oxygen transfer rate of 10.9 [g/L · h]. If any of

these limits were violated by either the feeding rate of
medium or the oxygen uptake rate (extracted from the
model), the integration stopped.
We assessed 13 exponential feeding policies. Five of

them maintained a constant growth rate during the feed-
ing phase and the rest considered a decreasing growth
rate throughout the culture (Additional file 7). After the
simulation, we ranked the strategies according to the
volumetric productivity of recombinant HSA and chose
the best one as a cultivation strategy that could poten-
tially improve bioreactor performance.

Results and discussion
The batch and fed-batch models were developed in four
steps: (i) determination of initial parametric problems,
(ii) reparametrization and cross calibration, (iii) robust-
ness evaluation and (iv) validation of predictive potential
under the studied conditions.
Once the models were developed, three applications

were proposed to improve recombinant |protein produc-
tion using Human Serum Albumin as a case study.

Initial parametric problems
Batch model
The initial structure of the batch model comprised eight
parameters (Table 3). The model was able to successfully
accommodate different cellular dynamics from eight
glucose-limited aerobic cultivations. In these calibra-
tions, several statistical parametric limitations were
found (Additional file 8). mATP was the parameter that
presented the strongest correlation with other parame-
ters, such as maximum specific glucose uptake rate
vG;Max
� �

, ethanol and arabitol specific secretion rates

vEtOH ;B and vArab;B
�

), and with the sub-optimal growth
coefficient (αBÞ . This might result from the fact that a
change in mATP directly impacts the ATP-producing
pathways in the metabolic model, affecting the biomass

Fig. 2 Relation between Human Serum Albumin specific production
rate (qP) and growth rate (μ) in glucose limited chemostats, taken
from Rebnegger et al. [78]. This relation was included to simulate
the specific protein productivity for a given growth rate, allowing
the assessment of the impact of different feeding profiles on
process productivity

Table 3 Potential Robust Structures Tested in the Cross-
Calibration Stage for the batch model

Structure Parameters included

Original vG, Max, KG vEtOH,B, vPyr,B, vArab,B, vCit,B, mATP and αB

1 vG,Max, vEtOH,B, vPyr,B, vArab,B, vCit,B and αB

2 vG, Max, vCit,B and αB

3 KG, vEtOH,B, vPyr,B, vArab,B and vCit,B

4 vEtOH,B and vCit,B

5 vG,Max, vPyr,B, vArab,B

6 vG,Max, vEtOH,B, vPyr,B, vArab,B, vCit,B

7 vG,Max, KG, vEtOH,B, vPyr,B, vCit,B

8 KG, vPyr,B, vArab,B, αB and mATP

Each one of these structures was derived using HIPPO after model calibration
using each dataset
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and product yields, which are also influenced by other
parameters of the model. In addition, the glucose uptake
saturation constant KG was the only parameter with fre-
quent sensitivity and significance problems, making it a
potential candidate to be left out of the adjustable par-
ameter set.

Fed batch model
Data from three aerobic, glucose-limited fed-batch culti-
vations was successfully calibrated with the initial model
of fourteen parameters. As in the batch model, several
statistical parametric limitations arose (Additional file 8).
The most frequent correlation (in two out of the three
calibrations) was between vG;Max and the vEtOH ;B during
the batch phase. Also, vEtOH ;B and vArab;FB showed 5 and
6 strong correlations with other parameters of the
model, respectively.
Finally, the citrate minimum secretion rate during the

fed-batch phase and the suboptimal growth during the
feeding phase (αFB ) were the parameters that presented
more sensitivity and significance limitations.

Reparametrization and cross calibration
After model calibration and the subsequent determin-
ation of the parametric problems for each dataset, the
non-relevant parameters were fixed (left out of the ad-
justable set) using HIPPO [75] to achieve robust model-
ing structures.

Batch model
The reduced batch models derived from the initial cali-
brations (Table 3) were recalibrated with the available
data (eight batch cultivations) to determine if they could
reproduce P. pastoris behavior appropriately. The per-
sistence of parametric problems in the reduced models
was compared to the original model.

Structures 1 and 6 were the only parameter sets whose
fitting capabilities were similar to the original eight pa-
rameters model (Table 4), showing the importance of in-
cluding the specific uptake and production rates of the
compounds considered in the model. On the contrary,
mATP and KG were left out of these structures because
of the frequent identifiability and sensitivity associated
problems.
Structure 6 lacks the sub-optimal growth parameter

αB , which forces the solution of a linear programming
(LP) problem of specific growth rate maximization in
the metabolic block. This is because this parameter
was assumed to be zero if it was left out of the adjust-
able parameter set (Table 2), which eliminates the
total flux minimization term from the objective func-
tion. This structure showed a significant increase in
significance and sensitivity compared to the original
model; however, identifiability was a major problem
(Table 4). Probably, the multiple solutions associated
with an underdetermined LP problem may hamper the
possibility to unambiguously infer parameter values
from the data.
Therefore, due to the recurrent identifiability issues

found in Structure 6, it was preferable to apply Structure
1 to fit a different dataset to check its robustness in aer-
obic, glucose-limited batch cultures of P. pastoris.

Fed-batch model
In the fed-batch model, three potentially robust model
structures were found after its calibration with three
datasets (Table 5).
All the candidate structures considered the following

parameters: KG , vPyr;B , vCit;B , αB , vPyr;FB and mATP . Con-
trary to the batch model, KG plays an important role in
this cultivation system. This parameter, which usually
lies in the micromolar range [79], can directly modulate
substrate uptake under glucose-limited conditions.

Table 4 Batch cross calibration summary

Structures that reduced de frequency of parametric problems with respect to the original model are highlighted
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Therefore, when glucose concentration is close to zero
(like in the feeding phase), slight variations in the value
of KG can change glucose uptake significantly, which
has a direct impact in the specific growth rate. Also,
mATP appears to have a relevant role since it might act
as an energy sink when the glucose from the batch phase
is depleted. Here, secondary product consumption oc-
curs with a slower or null biomass formation prior to
the addition of glucose (Fig. 3 in Additional file 8). This
indicates that the substrates were consumed to maintain
basic cellular functions to survive, instead of being used
for cell division.
The three reduced structures improved the initial fit-

tings (lower JDIFF) and reduced the frequency of fitting
problems observed in the initial model of 14 parameters

(Table 6). Among these, Structure 3 performed the best
in the cross-calibration in terms of fitting capability
compared to the original model. On average, this struc-
ture improved in initial calibrations by 25%. It is worthy
to note that, even though Structure 3 did not include
the minimum production rate of ethanol during the
batch phase, it could adequately reproduce the profiles
of this compound by adjusting the objective function
and the maintenance ATP. Finally, we chose to apply
Structure 3 to fit new fed-batch data to check its robust-
ness for modeling glucose-limited aerobic fed-batch cul-
tivations of P. pastoris.

Robustness check
Batch model
On this new dataset, Structure 1 showed a good fit to the
data and did not yield identifiability nor significance prob-
lems. However, vG;Max had no impact on the state vari-
ables. Therefore, after the initial calibration (data not
shown), we fixed this parameter at 6 [mmol/gDCWh] [63].
Figure 3 illustrates the model fit and Table 7 presents the
parameter values with their 95% confidence intervals
achieved in the second calibration, which also had no
identifiability, significance or sensitivity limitations. This
calibration also yielded mean normalized errors close to
zero and normally distributed residuals for all the state
variables except for glucose (Additional file 9).
Despite the sensitivity problem associated with vG;Max

for this particular dataset, we included this parameter in
the proposed robust modeling structure. This is because
for some calibrations, e.g. the batch cultivations of
strains harboring 8 copies of the thaumatin gene, the
state variables were very sensitive to this parameter
(average sensitivity > 0.7, recall that the sensitivity
threshold is 0.01); hence, it should be included to
achieve a close fit to the data. Therefore, if this param-
eter is found insensitive in future calibrations, it could
be easily fixed at reported values.
We achieved a robust modeling structure for glucose-

limited, aerobic batch cultivations of Pichia pastoris,
composed of six parameters that estimate specific con-
sumption and production rates of all the species in-
volved in the mass balances. The modeling structure
also allows us to determine the specific growth rate by
solving a bi-objective optimization problem, which re-
duces the identifiability issues arising between parame-
ters (comparison between candidate batch model robust
structures 1 and 6).

Fed-batch model
Structure 3 shows a good fit to new experimental fed-
batch data (Fig. 4) and did not yield identifiability or sig-
nificance problems (Table 8 and Additional file 9). The

Table 5 Potential robust structures for a fed-batch model

Structure Parameters included

Original vG,Max, KG, vEtOH,B, vPyr,B, vArab,B, vCit,B,
vEtOH,FB, vPyr,FB, vArab,FB, vCit,FB, αB, αFB, mATP, TCons

1 vG,Max, KG, vPyr,B, vCit,B,
vEtOH,FB, vPyr,FB, vArab,FB, vCit,FB, αB, mATP, TCons

2 KG, vEtOH,B, vPyr,B, vArab,B, vCit, B, vEtOH,FB, vPyr,FB, αB, mATP

3 vG,Max, KG, vPyr,B, vArab,B, vCit,B, vPyr,FB αB, αFB, mATP, TCons

Fig. 3 Robustness check of Structure 1 as modeling framework for
aerobic, glucose-limited batch cultures of Pichia pastoris. The figure
shows the capacity of the reduced model structure to be calibrated
with new data despite having fewer parameters than the original
model structure (6 instead of 8 parameters). Points with whiskers
represent experimental data and continuous lines correspond to the
model approximation
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profile of some of the state variables still depends on the
fixed values assigned. For example, arabitol was con-
sumed at a slower rate than the profile observed in the
experiment because the parameter representing this con-
sumption (vArab;FB) was fixed as the mean of the training
datasets (not included in the adjustable parameter set).
Thus, the model assumed a faster consumption rate
than observed in the cultivations. Also, pyruvate was
found at such low concentrations that the parameters
associated to its production ( vPyr;B and vPyr;FB ) were ig-
nored in this analysis.
The chosen model structure showed a strong fitting

capacity and a limited occurrence of parametric iden-
tifiability, sensitivity and significance problems. There-
fore, we selected it as the most robust model structure
for fed-batch cultivations of P. pastoris.

Model validation
Batch model
The parameters found for the strain harboring one copy
of the thaumatin gene were used to predict the dynamics
of a different batch cultivation using the same strain
(Fig. 5). Biomass and glucose profiles were correctly pre-
dicted by the model (MNEs close to zero and p-values
of the Anderson-Darling test > 0.05, see Additional file
10). Ethanol, pyruvate, citrate and arabitol dynamics also
showed an overall concordance with the data, however
the simulated profiles overestimated their final

concentrations (see associated MNEs in Additional file
10). These differences occurred probably because in the
training datasets the initial concentration of glucose was
higher than the one used in the validation experiment
(~60 g/L vs. ~40 g/L), which might have increased the
formation of secondary products [80]. Therefore, future
versions of the model may consider more elaborate kin-
etic expressions for the secretion of secondary products
in order to accurately predict their formation in different
circumstances.

Fed-batch model
The prediction of biomass, glucose, ethanol and arabitol
concentrations during the culture agreed with experi-
mental data, whereas pyruvate and citrate dynamics
were inaccurate (Fig. 6). Specifically, the simulation

Table 6 Summary of the cross calibration of the fed-batch datasets

Structures that reduced de frequency of parametric problems with respect to the original model are highlighted

Table 7 Parameter values achieved in the validation of the
batch model structure

Parameter Value Units

vG,Max 6 mmol/gDCW · h

vEtOH,B 1.47 ± 0.07 mmol/gDCW · h

vPyr,B 0.13 ± 0.05 mmol/gDCW · h

vArab,B 0.14 ± 0.06 mmol/gDCW · h

vCit,B 0.09 ± 0.04 mmol/gDCW · h

αB 4.1 ± 0.9 · 10−4 [−]

Values of the parameters are presented together with their 95% confidence
intervals. In this calibration, vG,Max was fixed at a known value to avoid
sensitivity issues. Finally, the calibration yielded no parametric problems

Fig. 4 Robustness check of Structure 3 as a modeling framework of
aerobic glucose-limited fed-batch cultures of Pichia pastoris. The fig-
ure shows the capacity of the reduced model structure to be cali-
brated with new data, despite having fewer parameters than the
original model structure (10 instead of 14 parameters). Points with
whiskers represent experimental data and continuous lines corres-
pond to the model approximation
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predicted that pyruvate was generated during the batch
phase but experimental data did not show pyruvate pro-
duction. In the experimental culture we saw that there
was no generation of citrate in the feed phase, contrary
to what the simulated predicted. These differences arose
because in the culture from where the parameters were
derived (Fed-batch culture 1, see Additional file 8), pyru-
vate formation occurred in the batch phase and citrate
was formed during the feed phase; therefore, the model

assumed that these compounds were generated in the
respective phase of the culture. Nevertheless, for the
major compounds found in the culture, the model had a
low mean normalized error.

Potential applications of the model
Analysis of the metabolic flux distribution at different
stages of a dynamic cultivation
Once we confirmed the robustness of the fed-batch
model, we analyzed the redistribution of central carbon
metabolic fluxes at three different stages of the cultivation
(Fig. 7), i.e. exponential growth during the batch phase
(~20 h, μ = 0.12 h−1); co–consumption of arabitol and
ethanol during the glucose starvation phase (~27.5 h, μ =
0.02 h−1); and controlled exponential growth during the
feeding phase (~45 h, μ = 0.06 h−1) (Fig. 7).
During exponential growth in the batch phase, the car-

bon reaching the glucose-6-phosphate node is split between
carbohydrate production (11%), glycolysis (63%) and the
oxidative branch of the PPP (24%). Furthermore, the latter
is the main source of cytosolic NADPH. Cytosolic ATP is
formed by the activity of the ATP synthase and substrate-
level phosphorylation (glycolysis and synthesis of arabitol
and ethanol) (data not shown). In the iPP618 model, which
is the basis of the iFS670, cytosolic NADPH was produced
by a NADP dependent isocitrate dehydrogenase, and no
flux appeared through the oxidative branch of the PPP.
Using the proposals from Pereira et al. [56], the flux
through this pathway was restored and overall agreement

Table 8 Parameter values achieved in the calibration to check
the robustness of the fed-batch model. The confidence interval
on the time where the consumption of secondary metabolites
started TCONS, could not be determined due to the stiffness of
the solution caused by a sudden consumption of arabitol and
ethanol

Parameter Value Units

vMAX 2.09 ± 0.46 mmol/gDCW · h

KS 5.55 · 10−2 ± 0.0000004 · 10−2 g/L

vPyr,B 0 mmol/gDCW · h

vArab,B 0.42 ± 0.17 mmol/gDCW · h

vCit,B 0.04 ± 0.00 mmol/gDCW · h

vPyr,FB 0 mmol/gDCW · h

αB 2.6 · 10−4 ± 0.4 · 10−4 [−]

αFB 2.455 · 10−5 ± 0.003 · 10−5 [−]

mATP 7.0 ± 1.4 mmol/gDCW · h

TCons 25.73 H

Fig. 5 Batch model preliminary validation. This figure shows how well the model predicts the course of a batch cultivation. To do this, we used
the derived robust model structure to determine the characteristic parameters of a recombinant strain. Then, we simulated a batch culture
(continuous line) and compared it with the experimental data (filled circles)

Saitua et al. BMC Systems Biology  (2017) 11:27 Page 14 of 21



in directionality to fluxomic studies performed in similar
conditions was achieved (Additional file 3).
During the starvation phase, ethanol and arabitol are

co-consumed with limited formation of biomass (μ =
0.02 h−1). As indicated by the negative fluxes, both com-
pounds are directed towards the TCA cycle in order to
synthesize the necessary reducing equivalents to fuel
oxidative phosphorylation. The ATP formed in this path-
way - ~ 7 mmol/gDCW·h -, is mostly employed for main-
tenance. Even though this mATP is high compared to
other reported values for P. pastoris (2.2 – 5 mmol/
gDCW·h) [43], it is required to account for the fast con-
sumption of both secondary metabolites under limited
cellular growth. The use of a recombinant strain for
model calibration, which might have higher maintenance
requirements, could further explain this result.
Finally, during controlled growth at the feed phase, nei-

ther ethanol nor arabitol are produced. All the carbon is di-
rected towards biomass formation and the energy
necessary for its synthesis and maintenance. This result
agrees with previous fluxomic studies carried out in aer-
obic, glucose-limited chemostats [57, 58], where significant
carbon fluxes through the oxidative and non-oxidative
branches of the PPP were found, without arabitol forma-
tion. Furthermore, the model shows significant oxaloacetate
transport from the cytosol to the mitochondria, which was
also observed in the cited studies. The most distinguishable
feature of this phase is the high activity of the TCA cycle,
which almost doubles the flux through this pathway re-
ported under glucose limited conditions in chemostats ([24,
57, 58]). This higher activity in the TCA is probably associ-
ated with the need to cope with maintenance and growth-

associated energy requirements under stressful conditions,
such as high cell density, especially when no significant sub-
strate level phosphorylation besides glycolysis occurs.
This analysis could have been performed using the

genome-scale model in static conditions by deriving in-
stantaneous exchange rates from contiguous samples and
determining the flux distributions by specific growth rate
maximization. Nevertheless, the inspection of flux distri-
butions after model calibration has the advantage of con-
sidering the overall behavior of the cells during the
cultivations. This provides more experimental support for
the determination of parameters such as mATP , KG , that
cannot be directly estimated but that have a strong impact
on the model output.

Discovery of single knock-outs to improve recombinant Hu-
man Serum Albumin production using Minimization of
Metabolic Adjustment (MOMA) as the objective function to
simulate mutant behavior
We performed 670 (number of genes in the model)
batch simulations of single knock-out strains to discover
beneficial deletions for the production of recombinant
Human Serum Albumin (HSA), a 66 kDa protein with
16 disulfide bridges, that comprises about one half of the
total blood serum protein [81].
The two main clusters (Fig. 8) show the relation between

the final HSA and the final biomass concentration of the
130 mutations that improved HSA production (>30 mg/L
at the end of the batch). The first cluster consists of strains
that privilege HSA production over biomass formation;
whereas the second one presents a trade-off between both.

Fig. 6 Fed-batch model validation. This figure shows how well the model predicts the course of a fed-batch cultivation. To do this, we used the
derived robust model structure to determine the characteristic parameters of a recombinant strain. Then, we simulated a fed-batch culture (con-
tinuous line) and compared it with the experimental data (filled circles)
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We decided to leave Cluster I out of the analysis be-
cause of the impaired growth observed in the simula-
tions, mainly due to the deletion of reactions associated
to lipid biosynthesis. However, candidates from Cluster
II (32 in total) were manually analyzed to identify the
cause of HSA overproduction (Additional file 11).
A relative increase in the formation of cysteine and tryp-

tophan was found for most of the candidates for Cluster II
when compared to the parental strain, a trend that was

not observed for the rest of the amino acids (Fig. 9). These
energetically costly residues [82] are formed from serine.
Therefore, re-routing carbon through this pathway could
be beneficial to improve HSA production.
After manually analyzing the candidates, we found that

one possible strategy could be the deletion of the cytosolic
NAD-dependent methylene tetrahydrofolate dehydrogen-
ase (Fig. 10). When compared to the parental strain, the
knock-out results in a 6.3 fold improvement of the final

Fig. 7 Metabolic flux distribution in the Central metabolism for three different stages of the cultivation. Carbon uptake is detailed in the box of
the upper left corner in mmol/gDCWh and the fluxes are presented relative to this uptake. In each box between metabolites there are three
numbers which correspond, from top to bottom, to the relative flux during batch, starvation and feeding phases. Depending on the time
analyzed, the cell consumes Glucose (G), Citrate (C), Arabitol (A) or Ethanol (E). The biomass flux corresponds to the specific growth rate of the
cell in h−1 and the negative fluxes refer to a change in the reaction directionality. Nomenclature: G6P = Glucose 6 Phosphate, Ru5P = Ribulose 5
Phosphate, ABT = Arabitol, PPP = Non-oxidative phase of the Pentose Phosphate Pathway, F6P = Fructose 6 Phosphate, G3P = Glyceraldehyde 3
Phosphate, DHAP = Dihydroxyacetone Phosphate, Pyr = Pyruvate, OAA = Oxaloacetate, Acald = Acetaldehyde, EtOH = Ethanol, AcCoA = Acetyl
Coenzyme A, Cit = Citrate, Icit = Isocitrate, αkg = Alpha-keto glutarate, Mal = Malate and L- glut = Glutamate
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concentration of the recombinant protein with a 5.8-fold
increase in protein volumetric productivity (arrow in
Fig. 8). This deletion eliminates the transformation of
serine to 5–10 methylene tetrahydrofolate; hence, serine
can be re-routed to two cysteine reactions. This gene is
non-essential in S. cerevisiae [83] and, to the best of our
knowledge, its essentiality has not been determined in P.
pastoris. Therefore, it constitutes an interesting knock-out
candidate to improve recombinant HSA production.

Bioprocess optimization for HSA overproduction
Here, we evaluated 13 feeding strategies of a fed-batch
cultivation to improve the production of recombinant
HSA. After the simulations, we selected a strategy that
considered a slow decrease in the growth rate from μ =
0.14 h−1 to μ = 0.08 h−1 during the feeding phase
(Table 9). The selected policy allows a 25% increase in
volumetric productivity and reaches almost the same
final HSA concentration as the constant growth rate

Fig. 8 Final HSA vs. final biomass concentrations of simulated batch cultivations of single knock-out-strains. Blue dots correspond to the output
of strains that improved the initial final HSA concentration (30 mg/L). Candidates out of Cluster II were manually analyzed. The red circle indicates
the performance of the parental strain and the black arrow points to the methylene tetrahydrofolate dehydrogenase knock-out strain

Fig. 9 Turnover of key amino acids in knock-out strains relative to the parental strain. Each box summarizes how the production of each amino
acid changed in the 32 knock out strains of Cluster II relative to the production in the parental strain (Red Line). Black dots correspond to the sam-
ple median, the extreme of the boxes to the 25th and 75th percentiles, the whiskers extend to the most extreme data points and circles
mark outliers
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strategy that reached the highest concentration (μ =
0.06 h−1).
The improvement in process productivity by modify-

ing substrate addition during the feed phase is less effi-
cient than the one attained by genetic modifications.
However, other process variables such as reactor volume
and oxygen transfer may be modified to further improve
HSA production.

Conclusions
Current GSMs of P. pastoris have been employed to ad-
dress cellular behavior in stationary conditions. They
have been successfully used for predicting production
and consumption rates of different compounds and even
achieving a 40% improvement of recombinant protein
production by model-discovered knock-outs [42]. How-
ever, little attention has been given to the actual meta-
bolic flux distribution that these reconstructions yield
and how they evolve in a dynamic environment. Result-
ing flux distributions are important for two reasons: (i)
they help to understand the cellular response to the dif-
ferent stresses to which the cell is subjected to and (ii)
they can serve as input for several algorithms whose aim
is to find metabolic engineering targets to improve the
production of a certain compound.

In this work, we developed a robust dynamic GSM of
glucose-limited aerobic cultivations of P. pastoris, link-
ing and showing the impact that the model formulation
process has over flux balance analysis. The assembled
platform can fit several datasets with minimum signifi-
cance, sensitivity and identifiability problems in its pa-
rameters. Moreover, if properly trained, it can be used to
predict bioreactor dynamics. The model could also be
employed to obtain realistic flux distributions through-
out dynamic cultivations and to determine metabolic
and process engineering strategies to improve the pro-
duction of a target compound.
To broaden its applications to other relevant condi-

tions for P. pastoris, the model could be calibrated
with data from cultures with different carbon sources
and feeding strategies, such as glycerol batch phase
followed by a methanol induction phase. Also, the
model could be used to study perturbations such as
oxygen limitation, which is a common problem in in-
dustrial P. pastoris cultivations [84]. Moreover, it
would be desirable to calibrate the model with data
from a strain capable of producing high concentra-
tions of a recombinant protein to understand and
quantify the metabolic burden caused by this
production.

Fig. 10 Rationale behind the knockout of the Methylene tetrahydrofolate (THF) dehydrogenase. By deleting this enzyme, the flux from Serine to
5-10-Methylene THF is blocked and redirected towards cysteine formation, whose availability increases the productivity of HSA

Table 9 Feeding policies evaluated to improve the production of Serum Albumin in a particular bioreactor setup

Strategy μMAX Rate μMIN qP [mg/g · h] XFINAL [g/L] PFINAL [mg/L] Limitation

1 0.14 - - 2.85 164.8 138 Oxygen

2 0.12 - - 2.59 187.8 135 Oxygen

3 0.1 - - 2.32 195.3 130 Volume

4 0.08 - - 2.29 191.3 138 Volume

5 0.06 - - 2.28 184.7 154 Volume

Best 0.14 0.1 0.08 2.83 197.5 150 Volume

This table shows the process indicators for the constant feeding Strategies (1–5) plus the best decreasing growth rate strategy. μMAX is the maximum growth rate
in the feeding police. μMIN is the minimum growth rate in the feeding police. Rate is the rate of decreasing of set growth rate in feeding police. qP is the protein
productivity. XFINAL and PFINAL refer to the final concentration of biomass and serum albumin in the reactor when the simulation stops, which happened by either
violating user-defined volume or Oxygen Transfer thresholds

Saitua et al. BMC Systems Biology  (2017) 11:27 Page 18 of 21



Finally, it is expected that the incorporation of more
curated metabolic reconstructions [44], gas mass bal-
ances and the knowledge derived from testing the hy-
potheses proposed using the model would improve its
accuracy and broaden its applicability.
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