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Abstract

Background: Individuals with 22q11.2 Deletion Syndrome (22q11.2 DS) are a specific high-risk group for developing
schizophrenia (SZ), schizoaffective disorder (SAD) and autism spectrum disorders (ASD). Several genes in the deleted
region have been implicated in the development of SZ, e.g,, PRODH and DGCRS8. However, the mechanistic connection
between these genes and the neuropsychiatric phenotype remains unclear. To elucidate the molecular consequences
of 22g11.2 deletion in early neural development, we carried out RNA-seq analysis to investigate gene expression in
early differentiating human neurons derived from induced pluripotent stem cells (iPSCs) of 22q11.2 DS SZ and SAD
patients.

Methods: Eight cases (ten iPSC-neuron samples in total including duplicate clones) and seven controls (nine in total

including duplicate clones) were subjected to RNA sequencing. Using a systems level analysis, differentially expressed
genes/gene-modules and pathway of interests were identified. Lastly, we related our findings from in vitro neuronal

cultures to brain development by mapping differentially expressed genes to BrainSpan transcriptomes.

Results: We observed ~2-fold reduction in expression of almost all genes in the 22q11.2 region in SZ (37 genes
reached p-value < 0.05, 36 of which reached a false discovery rate < 0.05). Outside of the deleted region, 745 genes
showed significant differences in expression between SZ and control neurons (p < 0.05). Function enrichment and
network analysis of the differentially expressed genes uncovered converging evidence on abnormal expression in key
functional pathways, such as apoptosis, cell cycle and survival, and MAPK signaling in the SZ and SAD samples. By
leveraging transcriptome profiles of normal human brain tissues across human development into adulthood, we
showed that the differentially expressed genes converge on a sub-network mediated by CDC45 and the cell cycle,
which would be disrupted by the 22q11.2 deletion during embryonic brain development, and another sub-network
modulated by PRODH, which could contribute to disruption of brain function during adolescence.

Conclusions: This study has provided evidence for disruption of potential molecular events in SZ patient with 22q11.2
deletion and related our findings from in vitro neuronal cultures to functional perturbations that can occur during brain
development in SZ.
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Background

SZ is a very complex disorder caused by multivariate
genetic and environmental factors. Apart from familial
factors, such as being the monozygotic co-twin of a SZ
proband or being the offspring of two parents with the
condition, 22q11.2 deletion is the highest known risk
factor for the development of SZ [1]. 22q11.2 Deletion
Syndrome (22q11.2DS) has a highly variable clinical
presentation including velo-cardio-facial syndrome (VCES),
cognitive and behavioral disorders, and SZ-like psychosis
[2-7]. Several genes in the deleted region have been sug-
gested as candidates for the development of SZ, including
TBXI [8], COMT [9-11], GNBIL [12], PRODH [13-16],
and DGCR8 [17-19]. It is, however, thought that the
22q11.2 DS reflects combinatorial effects of diminished
dosage of multiple genes/miRNAs acting on common cel-
lular processes involved in neuronal development and
neurotransmission [20, 21]. From this perspective, it is
speculated that downstream targets affected by deleted
genes may be enriched in cellular pathways involved in
neuronal development or neuronal activity, and that re-
duced expression of the deleted genes may dysregulate
these pathways.

Thus, it is valuable to search for SZ-specific changes
in early neural development of individuals containing
the 22q11.2 deletion. However, research on the bio-
logical basis of SZ and other neuropsychiatric disorders
has been hampered by the inaccessibility of developing
human brains. This problem has been partially circum-
vented by iPSC technology [22], which allows investiga-
tors to grow patient-specific neurons or neuroaggregates
[23, 24] for modeling in vitro the cellular developmental
abnormalities associated with psychiatric disorders. In
the past few years, investigators have successfully applied
this strategy and established iPSC lines in a variety of
brain disorders including Rett Syndrome, Parkinson Dis-
ease, Amyotrophic Lateral Sclerosis, Familial Dysautono-
mia, and most recently, SZ [25-30].

In this study, we performed a global and unbiased
transcriptome analysis of iPSC-derived neurons from SZ
and SAD patients with 22q11.2 deletion in comparison
with neurons from healthy individuals (without the dele-
tion). We reasoned that molecular changes would be
easier to uncover from 22q11.2 deletion patients with SZ
than other genetic subgroups, as 22q11.2 deletion is the
most common known genetic risk factor and is associ-
ated with a very high penetrance, and the results could
shed light on the molecular abnormalities and gene net-
work disruption (due to combinatory effects of some
22q11.2 genes and candidates genes outside the region)
in SZ developing brains. In addition to the two-fold re-
duction in the expression of genes that map to the
22q11.2 deleted region, our results showed altered ex-
pression of genes involved in apoptosis, cell cycle and
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survival, and MAPK signaling. These results are consist-
ent with a number of previous reports showing abnor-
mal apoptotic function in the neurodevelopmental and
neurodegenerative processes associated with SZ [31-33].
Moreover, our analysis suggested that there might be an
inter-chromosomal interaction between the 22q11.2
region and the HLA locus on 6p21, which points to a
potential functional connection. Lastly, through map-
ping differentially expressed genes to the BrainSpan
transcriptomes, we found that they converge on two
networks of genes co-expressed in the embryonic
stage and adolescence, with specific functional clusters
critical to neurodevelopment and neuronal functions.
Overall, our results indicate that early differentiating
neurons derived from iPSCs with 22q11.2 deletions
provide a model for studying SZ-related phenomena and
uncovering neurodevelopmental disruptions, which could
potentially be generalized to the other genetic subgroups.

Methods

Development of iPSCs from skin fibroblasts

Controls and patients with 22q11.2 del diagnosed with a
psychotic disorder (SZ, childhood onset schizophrenia
[COS], SAD) were recruited from two settings, the Albert
Einstein College of Medicine (AECOM) and the National
Institutes of Mental Health (NIMH), Child Psychiatry
Branch. For simplicity, we will usually refer to the patient
samples as SZ. The study and consent forms for the
AECOM cohort were approved by the AECOM Institu-
tion Review Board (IRB) and were signed by the subjects
at a time when psychotic symptoms were well-controlled
with medications. For the NIMH subjects, the study and
consent were approved by the NIMH IRB. For children,
consent was obtained from parents, and assent was ob-
tained from participants. Subjects were not disadvantaged
in any way if they refused to participate in the study. Con-
sent was obtained by skilled members of the research
teams who had received prior human subjects training. All
patients have confirmed 22q11.2 deletion as determined
by FISH or CGH arrays [34]. A summary of the patients
and controls used in this study are shown in Additional
file 1, and more detailed clinical descriptions are provided
in Additional file 2.

The iPSC lines were generated from fibroblasts ob-
tained from skin biopsies performed by board-certified
physicians. The procedure for growing fibroblasts in
preparation for reprogramming into iPSCs is detailed in
Additional file 2. Briefly, iPSC reprogramming was car-
ried out by nucleofection. One vial of fibroblasts was
thawed out and placed in a T75 flask in DMEM/F12
supplemented with 10% FBS and fed every 2 days. Cells
were grown to ~50% confluence (~4-5 days), after
which they were trypsinized and subjected to nucleofec-
tion (~6 x10° cells). Reprogramming was carried out
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using an Amaxa 4D-Nucleofector (P2 Primary Cell Kit
from Lonza catalog# V4XP-2012, Program FF-135) with
non-integrating plasmids containing OCT4, SOX2, KLF4,
L-MYC, LIN28, and a p53 shRNA vector (Addgene Cat.
# 27077, 27078, 27080), according to Okita et al.,, with
some modifications [24, 35, 36]. iPSCs were maintained on
Matrigel plates in mTeSR1 medium (Stem Cell Technolo-
gies) with daily feeding in 37 °C/5% CO,/85% humidity.

Characterizing iPSC lines

Pluripotency for all iPSC lines was confirmed by immuno-
cytochemistry using antibodies (Ab) against Tra-1-60,
Tra-1-81, SSEA3 and SSEA4, which are expressed in
pluripotent stem cells. In addition, the capacity to differ-
entiate into all 3 germ layers was established by in vitro as-
says, as previously described [24, 35]. The markers desmin
(mesoderm), a-fetoprotein (endoderm), and PIII-tubulin
(ectoderm) were used [22, 37, 38]. A list of the antibodies
used to evaluate the iPSCs can be found in Additional file
2. Karyotyping was carried out by Cell Line Genetics
(Madison WI). Each iPSC line used in this study had a
normal karyotype, but each patient harbors the large,
~3 Mb deletion on 22q11.2, which was identified by FISH
using a TUPLE probe or microarray [34].

Neuronal differentiation

Neurons were generated from iPSC-derived neural pro-
genitor cells (NPCs) as described by Marchetto et al.
with slight modifications [26, 35]. A detailed description
of the protocol can be found in Additional file 2. Essen-
tially, the protocol leads to a mixed population of gluta-
matergic and GABAergic neurons (see Additional file 2),
while the ratio of the two neuronal types and subtypes
likely vary among samples due to the complexity of dif-
ferentiation (see below). Neuronal samples were har-
vested on day 14 following differentiation from NPCs,
and RNA was extracted and sent for sequencing. As
such, the neurons used here were largely at their early
differentiation stages and had not reached the stage that
action potentials could be detected.

Quantitative real-time PCR (qPCR)
qPCR was carried out on reverse transcribed cDNA
from the same RNA samples used for the RNA-seq by
the 224" method as previously described [39]. A de-
tailed description and the primers used for this analysis
can be found in Additional file 2.

Proliferation assay

Cell proliferation was assayed using the Vybrant MTT
cell proliferation assay kit (Invitrogen) according to the
protocol manual. Briefly, and equal number of NPCs
(10,000 cells in triplicate) were seeded on 96 well plates
coated with poly-L-ornithine hydrobromide and laminin
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(day 0). Cell counts were determined daily for 7 days. At
the time of the assay, 100ul of medium was removed from
the well and replaced with an equal volume of fresh
medium without FGF2, along with 10ul of the 12 mM
MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide) stock solution. The cells were incubated at 37 °C
for 4 h. 85 ul of medium was removed and 50 ul of DMSO
was added, followed by a 10-min incubation at 37 °C. The
samples were mixed well, transferred to a microplate, and
the absorbance at 540 nm was determined. A total of 8
NPC lines were analyzed; 4 controls and 4 with 22q11.2
del. The fold change in cell number was compared to the
day 1 pooled control samples, which was normalized to 1.0.
Statistical significance of pooled controls and pooled
22q11.2 del samples was determined at each day of growth
using a Student’s t-test (2-tailed).

RNA-seq data acquisition

Paired-end RNA-seq was carried out on an Illumina
HiSeq 2000. We obtained 101-bp mate-paired reads
from cDNA fragments with an average size of 250-bp
(standard deviation for the distribution of inner dis-
tances between mate pairs is approximately 100 bp).
RNA-seq reads were aligned to the human genome
(GRCh37/hg19) using the software TopHat (version 2.0.8)
[40]. We counted the number of fragments mapped to
each gene annotated in the GENCODE database (version
18), which included multiple categories of annotated tran-
scripts [41], and quantified transcript abundance as FPKM
(fragments per kilobase of exon per million fragments
mapped).

Sample clustering and “Batch” correction

RNA-seq samples were clustered based on all expressed
transcripts (average FPKM > 1, n = 17,669, Additional file 3:
Figure S1A) or a list of selective neural stem cell and differ-
entiating neuronal markers obtained from R&D Systems
(http://www.rndsystems.com/molecule_group.aspx?g=824&
r=7) (n =55; Additional file 3: Figure S1B). We performed
UPGMA (unweighted pair group method with arithmetic
mean) clustering of samples from transcriptomic profile
similarities based on the Pearson correlation coefficients.
The analysis showed that our samples could be separated
into two clusters; the cluster membership did not change
whether all transcripts or only the neural marker genes
were used for clustering. The first cluster (left on the heat-
maps in Additional file 3: Figure S1B) exhibited higher ex-
pression of neuronal markers (e.g., TUBB3 and MAP2),
while the second (right on the heatmaps in Additional file
3: Figure S1B) showed greater expression for neural stem
cell and neural progenitor markers (e.g., VIM, SMAD2 and
NOTCH?2). These suggest that variation in the degrees of
neuron differentiation and maturation existed in our
samples and needs to be accounted for in the differential
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expression analysis. Note that all of our samples showed a
characteristic expression pattern for neuronal samples
(higher expression of neuronal markers and lower expres-
sion of NPC markers) when compared with the NPC sam-
ples derived from a subset of our control iPSCs previously
[42] (data not shown). Therefore, we considered the two
clusters as two “batches” and applied ComBat [43] (a
batch-correction tool adjusting for differences in the
means across the batches and the variances, which would
not be considered in a standard two-factor analysis) to
correct the raw gene expression values and used the
“batch”-corrected values for all subsequent analysis. Note
that heterogeneity in neural induction is a rather common
issue that has been discussed previously not only for our
protocol [26], but also for others [44, 45], and the usage of
multiple iPSC clones/lines from the same individuals has
been suggested [46—48].

Characterization of neuronal fate and maturity

To characterize the neuronal fate and maturity of our
differential neurons, we compared gene expression pro-
files of our samples with two independent datasets. The
first one is based on single cell RNA-seq analysis of hu-
man adult cortical samples in which all major cell types
(astrocytes, endothelial, microglia, neurons, oligodendro-
cytes and oligodendrocyte progenitors) of the adult brain
were identified [49]. Using the top 5,000 most variable
genes in this dataset (which were enriched for signature
genes in different cell types) [50], we performed non-metric
multidimensional scaling after normalizing expression data
across samples and batch correction. The plot of the trans-
formed data in the first two dimensions (Additional file 4:
Figure S2A) indicates that our neuronal samples were most
similar to populations of adult neurons, with no separation
of the 22q11.2 deletion samples from controls. The second
one is a temporal gene expression data set encompassing
cerebral cortical development from human embryonic stem
cells [51], which classified their RNA-seq samples to five
developmental stages: “Pluripotency” (PP: Day 0), “Neural
Differentiation” (ND: Day 7), “Cortical Specification” (CS:
Day 12), “Deep Layer neuron generation” (DL: Day 26), and
“Upper Layer neuron generation” (UL: Day 63). Principal
component analysis (PCA) indicates that our samples were
mapped to a stage between Day 12 (the start of the CS
stage) and Day 19 (Additional file 4: Figure S2B, PC1), sug-
gesting that our samples likely had passed the peak of
neuron differentiation and were undergoing specification of
neuronal subtypes. Again, in this analysis our control and
SZ samples were grouped together and mapped to the
same differential stages. Finally, we looked into a number of
markers for glutamatergic and GABAergic neurons,
and astrocytes, which were expressed at least in one of
our samples (Additional file 4: Figure S2C), and found that
glutamatergic and GABAergic markers had relatively high
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expression levels, while markers for astrocytes and other
subtypes were either not expressed or expressed at rela-
tively low levels.

Identifying differentially expressed genes (DEGs)
Although we have biological replicates for a few iPSC
lines, we found that intra-individual variations were as
large as inter-individual variations. The correlation of
coefficients (CV) for two controls with duplications were
0.25 and 0.28 and for two SZ with duplications were
0.17 and 0.34. These numbers were very similar to the
CVs observed for inter-individuals, 0.26 for controls and
0.28 for SZ samples. As such, we analyzed all samples
together without specifically weighting or nested analysis
of the samples derived from the same individuals.

We used DESeq2 [52] to determine differential expres-
sion from the corrected RNA-seq read count values, ana-
lyzing only transcripts with an average FPKM > 1 across all
samples. Considering that neuropsychiatric disorders, in-
cluding SZ, are highly heterogeneous, we determined statis-
tically significant differences in gene expression between SZ
samples and controls at a nominal p value (p < 0.05), an ap-
proach similarly taken in many previous SZ transcriptomic
studies [25, 53-58], but we also applied a multiple
comparison correction to the p-values to compute for
false discovery rate (FDR) [59].

Identifying differentially expressed gene modules

We used Weighted Gene Coexpression Network Analysis
(WGCNA) [60] to identify co-expressed gene modules
from all of our RNA-seq data. From the WGCNA mod-
ules, we identified differentially expressed modules ac-
cording to the recommendation by the developers of the
software. To do that, we utilized the module preservation
statistic (Z-summary), which takes into account both the
overlap in module membership and the density and con-
nectivity patterns of modules, to assess the module preser-
vation between the control and SZ samples. Technically,
Z-summary < 2 implies no evidence for module preser-
vation, 2 < Z-summary <10 implies weak to moderate
evidence, and Z-summary > 10 implies strong module
preservation. In order to obtain networks of high con-
nectivity and minimize the adverse effect of a moderate
sample size, we constructed networks as follows: first,
we constructed a network from the combined case and
control data and identified modules within it; then, we only
tested modules with preservation Z-summary > 10 between
control and SZ samples for differential expression.

Function enrichment analysis

We identified enriched pathways in the REACTOME da-
tabases with Toppgene [61] and enriched Gene Ontology
(GO) terms with DAVID [62, 63].
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Mapping differentially expressed genes to BrainSpan
transcriptomes

To evaluate gene coexpression across brain regions at
different developmental periods for the DEGs from our
22q11.2 del samples, we reanalyzed the RNA-seq gene
expression data from the Atlas of the Developing Human
Brain (BrainSpan) (http://www.brainspan.org). We per-
formed correlation analysis to uncover genes co-expressed
with our DEGs. As described in previous studies [64],
tissue samples from the BrainSpan were grouped into four
neuroanatomical regions—frontal cortex (FC), temporal
and parietal regions (TP), sensory-motor regions (SM),
and subcortical regions (SC), and four developmental
stages—embryonic stage (8—12 post-conception weeks),
fetal (13—-26 post-conception weeks), early infancy to late
childhood (4 months to 11 years), and adolescence to
adulthood (13-23 years) (Table 1). Next, for each of the
DEGs, we calculated Pearson correlation coefficients (R)
between its expression and that of all other DEGs across
tissues within each brain region and at each developmen-
tal stage. 46 DEGs were excluded since their expression
values were zero in all tissues. Gene pairs with |R| >0.9
were defined as significantly co-expressed and thus “con-
nected” in subsequent co-expression construction. Net-
work connectedness was measured by the number of
connections, i.e., edges [65]. The value of 0.9 was used be-
cause the resulting connections exhibited an expected
power law feature after testing the choice between 0 and 1
[66]. To generate null distribution of connectedness, we
performed 10,000 iterations of the same analysis on the
same number of genes that were randomly picked to have
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their FPKM distribution similar to that of DEGs in each
region and stage. More specifically, we ranked genes
within each data group according to their expression
levels, and then randomly selected one gene whose rank
was within 5 of each DEG, to ensure that we avoid poten-
tial bias due to differences in expression as genes of lower
expression are less likely to form connections with others.
Afterwards, we tested if connectedness of DEGs was sig-
nificantly deviated (one-tailed, larger) from the null hy-
pothesis by simulation. A multiple comparison correction
was used to correct p-values [59].

Likewise, we determined the Pearson correlation coef-
ficients between each of the DEGs and the remaining
genes to assess the potential major biological implica-
tions of DEG networks. We collected the top 10% of
most connecting DEGs (1 =73) (i.e. the subset of DEGs
showing connections to the largest number of other
DEGs) and the top 10% of non-differentially expressed
genes (n=300) that had the most connections with
DEGs. The function relationship and enrichment among
these 373 genes were analyzed by the software ClueGO
[67], with the resultant networks visualized by the
Cytoscape [68].

Results

Differential gene expression analysis

We generated eight and seven iPSC lines from 22q11.2
patients and healthy individuals, respectively, and ob-
tained RNA-seq data from a total of 19 differentiating
neuron samples (seven controls with two duplicates for
a total of nine samples; eight 22q11.2 DS SZ and SAD

Table 1 Number of tissues by brain region and developmental stage used in network analyses [64]

Number of specimens

Brain Region Tissue 8-12 pcw 13-26 pcw 4mon-11Y 13-23Y
FC DFC Dorsolateral prefrontal cortex 18 38 37 19
MFC Anterior (rostral) cingulate (medial prefrontal) cortex
OFC Orbital frontal cortex
VFC Ventrolateral prefrontal cortex
SC STR Striatum 13 34 32 18
MD Mediodorsal nucleus of thalamus
AMY Amygdaloid complex
HIP Hippocampus
SM A1C Primary auditory cortex (core) 14 36 32 19
M1C Primary motor cortex (area M1, area 4)
S1C Primary somatosensory cortex (areas S1,3,1,2)
V1C Primary visual cortex (striate cortex, area V1/17)
TP ITC Inferolateral temporal cortex (area TEv, area 20) 10 28 32 18
STC Posterior (caudal) superior temporal cortex (area TAC)
IPC Posteroinferior (ventral) parietal cortex

FC frontal cortex, SC sub-cortical, SM sensory-motor, TP temporal-parietal

8-12 pcw: embryonic (stage1); 13-26 pcw: fetal (stage2); 4mon-11Y: infancy to childhood (stage3); 13-23Y: adolescence to adulthood (stage4)
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patients with two duplicates for a total of ten samples).
The number of reads obtained from the RNA-seq runs
for each of the 19 samples and the fraction that could
be aligned to the human genome were comparable
(Additional file 5). A total of 14,549 transcripts were
expressed in our samples, including 12,981 protein-
coding and 512 lincRNAs (long intergenic non-coding
RNAs). Clustering analysis of the samples based on
their raw FPKMs yielded two groups, which likely reflects
heterogeneity in neural differentiation (see Methods for
details). We then applied a batch correction method to ac-
count for the expression variation and used the corrected
expression values in the software DESeq2 [52] to deter-
mine differential gene expression. The entire gene list with
corrected expression values can be found on Additional
file 6. After filtering out low expressed genes (mean
FPKM < 1 across 19 samples), we identified 782 differen-
tially expressed genes: 503 increased in the SZ samples
and 279 decreased, at nominal p < 0.05 (Additional files 7
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and 8, respectively) (Fig. la). Because of the relatively
moderate sample size and experimental variation, only a
small number of differentially expressed genes were
statistically significant after correcting for multiple test-
ing (42 genes by FDR < 0.05). Nevertheless, based on
the FPKM values and expression changes for genes in
the 22q11.2 deleted region, we considered p <0.05 a
reasonable threshold for calling differential expression.
As seen in Fig. 1b, 36 of the 47 protein-coding genes in
the 22q11.2 region, including most of the candidate genes
implicated in the psychiatric manifestations or endophe-
notypes associated with 22q11.2DS (DGCRS8, DGCR2,
RANBPI, RTN4R, and COMT, for example) showed a sig-
nificant decrease (~2-fold reduction, FDR < 0.05) in the
patient samples compared with controls. One exception is
CLDNS5, which also showed larger than 2-fold difference
in expression between conditions, but failed to reach stat-
istical significance because of large intragroup variability
and relatively lower expression. Another exception is TBX1.
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Fig. 1 Differentially expressed genes in 22q11.2 SZ neurons and their enriched functions. a Heat map showing relative expression of 782 genes
that exhibited significant change between control and SZ at p-value < 0.05 (503 increased in SZ; 279 decreased). b Bar plot presenting
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DEGs as determined by the software David. d Enriched pathways for the DEGs as determined by the software Toppgene
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Its expression in the neuronal differentiation method we
used is even lower (mean FPKM ~0.6 in control and
22q11.2 del neurons), so accurate quantitation is difficult.
The other differentially expressing genes passing FDR <0.05
but not in the 22q11.2 region are DDX11, PDK3, PCIF]I,
FAMI103A1, TMSB4X and HLA-A.

Note that the three genes flanking either side of the
deleted region were not differentially expressed (Fig. 1b).
In fact, of the 311 genes on chromosome 22 that were
outside of 22q11.2 and had a mean >1 FPKM in either
the control or patient groups, 169 were expressed at a
higher level in the patient samples; 142 were lower. Of
these, only 14 genes showed a significant difference be-
tween patients and controls at p < 0.05 (7 were decreased
in patients; 7 increased). The difference between signifi-
cantly down-regulated genes on 22q11.2 compared with
the number of significantly differentially expressed genes
on the rest of chromosome 22 was highly significant (x2
test p-value < 2.2e-16).

These data establish that haploinsufficency at 22q11.2
is recapitulated at the RNA expression level in our dif-
ferentiating neurons and supports the validity of the
RNA-seq data. We should mention that haploinsuffi-
cency at 22q11.2 could also be detected without applying
the batch correction (Additional file 9). Our finding is
consistent with previously studies that have also shown a
2-fold reduction of the 22q11.2 genes in both 22q11.2
DS patients and mouse models [69-71]. It is also consist-
ent with our recently published findings that all of the
miRNAs that are expressed in neurons that map to the
22q11.2 deleted region are significantly down-regulated in
the patient samples vs controls [34].

We should mention that there were no significant dif-
ferences in the expression of the glutamate vesicular
transporters (SLCI7A6 and SLCI17A7), or the GABA
transporter (SLC6AI) in patient vs control neurons
(Additional file 6), suggesting that the overall population
of GABA and glutamate neurons were similar. Also note
that the GABA transporters SLC32A1, SLC6A13, and
SLC6A1I are not expressed in these early differentiating
neurons.

The differentially expressed genes (DEGs) were loaded
into the software DAVID and ToppGene to identify
enriched gene pathways and networks. The top enriched
GO terms for the genes that showed an increase in ex-
pression in the SZ neurons were apoptosis/programmed
cell death and immune response, while the top GO
terms for the genes that decreased in expression in the
SZ neurons were cell cycle, microtubule organizing center
organization and glutamate metabolic process (Fig. 1c).
From pathway analysis by ToppGene, the top canonical
pathways for all DEGs are involved in the MAPK signaling
cascade (Fig. 1d), such as the p38 MAPK and Toll-like re-
ceptor pathways. This finding is consistent with a previous
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genome-wide transcriptome analysis of peripheral blood
mononuclear cells (PBMC's) from 22q11DS SZ patients
[69], in which ERK/MAPK signaling was also identified as
one of the top canonical pathways disrupted in patients.
In our data, significantly elevated expression was observed
for several MAPK encoding genes (MAP3K2, MAP3K7
and MAP3K®6) and related factors (JUN, PRKCD, HOMER3
and MYH9). In addition, expression levels of upstream reg-
ulators for the PIBK/AKT signaling pathway, PIK3C2A and
PPMIE were increased as well. These results suggest that
disruption of the MAPK signaling cascade in 22q11.2 SZ
neurons might result in prolonged cycles of cell division
and cell proliferation, and enhanced cell death through
apoptosis during neuronal differentiation.

In the above expression analysis, we have treated du-
plicated samples from the same subjects as independent
samples. We also carried out an analysis by first aver-
aging the expression values of the duplicated samples
and then running differential expression analysis. This
resulted in 513 DEGs (451 overlapped with the above list
of DEGs), which showed similar function and pathway
enrichments: MAPK signaling, apoptosis and cell cycle.

Thirteen up-regulated and 13 down-regulated genes
outside of the 22q11.2 region were among the list of 883
suspected SZ candidate genes obtained from Schizophre-
nia Forum (http://www.schizophreniaforum.org). Interest-
ingly, out of the 13 up-regulated SZ candidates, 8 have
been implicated in apoptosis (CD4, CFLAR, HOMERS,
MYHY9, NDRG1, PIK3C2A, PPMIF and UHMK1).

Validation of RNA-seq data

We used qRT-PCR to validate the RNA-seq differential
gene expression profile for 6 genes (Fig. 2a). Two of the
selected genes map to the 22ql1.2 deleted region —
DGCRS8 and SLC25A1. Both showed a statistically signifi-
cant, ~2-fold decrease in expression, supporting the
RNA-seq findings for these genes. The others were ana-
lyzed because of their relevance to SZ and our findings
in pathway analysis. These included [FITM3, SSTR2,
GRIK1, and MAP3K7. IFITM3 codes for interferon-
induced transmembrane protein 3, which plays a role in
interferon-signaling and the innate defense against influ-
enza and other viruses [72—74]. This is interesting from
a SZ pathogenesis perspective, considering the clinical
and epidemiological evidence pointing towards prenatal
influenza as a risk factor in SZ [75, 76]. SSTR2, which
codes for somatostatin receptor 2, is important because
reduced expression in the cortex, and a reduction in
somatostatin positive GABAergic hippocampal neurons
has been detected in SZ brains [77-79]. Finally, GRIKI,
which codes for a kainite glutamate ionotropic receptor,
is expressed at lower levels in SZ brains [80]. As seen in
Fig. 2a, the significant changes in expression found by
RNA-seq were confirmed by qPCR.
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We also tried to confirm the increased expression of
MAP3K7 mRNA detected in the SZ neurons by RNA-
seq. Although a similar increase in expression was found
in the SZ neurons — 16.3% for the RNA-seq and 13.3%
for qPCR - the latter was not statistically significant.
This was not especially surprising since the relatively
small increase in MAP3K7 expression found in the
RNA-seq analysis challenges the sensitivity of qPCR. It
should be noted, however, that the enrichment of genes
involved in MAP kinase signaling detected in our path-
way analysis was likely due to the combination of small
differences in the expression of many genes, rather than
a large difference in expression in a small number of
genes.
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In order to determine if the GO assessment showing a
decrease in the expression of genes associated with the
mitotic cell cycle was accompanied by a decrease in cell
growth, we assessed the proliferation rate of NPCs. Cell
growth was assayed in 8 NPC lines (4 controls and 4
with 22q11.2 del). The fold change data were pooled,
and control vs 22q11.2 del growth rates were analyzed
as described in the methods section. As seen in Fig. 2b,
there was an overall decrease in proliferation for the
22q11.2 samples at each time point. However, because of
line to line variability, statistically significant differences
were only seen on days 1-3 (two-tailed Student’s t-test,
p=0.01 on days 1,2; 0.03 on day 3; 0.11, 0.14 0.14 and
0.18 on days 4-7, respectively). Nevertheless, the prolif-
eration data support the GO enrichment findings from
our RNA-seq data.

Weighted Gene Coexpression Network Analysis (WGCNA)
for differentially expressed gene modules

The above analysis was focused on the characterization
of individual genes whose expression was affected by
22q11.2 deletion. It is equally, if not more important, to
uncover gene networks that may be disrupted in the SZ
neurons, as many genes function together whereas they
may not all show significant expression change. We thus
performed WGCNA analysis and detected 15 modules,
13 of which showed no significant differences in module
structure between the two conditions (i.e, preserved
modules) (Fig. 3a). The two modules below preservation
thresholds (light-cyan and green-yellow) had very small
numbers of genes. The light-cyan module contained 38
genes in total, 36 of which were from 22q11.2 deleted
region; thus its lack of preservation is expected. The
green-yellow module was comprised of 92 genes, most
of which had an extreme outlier of expression values
from one particular control sample (Ctrl_iPS2C). The
outlier was the cause of low preservation score. There-
fore, the WGCNA results suggest that there is no global
gene regulation re-wiring in the SZ neurons. This is in
accordance with three previous gene network studies
carried out on patients with psychosis [81, 82], which
also did not observe a significant perturbation of gene
modules in patient samples.

Next, we searched for WGCNA modules that showed
significantly differential gene expression between SZ
neurons and controls. Only one module (pink module
with 289 genes) was found (p-value <0.05) (Fig. 3b).
Note that 99 of the 289 genes were in our list of DEGs.
PLAU (plasminogen activator, urokinase) and PPP2RI1B
were the two top hub genes in the pink module (Table 2);
both showed increased expression in SZ neurons. PLAU
and its receptor (PLAUR/uPAR) are mainly involved in
invasion and cell proliferation, and their increased expres-
sion is correlated with a wide range of human diseases,
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including autism, Alzheimer’s, AIDS dementia, cerebral
malaria and brain tumors [83]. Their anti-apoptotic effects
occur via the caspase-mediated apoptotic pathway and
the PIBK/AKT pathway [84]. Markedly elevated levels
of uPA/uPAR expression has been reported in chronic

Table 2 Top hub genes of the pink WGCNA module

neurodegeneration, AIDS dementia complex and other
neurological disorders, suggesting that the uPA/uPAR
system may contribute to neuronal damage [85, 86].
PPP2RIB encodes a regulatory subunit of protein phos-
phatase 2 (PP2A), which is involved in the negative

Gene Pink Module Membership? log2_fold_change(SZ/Ctrl) DE p-value
PLAU 1.61E-10 1.386071927 0.0010647
PPP2R1B 4.03E-10 0.877010644 0.0003536
FXYD5 8.24E-10 1.051702956 0.0418776
MYSM1 144E-09 0321646132 0.0026121

TPCNT 4.75E-09 0.324961243 0.0391725
DOCK5 5.82E-09 1.151201505 0.0017714
SARIA 6.27E-09 0218170473 0.0825168
DNAJC21 6.28E-09 0260891882 0.0765025
PRDM5 7.87E-09 0.514186001 0.0412623
ENTPD4 1.05E-08 0308259161 0.002583

®Module membership of each gene is measured by testing significance of correlation between its gene expression and the module eigengene of a given module
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control of cell growth and division via the PI3K/AKT
pathway [87]. PPP2R1B itself has also been implicated
in deregulation of cell cycle and apoptosis in B-cell
chronic lymphocytic leukemia [88].

The potential importance of the pink module in apop-
tosis was supported by functional enrichment analysis.
Using the RECTOME database with Enrichr [89], we
found that the pink module was significantly enriched
with genes that regulate apoptosis (Fig. 3c/d), consistent
with the functions of the two hub genes described above.
These results suggest that 22q11.2 deletion may disrupt
normal apoptotic activity, by affecting one of the MAPK
signaling pathways, the PI3K/AKT pathway.

Potential effects of 22q11.2 deletion via inter-chromosomal
interaction

Some DEGs are downstream of signaling pathways
perturbed in the SZ neurons, but the dysregulation of
others may be due to disrupted spatial chromosomal
interactions, which occur in the nucleus under normal
physiological conditions, juxtaposing distal genes for
efficient co-regulation [90-94]. By analyzing Hi-C data
generated to assess chromatin folding and packaging
in the nuclei of human lymphoblastoid cell lines [95],
we identified three genomic regions with the strongest

Page 10 of 20

physical interaction with 22q11.2: 4p16, 8q24 and 6p21
(mean Pearson correlation coefficient > 0.4). Among the
three, only 6p21 was statistically enriched for differentially
expressed genes (x2 test p-value = 0.01) (Fig. 4). Inter-
estingly, this region has recently been linked with
16p11.2 deletion syndrome, a genetic cause for ASD [96].
6p21 contains a number of genes involved in immune
responses, including the human leukocyte antigen
(HLA) gene cluster. As mentioned earlier, one of the
HLA genes residing in this region, HLA-A, was among
the small group of DEGs that remained statistically sig-
nificant at a genome-wide scale. It should also be
pointed out that the most robust GWAS (genome wide
association studies) signals in SZ map to the HLA locus
[97-99]. Although the physical interaction between
22q11.2 and 6p21 needs to be confirmed and further
characterized, our findings suggest that 22q11.2 dele-
tion may affect HLA gene expression through direct
long-range contact in trans. In this regard, we should
mention that abnormal expression of immune response
genes, especially HLA genes in 6p21, has been often
suggested to be a common factor underlying neurodeve-
lopmental disorders [96, 100]. It should be noted, however,
that HLA proteins have been suggested to have non-
immune effects on synaptogenesis [101-105].
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Spatiotemporal expression of the DEGs during brain To address this, we obtained gene expression data from
development and the co-expressed networks the Brainspan project and separated the Brainspan sam-
Next, we set out to address how our findings from in vitro  ples (n = 398) into 16 groups according to brain regions
neuronal cultures could be related to brain development. and developmental stages (see Methods for details)
In particular, we asked what genes and pathways that are  (Table 1). Within each group, we computed the correl-
expressed during normal brain development could be im-  ation coefficient of expression between every pair of our
pacted if the same set of genes were dysregulated in the DEGs and connected a pair of genes if the coefficient
brains of individuals with 22q11.2DS. was > 0.9 (or < —-0.9), resulting in a co-expression network.

First of all, we reasoned that the 782 DEGs or a subset  In analyzing the networks, we found, remarkably, that the
of them would form co-expressed network(s), and that DEGs from our study showed high levels of connections
perturbation of the network(s) could contribute to func-  in brain regions of two developmental stages, the embry-
tional disruptions in SZ patients with 22q11.2 deletion, onic and the adolescence stages (Fig. 5a). Moreover, the
as co-expressed genes are often functionally associated. = numbers of edges in the networks for all four embryonic
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Fig. 5 Highest co-expression of DEGs in specific brain regions. a Interconnectedness of transcriptional coexpression networks at various developmental
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testing adjusted —log10(P-value) for the significance of difference between the numbers of observed and simulated network edges
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brain regions and three of the four adolescence regions
(except subcortex) were significantly greater than those of
the networks derived from randomly chosen genes (Fig. 5b).
These results indicate that a subset of the 22q11.2 DEGs
are significantly co-expressed and likely functionally con-
nected to two key stages of brain development.

There are at least three hypotheses to explain how
22q11.2 haploinsufficency could cause the cognitive and
psychiatric phenotypes of SZ: i. unmasking recessive al-
leles in the deleted region, ii. a major effect of a single
dosage-sensitive gene, and iii. under-expression of several
dosage-sensitive genes [106]. Existing data from animal
models and systematic genetic association studies seem to
support the under-expression model [8, 107]. The co-
expression networks for our DEGs also support this hy-
pothesis, as a small number of DEGs accounted for the
majority of the connections in the networks (Additional
file 10) and moreover only a few of the 22q11.2 genes were
among the highly connected genes (Table 3). In addition,

Table 3 DEGs or 22q11.2 genes with the most co-expressed
genes in different brain regions*

Brain Embryonic Adolescence
Region DEGs 229112 DEGs 22q112
FC KIAA1467 CDC45 HERC3 CRKL
MAPKAPK3 comT DDX3X PRODH
CHDIL TXNRD2 MTMR? DGCR6
SEPT2 SLC25AT ELL2 LZTRI
REXANK THAP7-AST LRRTMS3 220129
sC SCAF11 CDC45 PIA2 2201139
KHNYN SLC25AT ZMYM2 MED15
MAPKAPK3 CLDNS DPP8 PRODH
7P53 comr PDCDSIP  HIRA
LAMC3 CRKL B4GALT6 TANGO2
SM PLIN3 CDC45 PDCD6IP comT
FGFR2 CRKL HDAC7 DGCR6
RREBT THAP7-AST UBE3C CRKL
MAPKAPK3 comT LRFNS PRODH
MCAM SEPTS GLRB SLC25AT
TP FGFR2 SLC25AT MEF2A comT
MAP7D3 CDC45 NRXNT DGCRé
PLIN3 RANBPT FBXO45 CRKL
MAPKAPK3 SCARF2 PDCD6P  PRODH
7P53 SNAP29 MTMR7 SLC25AT
Total MAPKAPK3 CDC45 PDCDSIP  PRODH
PLIN3 SLC25AT MTMR7 DGCR6
SCAFI1 comT GLRB comT

*In each stage and region, DEGs or 22q11 deleted genes were ranked
according to their numbers of connection with other DEGs. The top three
genes in the “Total” had the highest numbers of connections summed over all
four regions in the embryonic or adolescence stages
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the most connected genes varied from brain regions and
developmental stages. In general, CDC45 had the largest
number of connections in the embryonic stage while
PRODH was among the five most connected genes in
the adolescence brain regions (Table 3). Note that the
ranks of DEGs according to their numbers of connections
in the co-expression networks exhibited better correla-
tions in brain regions of the same developmental stage
(Table 4). The data indicate that the co-expression net-
works display greater differences between developmental
periods than brain regions, further suggesting that dif-
ferent subsets of the DEGs may play important roles at
different periods of brain development.

To explore this further, we performed function enrich-
ment analysis of the co-expression networks in the embry-
onic and adolescence brains. We expanded the networks
to include non-differentially expressed genes that showed
high co-expression correlations to the DEGs, because con-
ceivably those genes were most likely to be affected by
22q11.2 deletion too. However, to reduce complexity we
focused on functions of the top 10% of the most con-
nected DEGs (n=74) and the top 10% of non-DEGs
with the greatest numbers of connections to the top
DEGs (n=300). In order to better illustrate the func-
tion relationships for the top 10% of connected genes,
we utilized ClueGO [67] to define enriched GO terms
and to visualize the non-redundant biological process
GO terms (Figs. 6 and 7). This analysis uncovered sev-
eral functional clusters of interest, which were different
between the two developmental stages. For example, in
the frontal cortex of the embryonic stage, the top 10%
of connected genes were enriched with biological pro-
cesses critical for cell cycle, cell differentiation, and cell
growth in the embryonic stage (Fig. 6). Synaptic trans-
mission and catabolic process, however, were enriched
for the most connected genes in the frontal cortex of
the adolescence stage (Fig. 7). Similar enriched functional
clusters were observed in other brain regions of the
two stages (Additional file 11). These results strongly
suggest that different genes in the 22q11.2 region play
important temporospatial roles in different periods of

Table 4 Correlation of ranking orders of DEGs according to
their connectivity across brain region and stages

SC1 SM1 TP1 FC4 SC4 SMa P4
FC1 04 069 057 006 —001 01 007
SC1 04 044 004 005 009 009
SM1 067 -005 -006 -005  —005
TP ~008  -008 -006  —006
FC4 059 08 0.79
SC4 0.54 06

SM4 0.77
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brain development and haploinsufficiency of 22q11.2
genes have distinct functional impacts in different brain
regions during brain development. This is also mani-
fested at least partially by the temporal expression pro-
files of the 22q11.2 genes in brain regions at different
developmental stages (Additional file 12).

Discussion

This is the first study of gene expression profiles in early
differentiating neurons derived from patient-specific iPSCs
that were generated from SZ and SAD patients with
22q11.2 deletion. Our transcriptomic analysis provides
insight into the neuronal functional disruptions of 22q11.2
deletion. We show that 22q11.2 haploinsufficiency at the
genetic level is recapitulated in RNA expression of in vitro

neurons. At the molecular genetic level, GO and canonical
pathway analyses of the differentially expressed genes
implicate the potential disruptions of MAPK signaling,
cell cycle and apoptosis in 22q11.2 SZ neurons. At the
network level, we find that 22q11.2 genes and their co-
expressed targets likely play two distinct roles during
brain development, with a CDC45 mediated cell cycle
pathway involved in embryonic brain development and
a PRODH modulated subnetwork contributing to ado-
lescent brain functions. We also uncovered a potential
interchromosomal interaction between 22ql11.2 and
6p21, suggesting a molecular link between immune de-
ficiency and additional disruption of synaptogenesis in
22q11.2 DS mediated by the non-immune function of
HLA proteins on this process.
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Fig. 7 ClueGO network for top correlating DEGs and co-expressed non-DEGs in frontal cortex during the adolescence stage. See annotation in Fig. 6

One of the most important and consistent findings
that emerged from our transcriptomic profile was the
enrichment of apoptotic genes in the DEGs. Aberrant
apoptosis has been implicated in various neurodevelop-
mental and neurodegenerative disorders, including SZ
[108—112]. Increased susceptibility to apoptosis in SZ
patients may be responsible for synaptic/dendritic loss
[113]. Reduced neuronal and glial viability, and volumetric
and functional brain deficits observed in SZ are potentially
associated with abnormal apoptosis [32]. Several studies
have provided support to the hypothesis by showing in-
creased brain Bax/Bcl-2 ratios and decreased levels of
Bcl-2 and GSK3 [114-116]. In addition, a comprehen-
sive integrated pathway analysis of GWAS and gene ex-
pression data also pointed to aberrant apoptosis as a
potential cause of SZ [110]. In our study, we found
similar evidence. Apoptotic genes such as Bakl and
BBC3 had significantly higher expression in SZ neu-
rons, while GSK3A showed lower levels of expression.
Two critical apoptotic factors, RBM5 and RBMS6, also
exhibited greater abundance in SZ neurons as well. Al-
though statistically insignificant, CASP3 and CASPS8
were also expressed at higher levels in the SZ samples.
These findings, as well as differential expression of TP53,
TP53INPI1, and NDRGI, which participate in the P53 sig-
naling pathway, and the WGCNA results, are all in

agreement with the hypothesis of increased susceptibility
to apoptosis in SZ brains.

Apoptosis is a complex cellular process involved in many
steps of development and regulated by multiple pathways.
Its activation is triggered mainly through two pathways: ex-
trinsic (or death receptor) and intrinsic (or mitochondrial)
pathways [113]. In addition, apoptosis is regulated by a
number of intracellular signaling pathways, including
MAPK signaling. In the CNS, MAPK signaling regulates
the expression of transcription factors involved in learning,
memory, cell proliferation, and apoptosis. This pathway re-
sponds to extracellular stimuli by phosphorylating c-Jun N-
terminal kinase (JNK), extracellular signal-regulated kinase
(ERK), p38 and other kinases [117, 118]. Specifically, activa-
tion of p38 and JUK leads to inflammation and apoptosis,
while ERK/MAPK signaling promotes cell growth and de-
velopment, acting as anti-apoptotic signals. However,
under some circumstances, ERK/MAPK can function in
a pro-apoptotic manner [119]. For example, a previous
study reported that inhibition of ERK expression protected
neurons from low potassium conditions, while constitutive
overexpression of ERK promoted cell death, suggesting
an effect on neurodegeneration [120]. In our data, the
expression of multiple components in all three of these
pathways was significantly increased in SZ neurons, im-
plying combinational effects towards apoptosis.
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22q11.2 haploinsufficiency seems to have a robust and
persistent impact on MAPK signaling pathway. As men-
tioned earlier, ERK/MAPK signaling was also found to
be significantly disrupted in a transcriptomic study of
peripheral blood mononuclear cells (PBMC's) from SZ
patients with 22q11.2 deletion [69]. Knockout of DGCRS,
which maps to the 22q11.2 deleted region, was reported to
down-regulate ERK/MAPK and PI3K/AKT signaling in
muscle [19]. Moreover, reduced expression of ERK2
was reported in children with a 1 Mb micro-deletion in
22q11.2 [121]. Finally, abnormal activity of the MAPK
signaling pathway was observed in postmortem SZ
brain without 22q11.2 deletion [122, 123]. Taken to-
gether, these findings suggest that altered expression of
MAPK signaling could be a common pathway in the
pathogenesis of SZ.

We should, however, point out that abnormal apop-
tosis might occur in specific developmental period of SZ
brains, rather than being a persistent event. While dis-
rupted MAPK signaling was observed, no clear signs of
aberrant apoptotic activity were detected in postmortem
samples from SZ subjects. In fact, a reduction in apop-
tosis in brain autopsy samples and in fibroblasts treated
with an apoptosis inducer has been found in SZ patients
[124, 125], while increased susceptibility to apoptosis
was reported in antipsychotic-naive first-episode SZ
patients [31].

By analyzing previously published three-dimensional
chromatin interaction data, we found that in nuclei the
22q11.2 region could be physically juxtaposed to 6p21,
where the HLA loci are located. Although this observa-
tion needs to be confirmed, it is consistent with previous
reports that immunodeficiency is one of the key features
of 22q11.2 DS [126, 127]. Interestingly, our pathway ana-
lysis of the differentially expressed genes also showed
that immune response was among the most significant
GO terms, after apoptosis and programmed cell death.
However, as noted above, HLA proteins appear to have
non-immune effects on synaptogenesis, which could also
conceivably underlie potential functional associations
between HLA and 22q11.2 DS [101-105].

To provide a perspective of how the DEGs from our
in vitro study may be related to functional perturbations
that can occur during brain development in SZ, we per-
formed co-expression analysis of the DEGs using expres-
sion data from the BrainSpan. This analysis has been
shown to be very enlightening for mapping specific
genes and critical neurodevelopmental processes in time
and space in the brain to clarify disease pathophysiology
[64, 128]. Our analysis demonstrated that the DEGs,
detected in 22ql11.2 SZ neurons, converged on co-
expression networks that could play critical roles in the
development and function of specific brain regions in
the embryonic and adolescence stages.
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At the embryonic stage, CDC45, one of the five de-
leted genes known to modulate the cell cycle (the other
four are RANBPI, HTF9C, HIRA and UFDIL, as noted
above), showed the greatest connectivity with other DEGs,
indicating that it may be the most impacted process.
Analysis of such highly connected DEGs and the non-
differentially expressed genes with high co-expression
with the DEGs uncovered functional clusters involved
in cell cycle, cell differentiation and cell growth. These
results suggest that genes in these functional clusters
may be co-regulated, and reduced dosages of 22q11.2
genes may disrupt the co-regulation relationship, com-
promising mitotic cell cycle regulation and neurogenesis
in early embryonic brain development. Interesting, many
of the 22q11.2 genes, including CDC45, are expressed at
the highest level during mid to late gestation - the peak
timing of neurogenesis - and then decrease substantially
thereafter (Additional file 12) [71, 129], in support of their
potential importance in early neurodevelopment.

Defects in cell proliferation and migration have been
reported during cortical neurogenesis of Lgdel mice (the
mouse model for the large 22q11.2 deletion) [71]. For in-
stance, the proliferation of basal progenitors, a specific
class of cortical precursor cells, was reported to be dimin-
ished in several regions of the embryonic Lgdel cortex,
particularly anterior frontal regions [129]. Consequently,
tangential migration of embryonic interneurons from the
basal forebrain into the same cortical areas was also af-
fected, since basal progenitors were unable to produce
normal numbers of cortical projection neurons. In
addition, altered cell cycle dynamics was seen in subsets of
SZ-patients without 22q11.2 deletions [130, 131]. Our
proliferation analysis of the 22q11.2 neural progenitor cells
also supports these results.

Intracellular signaling pathways in the developing cor-
tex also likely contribute to the progenitor regulatory
network that includes 22q11.2 genes. It is known that
the integrity of FGF signaling pathways is critical in the
generation, proliferation and maintenance of neural pro-
genitors [132, 133]. Distal deletion in the 22q11.2 region
has been associated with basal progenitor defects via ERK/
FGF signaling [121]. Therefore, we speculate that there may
be a group of genes in the 22q11.2 region whose dosage is
critical for intracellular signaling linked to cell proliferation.
Indeed, function analysis of genes most co-expressed with
the DEGs in embryonic brains fully supports this (Fig. 6).
Also, several components (i.e. MAPK, APK3, FGFR2) from
ERK/FGF signaling were among the top co-expressed
DEGs in the embryonic stage (Table 3).

Noticeably, similar changes were not seen in PRODH
mutant mice [134]. In our analysis, this gene, which en-
codes a key enzyme involved in proline catabolism, was
instead found to have the largest number of connections
to other DEGs, as well as to non-DEGs, in brain regions



Lin et al. BMIC Systems Biology (2016) 10:105

of the late adolescent period to early adulthood (Table 3).
Function analysis of the co-expressed network in these
late stage brain regions indicated that a subset of
22q11.2 genes may affect SZ brain development and act
by disrupting mitochondrial function, particularly during
activity-dependent synaptogenesis, which requires sub-
stantial metabolic support [135] (Fig. 7). This finding is
consistent with a blood-based WGCNA analysis in
22q11DS patients in which a module of genes enriched for
protein folding and metabolic process was identified to be
associated with psychosis phenotype [57]. Interestingly,
the network structure of this module could be re-
established only in the adolescent stage of the BrainSpan
data (WGCNA module preservation score>2). Within
the 22q11.2 region, there are six genes that are known
to affect mitochondrial function: PRODH, MRPL4O0,
SLC25A1, TXNRD2, T10, and ZDHHCS. Together they
account for nearly 1/3 of the 22q11.2 genes expressed
in brains [71]. The expression of these genes reaches
their highest levels after birth (Additional file 12), support-
ing their essential roles in the late phase of neurodevelop-
ment and neural function. It should be noted that a
similar peak period of synapse formation occurs in the
early postnatal primate brain, including humans. During
this period, synaptic density reaches its maximum,
followed by a progressive adjustment of synapses during
adolescence [136, 137]. Hence, the diminished dosage of
22q11.2 genes that affect mitochondrial function, includ-
ing PRODH, might further disrupt neural development by
affecting metabolic/catabolic homeostasis during synapse
formation.

Note that PRODH and DGCR6, which map very closely
to each other (25 kb), were the top two connecting de-
leted genes in the adolescence stage. Previous associ-
ation analyses of various segments in the 22q11 deleted
region using polymorphic markers for fine-scale map-
ping in heterogeneous U.S. family samples, determined
that markers near PRODH and DGCR6 were associated
with SZ, providing strong evidence for a contribution of
the PRODH/DGCR6 locus in 22ql1-associated SZ [14].

Finally, COMT (catechol-O-methyltransferase), which
modulates cortical dopamine levels, was the third most
connecting 22q11.2-linked gene, following PRODH and
DGCR6, in the adolescence stages. Recently, epistatic
interaction between the PRODH and COMT genes was
demonstrated at the level of transcription, in which se-
lective up-regulation of COMT in the prefrontal cortex
was shown to respond to enhanced dopaminergic signal-
ing in PRODH-deficient mice [138]. Thus, individuals
with both SZ and 22q11.2 deletion may have an additive
disadvantage because they have deficits in both genes
and therefore might not be able to compensate for re-
duced PRODH expression, for the cortical dopaminergic
hyperactivity caused by PRODH deficiency. Our results
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showed significant enrichment of protein catabolic/
metabolic activities in the adolescence stages, but not in
the embryonic stage, supporting the critical roles of
PRODH and COMT in the later stages of neural devel-
opment (Fig. 7; Additional file 11).

Despite these interesting findings and observations,
there are a few caveats and limitations in our study that
should be mentioned and need to be carefully overcome
in future studies. First, we did not have a group of sam-
ples from 22q11.2 carriers without a SZ or SAD diagno-
sis. An inclusion of them may help us to disentangle the
factors that depend only on the 22q11.2 deletions but do
not necessarily contribute to SZ pathogenesis directly.
Secondly, the heterogeneity between samples was rela-
tively large, even in those from the same individuals.
Here we applied advanced analytic approaches to reduce
this confounder, but it will be much better to generate
more samples and then select the homogenous ones for
gene expression comparison. With an increased number
of samples, we will also be able to apply FDR rather than
nominal p-values to select DEGs for the downstream
analysis, which will enhance the validity of our findings.
Thirdly, it will be valuable to perform similar systematic
gene expression analyses using samples at different stages
of neuronal differentiation, including mature neurons.

Conclusions

Gene expression profiling using neurons derived from
iPSCs, and our bioinformatics analysis, have provided evi-
dence for potential molecular connections between 22q11.2
deletion and SZ brain development, and a rationale for
studying potentially druggable targets, such as MAPK, in
treating the psychiatric manifestations of neuropsychiatric
disorders associated with 22q11.2 del.
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Additional file 11: Table S6. Is a table listing enriched GO terms of the
co-expression networks in different regions of the embryonic and
adolescence brains. (XLS 482 kb)
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