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Abstract

Background: Recently, structured sparse canonical correlation analysis (SCCA) has received increased attention in
brain imaging genetics studies. It can identify bi-multivariate imaging genetic associations as well as select relevant
features with desired structure information. These SCCA methods either use the fused lasso regularizer to induce the
smoothness between ordered features, or use the signed pairwise difference which is dependent on the estimated
sign of sample correlation. Besides, several other structured SCCA models use the group lasso or graph fused lasso to
encourage group structure, but they require the structure/group information provided in advance which sometimes
is not available.
Results: We propose a new structured SCCA model, which employs the graph OSCAR (GOSCAR) regularizer to
encourage those highly correlated features to have similar or equal canonical weights. Our GOSCAR based SCCA has
two advantages: 1) It does not require to pre-define the sign of the sample correlation, and thus could reduce the
estimation bias. 2) It could pull those highly correlated features together no matter whether they are positively or
negatively correlated. We evaluate our method using both synthetic data and real data. Using the 191 ROI
measurements of amyloid imaging data, and 58 genetic markers within the APOE gene, our method identifies a
strong association between APOE SNP rs429358 and the amyloid burden measure in the frontal region. In addition,
the estimated canonical weights present a clear pattern which is preferable for further investigation.
Conclusions: Our proposed method shows better or comparable performance on the synthetic data in terms of the
estimated correlations and canonical loadings. It has successfully identified an important association between an
Alzheimer’s disease risk SNP rs429358 and the amyloid burden measure in the frontal region.
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Background
In recent years, the bi-multivariate analyses techniques
[1], especially the sparse canonical correlation anal-
ysis (SCCA) [2–8], have been widely used in brain
imaging genetics studies. These methods are powerful in
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identifying bi-multivariate associations between genetic
biomarkers, e.g., single nucleotide polymorphisms (SNPs),
and the imaging factors such as the quantitative traits
(QTs).
Witten et al. [3, 9] first employed the penalized matrix

decomposition (PMD) technique to handle the SCCA
problem which had a closed form solution. This SCCA
imposed the �1-norm into the traditional CCA model to
induce sparsity. Since the �1-norm only randomly chose
one of those correlated features, it performed poorly in
finding structure information which usually existed in
biology data. Witten et al. [3, 9] also implemented the
fused lasso based SCCA which penalized two adjacent
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features orderly. This SCCA could capture some struc-
ture information but it demanded the features be ordered.
As a result, a lot of structured SCCA approaches arose.
Lin et al. [7] imposed the group lasso regularizer to
the SCCA model which could make use of the non-
overlapping group information. Chen et al. [10] proposed
a structure-constrained SCCA (ssCCA) which used a
graph-guided fused �2-norm penalty for one canonical
loading according to features’ biology relationships. Du
et al. [8] proposed a structure-aware SCCA (S2CCA) to
identify group-level bi-multivariate associations, which
combined both the covariance matrix information and
the prior group information by the group lasso regular-
izer. These structured SCCA methods, on one hand, can
generate a good result when the prior knowledge is well
fitted to the hidden structure within the data. On the
other hand, they become unapproachable when the prior
knowledge is incomplete or not available. Moreover, it is
hard to precisely capture the prior knowledge in real world
biomedical studies.
To facilitate structural learning via grouping the weights

of highly correlated features, the graph theory were widely
utilized in sparse regression analysis [11–13]. Recently,
we notice that the graph theory has also been employed
to address the grouping issue in SCCA. Let each graph
vertex and each feature has a one-to-one correspondence
relationship, and ρij be the sample correlation between
features i and j. Chen et al. [4, 5] proposed a network-
structured SCCA (NS-SCCA) which used the �1-norm of
|ρij|(ui − sign(ρij)uj) to pull those positively correlated
features together, and fused those negatively correlated
features to the opposite direction. The knowledge-guided
SCCA (KG-SCCA) [14] was an extension of both NS-
SCCA [4, 5] and S2CCA [8]. It used �2-norm of ρ2

ij(ui −
sign(rij)uj) for one canonical loading, similar to what
Chen proposed, and employed the �2,1-norm penalty for
another canonical loading. BothNS-SCCA and KG-SCCA
could be used as a group-pursuit method if the prior
knowledge was not available. However, one limitation of
both models is that they depend on the sign of pairwise
sample correlation to recover the structure pattern. This
probably incur undesirable bias since the sign of the corre-
lations could be wrongly estimated due to possible graph
misspecification caused by noise [13].
To address the issues above, we propose a novel struc-

tured SCCA which neither requires to specify prior
knowledge, nor to specify the sign of sample correlations.
It will also work well if the prior knowledge is pro-
vided. The GOSC-SCCA, named from Graph Octagonal
Selection and Clustering algorithm for Sparse Canonical
Correlation Analysis, is inspired by the outstanding fea-
ture grouping ability of octagonal selection and clustering
algorithm for regression (OSCAR) [11] regularizer and
graph OSCAR (GOSCAR) [13] regularizer in regression

task. Our contributions can be summarized as follows 1)
GOSC-SCCA could pull those highly correlated features
together when no prior knowledge is provided. While
those positively correlated features will be encouraged
to have similar weights, those negatively correlated ones
will also be encouraged to have similar weights but with
different signs. 2) Our GOSC-SCCA could reduce the esti-
mation bias given no requirement for specifying the sign
of sample correlation. 3) We provide a theoretical quanti-
tative description for the grouping effect of GOSC-SCCA.
We use both synthetic data and real imaging genetic data
to evaluate GOSC-SCCA. The experimental results show
that our method is better than or comparable to those
state-of-the-art methods, i.e., L1-SCCA, FL-SCCA [3] and
KG-SCCA [14], in identifying stronger imaging genetic
correlations and more accurate and cleaner canonical
loadings pattern. Note that the PMA software package
were used to implement the L1-SCCA (SCCA with lasso
penalty) and FL-SCCA (SCCA with fused lasso penalty)
methods. Please refer to http://cran.r-project.org/web/
packages/PMA/ for more details.

Methods
We denote a vector as a boldface lowercase letter, and
denote a matrix as a boldface uppercase letter. mi indi-
cates the i-th row of matrix M = (mij). Matrices X =
{x1; . . . ; xn} ⊆ R

p and Y = {y1; . . . ; yn} ⊆ R
q denote

two separate datasets collected from the same population.
Imposing lasso into a traditional CCA model [15], the
L1-SCCA model is formulated as follows [3, 9]:

min
u,v

−uTXTYv,

s.t.||u||22 = 1, ||v||22 = 1, ||u||1 ≤ c1, ||v||1 ≤ c2,
(1)

where ||u||1 ≤ c1 and ||v||1 ≤ c2 are sparsity penalties
controlling the complexity of the SCCA model. The fused
lasso [2–4, 9] can also be used instead of lasso. In order
to make the problem be convex, the equal sign is usually
replaced by less-than-equal sign, i.e. ||u||22 ≤ 1, ||v||22 ≤ 1
[3].

The graph OSCAR regularization
The OSCAR regularizer is firstly introduced by Bondell
et al. [11], which has been proved to have the ability
of grouping features automatically by encouraging those
highly correlated features to have similar weights. For-
mally, the OSCAR penalty is defined as follows,

||u||OSCAR =
∑
i<j

max{|ui|, |uj|},

||v||OSCAR =
∑
i<j

max{|vi|, |vj|}.
(2)

Note that this penalty is applied to each feature pair.

http://cran.r-project.org/web/packages/PMA/
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To make OSCAR be more flexible, Yang et al. [13]
introduce the GOSCAR,

||u||GOSCAR =
∑

(i,j)∈Eu
max{|ui|, |uj|},

||v||GOSCAR =
∑

(i,j)∈Ev
max{|vi|, |vj|}.

(3)

where Eu and Ev are the edge sets of the u-related and v-
related graphs, respectively. Obviously, the GOSCAR will
reduce to OSCAR when both graphs are complete [13].
Applying max{|ui|, |uj|} = 1

2 (|ui − uj| + |ui + uj|), the
GOSCAR regularizer takes the following form,

||u||GOSCAR = 1
2

∑
(i,j)∈Eu

(|ui − uj|) + 1
2

∑
(i,j)∈Eu

(|ui + uj|),

||v||GOSCAR = 1
2

∑
(i,j)∈Ev

(|vi − vj|) + 1
2

∑
(i,j)∈Ev

(|vi + vj|).

(4)

The GOSC-SCCAmodel
Since the grouping effect is also an important considera-
tion in SCCA learning, we propose to expand L1-SCCA to
GOSC-SCCA by imposing GOSCAR instead of L1 only as
follows.

min
u,v

−uTXTYv

s.t. ||Xu||22 ≤ 1, ||Yv||22 ≤ 1, ||u||1 ≤ c1, ||v||1 ≤ c2,
||u||GOSCAR ≤ c3, ||v||GOSCAR ≤ c4.

(5)

where (c1, c2, c3, c4) are parameters and they could con-
trol the solution path of the canonical loadings. Since the
S2CCA [8] has proved that the covariance matrix infor-
mation could help improve the prediction ability, we also
use ||Xu||22 ≤ 1 and ||Yv||22 ≤ 1 other than ||u||22 ≤
1, ||v||22 ≤ 1.
As a structured sparse model, GOSC-SCCA will

encourage ui
.= uj if the i-th feature and the j-th fea-

ture are highly correlated. We will give a quantitative
description for this later.

The proposed algorithm
We can write the objective function into unconstrained
formulation via the Lagrange multiplier method, i.e.

L(u, v) = −uTXTYv + λ1||u||GOSCAR + λ2||v||GOSCAR

+ β1
2

||u||1 + β2
2

||v||1 + +γ1
2

||Xu||22 + γ2
2

||Yv||22
(6)

where (λ1, λ2,β1,β2) are tuning parameters, and they have
a one-to-one correspondence to parameters (c1, c2, c3, c4)
in GOSC-SCCA model [4].

Taking the derivative regarding u and v respectively, and
letting them be zero, we obtain,

− XTYv + λ1L1u + λ1L̂1u + β1�1 + γ1XTXu = 0, (7)
−YTXu + λ2L2v + λ2L̂2v + β2�2 + γ2YTYv = 0. (8)

where �1 is a diagonal matrix with the k1-th element as
1

2||uk1 ||1 (k1 ∈[ 1, p] ), and �2 with the k2-th element as
1

2||vk2 ||1 (k2 ∈[ 1, q] ); L1 is the Laplacian matrix which can

be obtained from L1 = D1 − W1; L̂1 is a matrix which is
from L̂1 = D̂1 + Ŵ1. L2 and L̂2 have the same entries as
L1 and L̂1 separately based on v.
In the initialization, both W1 and Ŵ1 have the same

entry with each element as 1
2 except the diagonal ele-

ments. But W1 and Ŵ1 become different after each
iteration, i.e.,

wij = 1
2|ui − uj| , ŵij = 1

2|ui + uj| . (9)

If ||ui − uj||1 = 0, the corresponding element in matrix
W1 will not exist. So we regularize it as 1

2
√

||ui−uj||21+ζ

(ζ is a very small positive number) when ||ui − uj||1 =
0. We also approximate ||ui||1 = 0 with

√
||ui||21 + ζ

for �1. Then the objective function regarding u is
L∗(u) = ∑p

i=1(−uixTi Yv+λ1
∑ ||

√
||ui||21 + ζ ||GOSCAR +

β1
2

√
||ui||21 + ζ + γ1

2 ||xiui||22). It is easy to prove that L∗(u)

will reduce to problem (6) regarding u when ζ → 0. The
cases of ||vi||1 = 0 and ||vi − vj||1 = 0 can be addressed
using a similar regularization method.
D1 is a diagonal matrix and its i-th diagonal element is

obtained by summing the i-th row ofW1, i.e. di = ∑
j wij.

The diagonal matrix D̂1 is also obtained from d̂i = ∑
j ŵij.

Likewise, we can calculate W2, Ŵ2, D2 and D̂2 by the
same method in terms of v.
Then according to Eqs. (7-8), we can obtain the solution

to our problem with respect to u and v separately.

u = (λ1(L1 + L̂1) + β1�1 + γ1XTX)−1XTYv, (10)
v = (λ2(L2 + L̂2) + β2�2 + γ2YTY)−1YTXu. (11)

We observe that L1, L̂1 and �1 depend on u which is an
unknown variable, and v is also unknown which is used
to calculate L2, L̂2 and �2. Thus we propose an effective
iterative algorithm to solve this problem. We first fix v to
solve u; and then fix u to solve v.
Algorithm 1 exhibits the pseudo code of the proposed

GOSC-SCCA algorithm. For the key calculation steps,
i.e., Step 5 and Step 10, we solve a system of linear
equations with quadratic complexity other than comput-
ing the matrix inverse with cubic complexity. Thus the
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Algorithm 1 The GOSC-SCCA Algorithm
Require:

X = {x1, ..., xn}T , Y = {y1, ..., yn}T
Ensure:

Canonical vectors u and v.
1: Initialize u ∈ R

p×1, v ∈ R
q×1; L1, L̂1,L2 and L̂2 only

from the training set;
2: while not converged do
3: while not converged regarding u do
4: Calculate the diagonal matrix �1, where the

k1-th element is 1
||uk1 ||1 ;

5: u = (λ1(L1 + L̂1) + β1�1 + γ1XTX)−1XTYv;
6: UpdateW1, D1 and L1, Ŵ1, D̂1 and L̂1;
7: end while
8: while not converged regarding v do
9: Calculate the diagonal matrix �2, where the

k2-th element is 1
||vk2 ||1 ;

10: v = (λ2(L2 + L̂2) + β2�2 + γ2YTY)−1YTXu;
11: UpdateW2, D2 and L2, Ŵ2, D̂2 and L̂2;
12: end while
13: end while
14: Scale u so that ||Xu||22 = 1;
15: Scale v so that ||Yv||22 = 1.

whole algorithm can work with desired efficiency. In addi-
tion, the algorithm is guaranteed to converge and we will
prove this in the next subsection.

Convergence analysis
We first introduce the following lemma.

Lemma 1 For any two nonzero real numbers ũ and u, we
have

||ũ||1 − ||ũ||21
2||u||1 ≤ ||u||1 − ||u||21

2||u||1 . (12)

Proof Given the lemma in [16], we have ||ũ||2 − ||ũ||22
2||u||2 ≤

||u||2 − ||u||22
2||u||2 for any two nonzero vectors. We also have

||ũ||1 = ||ũ||2 and ||u||1 = ||u||2 for any two nonzero real
numbers, which completes the proof.

Based on Lemma 1, we have

||ũ′ − u′||1 − ||ũ′ − u′||21
2||ũ − u||1 ≤ ||ũ − u||1 − ||ũ − u||21

2||ũ − u||1 , (13)

||ũ′ + u′||1 − ||ũ′ + u′||21
2||ũ + u||1 ≤ ||ũ + u||1 − ||ũ + u||21

2||ũ + u||1 , (14)

when |ũ′ − u′|, |ũ − u|, |ũ′ + u′| and |ũ + u| are nonzero.
We now have the following theorem regarding GOSC-

SCCA algorithm.

Theorem 1 The objective function value of GOSC-
SCCA will monotonically decrease in each iteration till the
algorithm converges.

Proof The proof consists of two parts.
(1) Part 1: From Step 3 to Step 7 in Algorithm 1, u is

the only unknown variable to be solved. The objective
function (6) can be equivalently transferred to

L(u, v) = −uTXTYv+λ1||u||GOSCAR+β1
2

||u||1+γ1
2

||Xu||22
According to Step 5 we have

− ũTXTYv + λ1ũTL̃1ũ + λ1ũT ˜̂L1ũ
+ β1ũT�1ũ + γ1ũTXTXũ

≤ −uTXTYv + λ1uTL1u + λ1uTL̂1u
+ β1uT�1u + γ1uTXTXu

where ũ is the updated u.
It is known that uTLu = ∑

wij||ui − uj||21 if L is the
laplacian matrix [17]. Similarly, uTL̂u = ∑

wij||ui + uj||21.
Then according to Eq. (9), we obtain

− ũTXTYv + 2λ1
∑

wij
||ũi − ũj||21
2||ui − uj||1

+ 2λ1
∑

ŵij
||ũi + ũj||21
2||ui + uj||1 + β1

∑ ||ũi||21
2||ui||1 + γ1ũTXTXũ

≤ −uTXTYv + 2λ1
∑

wij
||ui − uj||21
2||ui − uj||1+

2λ1
∑

ŵij
||ui + uj||21
2||ui + uj||1 + β1

∑ ||ui||21
2||ui||1 + γ1uTXTXu

(15)

We first multiply 2λ1 on both sides of Eq. (13) for
each feature pair separately, and do the same to both
sides of Eq. (14). After that, we multiply β1 on both sides
of Eq. (12). Finally, by summing all these inequations
together to both sides of Eq. (15) accordingly, we arrive at

− ũTXTYv + 2λ1
∑

wij|ũi − ũj| + 2λ1
∑

ŵij|ũi + ũj|
+ β1||ũ||1 + γ1||Xũ||22
≤ −uTXTYv + 2λ1

∑
wij|ui − uj| + 2λ1

∑
ŵij|ui + uj|

+ β1||u||1 + γ1||Xu||22.
Let λ∗

1 = 2λ1, γ ∗
1 = 2γ1,β∗

1 = 2β1, we have

−ũTXTYv + λ∗
1
2

||ũ||GOSCAR + β∗
1
2

||ũ||1 + γ ∗
1
2

||Xũ||22
≤ −uTXTYv + λ∗

1
2

||u||GOSCAR + β∗
1
2

||u||1 + γ ∗
1
2

||Xu||22.
(16)
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Therefore, GOSC-SCCA will decrease the objective
function in each iteration, i.e., L(ũ, v) ≤ L(u, v).
(2) Part 2: From Step 8 to Step 12, the only unknown

variable is v. Similarly, we can arrive at

−ũTXTYṽ + λ∗
2
2

||ṽ||GOSCAR + β∗
2
2

||ṽ||1 + γ ∗
2
2

||Yṽ||22
≤ −ũTXTYv + λ∗

2
2

||v||GOSCAR + β∗
2
2

||v||1 + γ ∗
2
2

||Yv||22.
(17)

Thus GOSC-SCCA also decreases the objective func-
tion in each iteration during the second phase, i.e.,
L(ũ, ṽ) ≤ L(ũ, v).
Based on the analysis above, we easily have

L(ũ, ṽ) ≤ L(u, v) according to the transitive property of
inequalities. Therefore, the objective value monotonically
decreases in each iteration. Note that the CCA objective

uTXTYv√
uTXTXu

√
vTYTYv

ranges from [-1,1], and both uTXTXu
and vTYTYv are constrained to be 1. Thus the −uTXTYv
is lower bounded by -1, and so Eq. (6) is lower bounded
by –1. In addition, Eqs. (16–17) imply that the KKT con-
dition is satisfied. Therefore, the GOSC-SCCA algorithm
will converge to a local optimum.

Based on the convergence analysis, to facilitate the
GOSC-SCCA algorithm, we set the stopping criterion of
Algorithm 1 as max{|δ| | δ ∈ (ut+1 − ut)} ≤ τ and
max{|δ| | δ ∈ (vt+1 − vt)} ≤ τ , where τ is a predefined
estimation error. Here we set τ = 10−5 empirically from
the experiments.

The grouping effect of GOSC-SCCA
For the structured sparse learning in high-dimensional sit-
uation, the automatic feature grouping property is of great
importance [18]. In regression analysis, Zou and Hastie
[18] have suggested that a regressor behaviors grouping
effect when it can set those regression coefficients of
the same group to similar weights. This is also the case
for structured SCCA methods. So, it is important and
meaningful to investigate the theoretical boundary of the
grouping effect.
We have the following theorem in terms of GOSC-

SCCA.

Theorem 2 Let X and Y be two data sets, and (λ,β , γ )

be the pre-tuned parameters. Let ũ be the solution to our
SCCA problem of Eqs. (10–11). Suppose the i-th feature
and j-th feature only link to each other on the graph, ũi and
ũj are their optimal solutions, thus sgn(ũi) = sgn(ũj) holds.
The solutions to ũi and ũj satisfy

|ũi − ũj| ≤ 2λ1wij

γ1
+ 1

γ1

√
2(1 − ρij) (18)

where ρij is the sample correlation between features i and
j, and wi,j is the corresponding element in u-related matrix
W1.

Proof Let ũ be the solution to our problem Eq. (6),
we have the following equations after taking the partial
derivative with respect to ũi and ũj, respectively.

(λ1Li1 + λ1L̂i1 + β1�1ii + γ1xTi xi)ũi = xTi Yv,

(λ1L
j
1 + λ1L̂

j
1 + β1�1jj + γ1xTj xj)ũj = xTj Yv.

We know that features i and uj are only linked to each
other, thus Dii = Djj = Aij = wij for those intermedi-
ate matrices. Besides, we also know that sgn(ũi) = ũi|ũi| ,
sgn(ũi) = sgn(ũj), xTi xi = ρii = 1 and xTj xj = ρjj = 1.
Then according to the definition of L1, L̂1 and �1, we can
arrive at

λ1wijsgn(ũi − ũj) + λ1ŵijsgn(ũi + ũj) + β1sgn(ũi) + γ1ũi
= xTi Yv,

λ1wijsgn(ũj − ũi) + λ1ŵijsgn(ũi + ũj) + β1sgn(ũj) + γ1ũj
= xTj Yv.

(19)

Subtracting these two equations, we obtain

γ1(ũi − ũj) = 2λ1wijsgn(ũj − ũi) + (xi − xj)TYv (20)

Then we take �2-norm on both sides of Eq. (20), apply
the triangle inequality, and use the equality ||(xi −xj)||22 =
2(1 − ρij),

γ1|ũi − ũj| ≤ 2λ1wij +
√
2(1 − ρij)

√
||Yv||22 (21)

We have known that our problem implies ||Yv||22 ≤ 1,
thus we arrive at

|ũi − ũj| ≤ 2λ1wij

γ1
+ 1

γ1

√
2(1 − ρij) (22)

Now the upper bound for the canonical loadings v can
also be obtained, i.e.

|ṽi − ṽj| ≤ 2λ2w′
ij

γ2
+ 1

γ2

√
2(1 − ρ′

ij) (23)

where ρ′
ij is the sample correlation between the i-th and

j-th feature in v, and w′
ij is the corresponding element in

v-related matrixW2.
Theorem 2 provides a theoretical upper bound for the

difference between the estimated coefficients of the i-th
feature and j-th feature. It seems that this is not a tight
enough bound. However our bound is slack since it does
not boundmuchmore the pairwise difference of features i
and j if ρij 	 1. This is desirable for two irrelevant features
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[19]. Suppose two features with very small correlation, i.e.
ρij 	 0, their coefficients do not need to be the same or
similar. So we do not care about their coefficients’ pair-
wise difference, and will not set their pairwise difference a
tight bound. This quantitative description for the group-
ing effect makes the GOSCAR penalty an ideal choice for
structured SCCA.

Results
We compare GOSC-SCCA with several state-of-the-art
SCCA and structured SCCA methods, including L1-
SCCA [3], FL-SCCA [3], KG-SCCA [14]. We do not
compare GOSC-SCCA with S2CCA [8], ssCCA [7] and
CCA-SG (CCA Sparse Group) [10] since they require
prior knowledge available in advance. We do not choose
NS-SCCA [5] as benchmark either, due to the following
two reasons. (1) NS-SCCA generates many intermediate
variables during its iterative procedure. As the authors
stated, NS-SCCA’s per-iteration complexity is linear in
(p + |E|), and thus the complexity becomes O(p2) when
it is in the group pursuit mode. (2) Its penalty term is
similar to that of KG-SCCA which has been selected for
comparison.
There are six parameters to be decided before using the

GOSC-SCCA, thus it will take too much time by blindly
tuning. We tune the parameters following two principles.
On one hand, Chen and Liu [5] found out that the result
is not very sensitive to γ1 and γ2. So we choose them
from a small scope [0.1, 1, 10]. On the other hand, if
the parameters are too small, the SCCA will reduce to
CCA due to the subtle influence of the penalties. And,
too large parameters will over-penalize the results. There-
fore, we tune the rest of the parameters within the range
of {10−3, 10−2, 10−1, 100, 101, 102, 103}. In this study, we
conduct all the experiments using the nested 5-fold cross-
validation strategy, and the parameters are only tuned
from the training set. In order to save time, we only tune
these parameters on the first run of the cross-validation.
That is, the parameters are tuned when the first four folds
are used as the training set. Then we directly use the tuned
parameters for all the remaining experiments. All these
methods use the same partition for cross-validation in the
experiment.

Evaluation on synthetic data
We generate four synthetic datasets to investigate the
performance of GOSC-SCCA and those benchmarks. Fol-
lowing [4, 5], these datasets are generated by four steps:
1) We predefine the structures and use them to create u
and v respectively. 2) We create a latent vector z from
N(0, In×n). 3) We create X with each xi ∼ N(ziu,

∑
x)

where (
∑

x)jk = exp−|uj−uk | and Y with each yi ∼
N(ziv,

∑
y) where (

∑
y)jk = exp−|vj−vk |. 4) For the first

group of nonzero features in u, we change half of their

signs, and also change the signs of the corresponding data.
Since the synthetic datasets are order-independent, this
setup is equivalent to randomly change a portion of fea-
tures’ signs in u. Now that we change the sign of both coef-
ficients and the data simultaneously, we still have X′u′ =
Xu where X′ and u′ indicate the data and coefficients after
the sign swap. We do the same on the Y side to make our
simulation more challenging [13]. In addition, we set all
four datasets with n = 80, p = 100 and q = 120. They also
have different correlation coefficients and different group
structures. Therefore, the simulation is designed to cover
a set of diverse cases for a fair comparison.
The estimated correlation coefficients of each method

on four datasets are contained in Table 1. The best val-
ues and those are not significantly worsen than the best
values are shown in bold. On the training results, we
observe that GOSC-SCCA either estimates the largest
correlation coefficients (Dataset 1 and Dataset 4), or is
not significantly worse than the best method (Dataset 2
and Dataset 3). GOSC-SCCA also has the best average
correlation coefficients. On the testing results, GOSC-
SCCA also outperforms those benchmarks in terms of the
average correlation coefficients, though KG-SCCA does
not perform significantly worse than our method. For
the overall average obtained across four datasets, GOSC-
SCCA obtains the better correlation coefficients than the
competing methods on both training set and testing set.
Figure 1 shows the estimated canonical loadings of all

four SCCA methods in a typical run. As we can see,
L1-SCCA cannot accurately recover the true signals. For
those coefficients with sign swapped, it fails to recognize
them. The FL-SCCA slightly improves L1-SCCA’s perfor-
mance but cannot identify those coefficients with sign
changed either. Our GOSC-SCCA successfully groups
those nonzero features together, and accurately recognizes
the coefficients whose signs are changed. No matter what
structures are within the dataset, GOSC-SCCA is able to
estimate true signals which are very close to the ground
truth. Although KG-SCCA also recognizes the coeffi-
cients with sign swapped, it is unable to recover every
group of nonzero coefficients. For example, KG-SCCA
misses two groups of nonzero features in terms of v for the
second dataset. The results on synthetic datasets reveal
that GOSC-SCCA can not only estimate stronger corre-
lation coefficients than the competing methods, but also
identifies more accurate and cleaner canonical loadings.

Evaluation on real neuroimaging genetics data
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial
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Table 1 5-fold cross-validation results on synthetic data

Training results

Methods Dataset 1 MEAN Dataset 2 MEAN Dataset 3 MEAN Dataset 4 MEAN AVG.

L1-SCCA 0.52 0.56 0.52 0.53 0.51 0.53 0.25 0.29 0.16 0.20 0.23 0.23 0.56 0.24 0.57 0.53 0.52 0.48 0.46 0.50 0.53 0.48 0.35 0.46 0.43

FL-SCCA 0.52 0.60 0.52 0.53 0.50 0.53 NaN NaN 0.17 NaN 0.23 0.08 0.63 0.43 0.56 0.55 0.55 0.54 0.51 0.56 NaN 0.53 0.40 0.40 0.39

KG-SCCA 0.52 0.55 0.52 0.53 0.53 0.53 0.25 0.29 0.15 0.20 0.22 0.22 0.56 0.24 0.43 0.52 0.52 0.45 0.51 0.56 0.48 0.52 0.40 0.49 0.42

GOSC-SCCA 0.57 0.62 0.57 0.59 0.63 0.60 0.26 0.30 0.15 0.21 0.17 0.22 0.64 0.31 0.42 0.61 0.59 0.51 0.51 0.56 0.55 0.54 0.41 0.52 0.46

Testing results

L1-SCCA 0.57 0.43 0.58 0.49 0.59 0.53 0.00 0.21 0.32 0.17 0.08 0.16 0.36 0.20 0.37 0.49 0.46 0.38 0.45 0.29 0.20 0.40 0.67 0.40 0.37

FL-SCCA 0.56 0.38 0.57 0.49 0.59 0.52 NaN NaN 0.48 NaN 0.08 0.11 0.30 0.80 0.36 0.51 0.41 0.47 0.55 0.30 NaN 0.46 0.72 0.40 0.38

KG-SCCA 0.56 0.43 0.57 0.49 0.58 0.53 0.00 0.21 0.31 0.18 0.07 0.15 0.37 0.20 0.45 0.50 0.45 0.39 0.52 0.29 0.34 0.46 0.71 0.46 0.38

GOSC-SCCA 0.73 0.39 0.68 0.56 0.45 0.56 0.02 0.09 0.57 0.20 0.38 0.25 0.23 0.18 0.43 0.44 0.43 0.34 0.53 0.31 0.31 0.36 0.72 0.45 0.40

The estimated correlation coefficients and their MEAN are shown. ’NaN’ means a method fails to estimate a pair of canonical loadings. ’0.00’ means a very small correlation coefficients. ’AVG.’ denotes the MEAN across all four datasets.
The best values and those that are NOT significantly worse than the best ones (t-test with p-value smaller than 0.05) are shown in bold
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Fig. 1 Canonical loadings estimated on four synthetic datasets. The first column is for Dataset 1, and the second column is for Dataset 2, and so
forth. For each dataset, the weights of u are shown on the left panel, and those of v are on the right. The first row is the ground truth, and each
remaining row corresponds to a specific method: (1) Ground Truth. (2) L1-SCCA. (3) FL-SCCA. (4) KG-SCCA. (5) GOSC-SCCA

magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see www.adni-info.org.
Table 2 contains the characteristics of the ADNI

dataset used in this work. Participants including 568
non-Hispanic Caucasian subjects, including 196 healthy
control (HC), 343 MCI and 28 AD participants. How-
ever, many participants’s data are incomplete due to
various factors such as data loss. After cleaning those
participants with incomplete information, we get 282 par-
ticipants in our experiments. The genotype data were
downloaded from LONI (adni.loni.usc.edu), and the pre-
processed [11C] Florbetapir PET scans (i.e., amyloid
imaging data) were also obtained from LONI. Before con-
ducting the experiment, the amyloid imaging data had
been preprocessed and the specific pipeline could be
found in [14]. These imaging measures were adjusted by
Table 2 Real data characteristics

HC MCI AD

Num 196 343 28

Gender(M/F) 102/94 203/140 18/10

Handedness(R/L) 178/18 309/34 23/5

Age (mean±std.) 74.77±5.39 71.92±7.47 75.23±10.66

Education (mean±std.) 15.61±2.74 15.99±2.75 15.61±2.74

removing the effects of the baseline age, gender, educa-
tion, and handedness via the regression weights derived
from HC participants. We finally obtained 191 region-of-
interest (ROI) level amyloid measurements which were
extracted from the MarsBaR AAL atlas. We included four
genetic markers, i.e., rs429358, rs439401, rs445925 and
rs584007, from the known AD risk gene APOE. We intend
to investigate if our GOSC-SCCA could identify this
widely known associations between amyloid deposition
and APOE SNPs.
Shown in Table 3 are the 5-fold cross-validation results

of various SCCAmethods. We observe that GOSC-SCCA
and KG-SCCA obtain similar correlation coefficients on
every run, including the training performance and testing
performance. Besides, they both are significantly better
than L1-SCCA and FL-SCCA, which is consistent with
the analysis in [14]. This result shows that GOSC-SCCA
can improve the ability of identifying interesting imag-
ing genetic associations compared with L1-SCCA and
FL-SCCA.
Figure 2 contains the estimated canonical loadings

obtained from 5-fold cross-validation. To facilitate the
interpretation, we employ the heat map for this real
data. Each row denotes a method, and u (genetic mark-
ers) is shown on the left panel and v (imaging mark-
ers) is on the right. As we can see, on the genetic side,
all four SCCA exhibit similar canonical loading pattern.
Since every SCCA here incorporates the lasso (�1-norm),
they select only the APOE e4 SNP (rs429358), which

http://www.adni-info.org


The Author(s) BMC Systems Biology 2016, 10(Suppl 3):68 Page 343 of 380

Table 3 5-fold cross-validation results on real data

Methods Training results MEAN Testing results MEAN

L1-SCCA 0.50 0.50 0.53 0.53 0.54 0.52 0.56 0.61 0.45 0.47 0.38 0.49

FL-SCCA 0.44 0.43 0.46 0.45 0.46 0.45 0.49 0.56 0.39 0.43 0.37 0.45

KG-SCCA 0.53 0.52 0.55 0.54 0.56 0.54 0.56 0.61 0.47 0.52 0.45 0.52

GOSC-SCCA 0.53 0.52 0.55 0.55 0.56 0.54 0.56 0.62 0.47 0.51 0.45 0.52

The estimated correlation coefficients and their MEAN are shown. The best correlation coefficients and those that are NOT significantly worse than the best ones (t-test with
p-value smaller than 0.05) are shown in bold

is a widely known AD risk marker, with those irrele-
vant ones discarded to assure sparsity. On the imaging
side, L1-SCCA identifies many signals which is hard to
interpret. FL-SCCA fuses those adjacent features together
due to its pairwise smoothness, which can be easily
observed from the figure. But it is difficult to interpret
either. GOSC-SCCA and KG-SCCA perform similarly
again in this run. They both identify the imaging sig-
nals in accordance with the findings in [20]. It is easily
to observe that they estimated a very clean signal pat-
tern, and thus is easy to conduct further investigation.
Recall the results in Table 3, the association between the
marker rs429358 and the amyloid accumulation in the
brain is relatively strong, and thus the signal can be well
captured by both KG-SCCA and GOSC-SCCA. In addi-
tion, the correlations among the imaging variables and
those among genetic variables are high enough so that
the signs of these correlations can hardly be impeded by
the noises. That is, the signs of sample correlations tend
to be correctly estimated. Therefore, KG-SCCA does not
suffer sign directionality issue, and so performs similarly

to GOSC-SCCA. However, if some sample correlations
are not very strong and their signs are mis-estimated,
KG-SCCA may not work very well (see the results of
the second synthetic dataset). In summary, this reveals
that our method has better generalization ability, and
could identify biologically meaningful imaging genetic
associations.

Discussion
In this paper, we have proposed a structured SCCA
method GOSC-SCCA, which intended to reduce the esti-
mation bias caused by the incorrect sign of sample cor-
relation. GOSC-SCCA employed the GOSCAR (Graph
OSCAR) regularizer which is an extension of the popu-
lar penalty OSCAR. The GOSC-SCCA could pull those
highly correlated features together no matter that they
were positively correlated or negatively correlated. We
also provide a theoretical quantitative description of the
grouping effect of our SCCA method. An effective algo-
rithm was also proposed to solve the GOSC-SCCA prob-
lem and the algorithm was guaranteed to converge.
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Fig. 2 Canonical loadings estimated on the real dataset. Each row corresponds to a SCCA method: (1) L1-SCCA. (2) FL-SCCA. (3) KG-SCCA.
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We evaluated GOSC-SCCA and three other popular
SCCA methods on both synthetic datasets and a real
imaging genetics dataset. The synthetic datasets con-
sisted of different ground truth, i.e. different correlation
coefficients and canonical loadings. GOSC-SCCA was
capable of consistently identifying strong correlation
coefficients on both training set and testing set, and
either outperformed or performed similarly to the com-
peting methods. Besides, GOSC-SCCA successfully and
accurately recognized the signals which were the closest
to the ground truth when compared with the competing
methods.
The results on the real data showed that both GOSC-

SCCA and KG-SCCA could find an important association
between the APOE SNPs and the amyloid burden mea-
sure in the frontal region of the brain. KG-SCCA performs
similarly to GOSC-SCCA on this real data largely because
of the strong correlations between the variables within the
genetic data, as well as those within the imaging data. In
this case, the signs of the correlation coefficients between
these variables tend to be correctly calculated, and so
KG-SCCA does not have the sign directionality issue. On
the other hand, if the correlations among some variables
are not very strong, the performance of KG-SCCA can
be affected by the mis-estimation of some correlation
signs. In this case, GOSC-SCCA, which is designed to
overcome the sign directionality issue, is expected to
perform better than KG-SCCA. This fact has already
been validated by the results of the second synthetic
dataset.
The satisfactory performance of GOSC-SCCA, coupled

with its theoretical convergence and grouping effect,
demonstrates the promise of our method as an effective
structured SCCA method in identifying meaningful bi-
multivariate imaging genetic associations. The following
are a few possible future directions. (1) Note that the iden-
tified pattern between the APOE genotype and amyloid
deposition is a well-known and relatively strong imaging
genetic association. Thus one direction is to apply GOSC-
SCCA to more complex imaging genetic data for revealing
novel but less obvious associations. (2) The data tested in
this study is brain wide but targeted only at APOE SNPs.
Another direction is to apply GOSC-SCCA to imaging
genetic data with higher dimensionality, where more
effective and efficient strategies for parameter tuning and
cross-validation warrant further investigation. (3) The
third direction is to employ GOSC-SCCA as a knowledge-
driven approach, where pathways, networks or other
relevant biological knowledge can be incorporated in
the model to aid association discovery. In this case,
comparative study can also been done between GOSC-
SCCA and other state-of-the-arts knowledge-guided
SCCA methods in bi-multivariate imaging genetics
analyses.

Conclusions
We have presented a new structured sparse canonical
analysis (SCCA) model for analyzing brain imaging genet-
ics data and identifying interesting imaging genetic asso-
ciations. This SCCA model employs a regularization item
based on the graph octagonal selection and clustering
algorithm for regression (GOSCAR). The goal is twofold:
(1) encourage highly correlated features to have similar
canonical weights, and (2) reduce the estimation bias via
removing the requirement of pre-defining the sign of the
sample correlation. As a result, it could pull highly corre-
lated features together no matter whether they are posi-
tively or negatively correlated. Empirical results on both
synthetic and real data have demonstrated the promise of
the proposed method.
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