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Abstract

Background: Computational support is essential in order to reason on the dynamics of biological systems. We have
developed the software tool ANIMO (Analysis of Networks with Interactive MOdeling) to provide such computational
support and allow insight into the complex networks of signaling events occurring in living cells. ANIMO makes use of
timed automata as an underlying model, thereby enabling analysis techniques from computer science like model
checking. Biology experts are able to use ANIMO via a user interface specifically tailored for biological applications. In
this paper we compare the use of ANIMO with some established formalisms on two case studies.

Results: ANIMO is a powerful and user-friendly tool that can compete with existing continuous and discrete
paradigms. We show this by presenting ANIMO models for two case studies: Drosophila melanogaster circadian clock,
and signal transduction events downstream of TNFα and EGF in HT-29 human colon carcinoma cells. The models
were originally developed with ODEs and fuzzy logic, respectively.

Conclusions: Two biological case studies that have been modeled with respectively ODE and fuzzy logic models can
be conveniently modeled using ANIMO. The ANIMO models require less parameters than ODEs and are more precise
than fuzzy logic. For this reason we position the modelling paradigm of ANIMO between ODEs and fuzzy logic.
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Background
Modelling in cell biology
Executable biology [1] is a young subfield in compu-
tational modelling, aimed at constructing models that
mimic biological phenomena in silico. It provides an inter-
esting paradigm to enhance network diagrams with an
underlying formal description of network components
and their interactions. For this purpose a wealth of dif-
ferent modeling paradigms has been proposed (see [2] for
an overview). Several approaches consist in the abstrac-
tion of continuous models into discrete transition systems
(e.g. [3–6]); this may enable the use of model checking as
a state space exploration technique [3, 7, 8]. Our approach
is based on Timed Automata models [9] defined by linear
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approximations (with arbitrary precision) of ordinary dif-
ferential equations (ODEs); this has the benefit of using
existing mature Timed Automata analysis techniques. It
is not the ambition of this paper to exhaustively compare
this approach with all existing formalisms; instead, we
want to show that this model has resulted in an effective
and user-friendly tool, which compares favorably to some
prominent approaches, most notably ODEs and fuzzy
logic. We have developed ANIMO (Analysis of Networks
with Interactive MOdelling, [10, 11]), a software tool that
provides an enabling technology to increase the use of
computational models by experimental biologists using
their domain-specific language, i.e. the representation of
a biochemical network as a graph where each node iden-
tifies a molecular species and each edge an interaction.
ANIMO enriches the normally static biological network
diagrams with dynamic information, which is then used
to automatically produce formal models representing the
biological network. Such models are indispensable for for-
mally comparing experimental data with prior knowledge,
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or for structuring experimental findings into a new theory.
When dealing with complex biological networks, exe-
cutable biology models are particularly useful to under-
stand the non-linear dynamics and the entailed emergent
properties of the networks. In those cases, an ANIMO
model can be used as a support to obtain insight based
on abstract representations of the interactions occurring
inside living cells. Other applications of ANIMO models
include performing in silico experiments and the storage
and transfer of knowledge on biological networks.

An introduction to ANIMO
The user interface of ANIMO is displayed in Fig. 1, where
we present an example of a biological network enriched
with dynamic information. ANIMO is implemented as
a plug-in to Cytoscape [12] (both the old 2.8.x and the
new 3.x versions are supported), a software tool devel-
oped to represent biological networks. On top of the static
topological information displayed in Cytoscape, ANIMO
represents biological interactions starting from the basic
concept of activity: each biological entity in an ANIMO

model is considered to be either active or inactive. Activ-
ity is to be interpreted in a very broad sense: for example,
an active gene is being transcribed, an active kinase can
perform phosphorylations, etc. Each node in an ANIMO
network represents both active and inactive entities of the
same type, with the relative amount of active entities (the
activity level) represented by the node colour on a user-
configurable scale. Interactions among nodes define how
the biological entities in a network influence each other’s
activity. Only nodes whose activity level is larger than 0
(such nodes are called active) can have an influence on
their downstream targets, and only if that influence is not
counterbalanced by intervening opposite interactions. For
example, the interaction A → B (read “A activates B”)
indicates that node A, if active, will increase the activity
level of node B. If we add an additional interaction to the
example, C � B (“C inhibits B”), with C also active, then
the activity level of B will change depending on the activ-
ity levels of A and C, and on their quantitative influence.
The influence of an ANIMO interaction is quantified by
a parameter k, which defines the speed at which that

Fig. 1 The Cytoscape user interface running the ANIMO plug-in. The Network panel in the centre contains the nodes-edges model of the example
TNFα pathway (see Methods section), with colours indicating node activity levels and shapes representing different protein categories (see the
Legend on the left). The Results Panel on the right contains a graph plotting activity levels of selected nodes during the first 24 hours of simulation of
the model. The slider under the graph allows the user to select the time instant (marked as a vertical red line in the graph) on which the colours of
the nodes in the Network are based. The series with the _data suffix is experimental data from [26], considering a treatment with 100 ng/ml TNFα. All
acronyms used in this paper and their corresponding UniProt IDs are listed in Additional file 1: Section C
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interaction occurs: higher values of k give faster interac-
tions. These k-values are the only parameters needed in an
ANIMO model, and can be given in either a quantitative
(as real numbers) or a qualitative way, choosing among
self-explanatory descriptions such as “very slow”, “slow”,
“medium”, “fast”, “very fast”.
ANIMO was conceived to model signalling pathways,

and in this context it is sensible to assume that the con-
centration of the involved molecular species does not
change noticeably in the considered time span (several
minutes to a few hours). For this reason, ANIMO mod-
els use the activity level of a node to represent the fraction
of molecules that are “active”, while the total amount of
molecules is assumed to remain constant. However, this
assumption is not as restrictive as it seems: ANIMOmod-
els can still represent protein concentration by identifying
it with activity. For example, we can represent production
of protein A with a process increasing the activity level of
node A, while degradation will decrease it.
The concise language used in ANIMO to represent reac-

tion information is powerful enough to model various
types of interactions. For example, we can easily trans-
late Boolean OR gates: (A OR B) → C becomes the two
separate reactions A → C and B → C. This means that
whenever either A or B is active, C will eventually be
activated, i.e. reaction effects are always additive. This
representation of OR is thus non-exclusive, so C will be
activated also if both A and B are active, but in that case
the activation will proceed faster. A Boolean AND gate
can be explicitly represented with the “AND” approxima-
tion scenario (see Additional file 1: Section A.1): with
(A AND B) → C, C will be activated only if both A and B
are active.
Combining these basic tools makes the representation

of more complex Boolean formulas also possible, by prop-
erly combining the basic gates. The same is generally
true also if we move from Boolean interactions to precise
kinetic formulas. We note that in this case some specific
mathematical functions (square root, exponential, . . . )
may be needed. It is in principle possible to correctly
translate all those functions into the underlying Timed
Automata model, even if it may require some effort. How-
ever, as such functions are normally used to represent a
complex mechanism in abstract form, we advise to use
ANIMO with the same aim, i.e. as a tool to abstractly
represent complex mechanisms. As an example, see the
representation of the day/night cycle with a repressilator
construct [13] in ANIMO as opposed to the piecewise lin-
ear approximation used in the model we use as reference
(see Results and Additional file 1: Section B.1).
ANIMO produces graphs showing how the activity lev-

els of selected nodes change over time, allowing the user
to obtain a view on the dynamic behaviour of their net-
work. In order to obtain these results, a model defined in

ANIMO is automatically translated into its correspond-
ing representation as a network of Timed Automata [9]
and then analysed behind the sceneswith the software tool
UPPAAL [14]. The formal language of Timed Automata
allows to represent and analyse complex behaviours pre-
cisely and efficiently, but the user does not need to directly
manipulate Timed Automata or UPPAAL, as the analy-
sis process is made transparent. A curious user can still
access the underlying models and perform other analyses
in UPPAAL, but that is not required in order to fully profit
from ANIMO.
A detailed description on how the Timed Automata

models defined by ANIMO work, and how the results are
obtained, can be found in [10]. The choice of parameters
for ANIMO models is described in [15] and summa-
rized in Additional file 1: Section A.5. Additional guid-
ance on the design of ANIMO models and how to best
profit from biological experimental data can be found
in [11]. The ANIMO web page [16] contains a link to
the user manual and instructions to install ANIMO on a
computer.
Figure 2 shows the position of ANIMO in a spectrum

of modelling methods. Boolean and Fuzzy Logic are based
mainly on discrete transitions, whereas ordinary differen-
tial equations (ODEs) form a purely continuous model.
ANIMO takes a position in between: it is based on piece-
wise linear approximations [17, 18] (with arbitrary preci-
sion) of ODE models. On the one hand, this means that
the precision of a model can easily be tailored towards the
precision and availability of the biological data. And on
the other hand, this means that a model results in a (dis-
crete) finite state space. This is important, as it enables
the application ofmodel checking techniques, which allow
us to automatically explore all the possible behaviours of
a model. Such techniques can be used to explore possi-
ble therapeutic avenues: by introducing some degree of
freedom in the dosage of the “inputs” to the network and
applying model checking, we can look for a suitably useful
network state. For example, if the initial state of a network
represents a cell in an ill state, all possible dosages of dif-
ferent drugs can be automatically explored through model
checking, looking for a way to reach a state in which the
cell is not ill anymore. The trace resulting from the model
checking can then be used as guidance for further model
refinement and investigation in the laboratory.
In the rest of the paper, we will show two case

studies where models built with ANIMO are com-
pared to models built with ODEs and Fuzzy logic. We
will then compare ANIMO with other tools, focus-
ing on the user experience of the modeller: as high-
lighted before, we believe that providing a suitable
access to modelling formalisms is essential for their
widespread application in biological and biomedical
research.
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Fig. 2 The spectrum of modelling methods, with the addition of ANIMO. The precision of ANIMO models is halfway between fuzzy logic and ODE.
Compared to other modelling tools, ANIMO allows for an easier modelling experience thanks to a user-friendly interface based on the widely used
network modelling software Cytoscape

Results
Modelling oscillation in Drosophila Melanogaster circadian
clock
To demonstrate that results obtained with ANIMO
are comparable to results from widely used modelling
approaches, we present an ANIMO model of the circa-
dian clock in Drosophila Melanogaster (they are usually
in the form “model available in Additional file 2”). This
ANIMO model is based on [19], where ordinary differ-
ential equations (ODEs) were used. The cyclic behaviour
of the circadian clock is based on the alternating forma-
tion and destruction of the CYC/CLK protein complex.
Concentration levels of this complex are in turn regu-
lated by a series of proteins which are produced as a
consequence of CYC/CLK formation. The CWO protein
is central to the functioning of the network, as it degrades
the mRNA for most of the involved proteins. As such,
CWO acts as an inhibitor that counterbalances the effect
of CYC/CLK. The positive influence of the light-regulated
cryptochrome CRY on the degradation of TIM is a conse-
quence of the passage between day and night, allowing the
circadian clock to synchronize to a time zone.
The ANIMOmodel we present here was built using the

network topology presented in [19] (cf. Fig. 3a with Fig. 1
from [19]) and the same parameter settings. In order to
make the amplitude of some oscillations more visible, the
parameters were adapted using the techniques available in
ANIMO [15].
The output of the final ANIMOmodel (Fig. 3a) matches

the original ODE model. In particular, starting from the
same initial conditions, bothmodels achieve an oscillatory
behaviour with similar periods and phases: see Fig. 3b–e
for some examples, and Additional file 1: Figure S6 for the
complete comparison.
A number of the experiments proposed in the orig-

inal paper were also tried in the ANIMO model and

gave comparable results. In particular, we note that after
artificially changing the light/dark cycle, the circadian
clock correctly resynchronizes to the new environmen-
tal situation. Another experiment involved the knock-out
of essential nodes in the network (CLK, CYC, DBT):
removing any such node removes also the oscillatory
behavior, making the model reach an equilibrium point
shortly after the modification. Finally, we also noted that
altering the effectiveness (i.e. changing the k values down-
stream) of critical nodes such as CLK/CYC changes the
period of the oscillations. All these experiments can be
done directly in ANIMO’s user interface, and require few
mouse clicks each. For example, the knock-out of a node
can be done in ANIMO by disabling that node: in this
way, the node will not be taken into account in any ensu-
ing simulation. As a representative of the experiments,
we show here the procedure we used to test the effects
of changing the light/dark cycle. It can be noted that
the procedure is more involved than disabling a node
from its pop-up menu, yet it follows a consequential
reasoning:

• perform an initial simulation of e.g. 24 h;
• using the slider under the computed graph, select a

point where CRY is low, which corresponds to night
time;

• pressing the copy button next to the slider, to set the
currently selected point in time to be the initial
configuration for all further simulations;

• disable most of the network, keeping enabled only the
part of the network that changes CRY’s activity level;

• let CRY advance on itself (i.e., the light/dark cycle
desynchronizes with the internal circadian clock) by
performing another simulation of e.g. 12 h;

• use copy again to take the end state of the
(sub)network as initial state for the next simulation:
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Fig. 3 ANIMO model of the circadian clock in Drosophila Melanogaster. a The topology of the ANIMO model is the same as the model in [19].
Negative self-feedback loops are present on each of the nodes of the network to ensure that protein levels decrease over time when activating
inputs are absent. This describes the normally occurring degradation of proteins in a similar way to what is done in the original ODE model. The
feedback loops are represented in a lighter gray colour to enhance readability. b–e Comparing the result of the ANIMO model of Drosophila
Melanogaster circadian clock with the model of [19]. 24 hours simulations of the two models were compared against each other, synchronizing their
start point as much as possible. The blue line is the ANIMO model (_ANIMO series), while the red line represents the data computed from the
original ODE model (_ODE series) using Matlab®. The activity levels of the _ANIMO series were manually rescaled on a [0, 100] interval, to reflect
what is done in the ODE model and thus facilitate comparison. Naming conventions follow the same rules as in [19], with lower-case names
representing mRNA, and upper-case names indicating proteins

as the other nodes are still disabled, their state will
still be the one that was set previously;

• re-enable the rest of the network and generate
another simulation of e.g. 5 days;

• the resulting graph will show the circadian clock
resynchronizing to the changed alternance of the
light/dark cycle in a few days’ time (see Fig. 4).

We are confident that further experiments similar to
the ones described in [19] can be performed also in
ANIMO, possibly adapting the proof of concept model

to the more complex cases. Indeed, our work on a
comprehensive ANIMO model encompassing both sig-
nal transduction and gene expression data in human
chondrocytes [20–23] has shown that ANIMO can range
from relatively simple models to realistic complex cases
(whose presentation would fall outside of the scope of
this paper).
A description of how the ANIMO model was built

and how its data was compared to the data generated
by the original ODE model is given in Additional file 1:
Section B.1.
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Fig. 4 Experiment: circadian clock resynchronization in ANIMO. a The oscillations in CRY, CLK and TIM in normal conditions over a time span of 5
days (1 day = 1 oscillation period). b Recovery of circadian clock synchronization. After having altered the light/dark alternance by changing CRY’s
phase, a simulation of 10 days has been performed. We note that the changes in TIM caused by CRY make the peaks in CLK gradually realign with
CRY, effectively causing the resynchronization of the circadian clock to the new time zone. Similarly to what was reported in [19], the
synchronization is almost complete after about 5 days. The activity levels of the series shown here were not rescaled on a [0, 100] interval as was
done in the other figures for this model. This allows us to both make the series more easily distinguishable and to show how the resulting
simulation would appear to an ANIMO user after following the steps we described here

Using ANIMO to generate hypotheses in human colon
carcinoma cells
We now present a comparison with an existing fuzzy logic
model, which we use also as an example of how ANIMO
can be used to create reference models and help to obtain
insight into complex biological events.
We constructed a model of the signalling network

downstream of TNFα and EGF in HT-29 human colon
carcinoma cells, formalizing the crosstalk that takes
place between the pathways at different levels of cellular
regulation. We first modelled the two pathways in iso-
lation (Additional file 1: Figures S7a, S8a, model avail-
able in Additional file 2), using information on protein
interactions from the KEGG [24] and phosphosite [25]
databases. These models were manually fitted to experi-
mental data from previous studies [26, 27]. The models
were mostly able to match the experimental data for the
nodes included in either pathway (see Additional file 1:
Figure S7b, c and S8b, c for some examples), but the
crosstalk was not represented. For example, as MEK is
only present downstream of EGF, the model contrasts
with the experimental data by showing no activity of MEK
following TNFα (called TNFa in the model) stimulation.
To improve the model, we merged the two pathways into
a single model and added the autocrine crosstalk between
the pathways that has been described in [27]. Briefly, stim-
ulation with TNFα leads to a rapid release of TGFα (TGFa
in the model), which activates the EGF receptor (EGFR).
This activation causes secretion of IL-1α (IL-1a) at later
time points. The effect of IL-1α is down-regulated by the
secretion of IL-1 receptor antagonist (IL-1ra) downstream
of TNFα. The resulting model (Fig. 5a, model available
in Additional file 2) was compared to the experimen-
tal data for treatments with 100 ng/ml TNF alone and
100 ng/ml EGF alone (see Additional file 1: Figures S9
and S10) [26].

At this point, the behaviour of the model deviated from
the data for some of the nodes. Changing the parame-
ters of the model, both manually and automatically (with
the parameter sweep feature available in ANIMO [15],
see Additional file 1: Section A.5 and Figure S4), was not
enough to reproduce the behaviour shown by experimen-
tal data. This is an interesting situation, as it requires
changes in the topology of the model [15], reflecting the
formulation of a new hypothesis on the structure of the
model. Below, we give two examples and show how adap-
tation of the model can be used to generate novel testable
hypotheses.
Experimentally, treatment with TGFα alone does not

lead to secretion of IL-1α. Instead, a co-stimulation with
TGFα and TNFα is required [27]. However, in the first
version of the model, treatment with TGFα was sufficient
for IL-1α expression (Fig. 5b). Given the time delay until
secretion of IL-1α, it can be expected that de novo syn-
thesis of IL-1α is required and that both TNFα and TGFα
are needed to activate transcription of the IL-1α gene.
JNK1 and ERK signal downstream of TNFα and TGFα,
respectively, and are known to affect the activity of mul-
tiple transcription factors. We altered the model to make
activation of IL-1α expression dependent on both JNK1
activity and ERK activity (Additional file 1: Figure S11,
edges linking JNK1 and ERK to IL-1a gene). After this mod-
ification to the model, IL-1α was no longer secreted upon
stimulation with TGFα alone, which greatly improved the
fit between the measured IL-1α levels and the model
(Fig. 6b). This hypothesis could now be used to design a
new experiment to validate IL-1α as a target of combined
JNK1 activity and ERK activity in HT-29 cells. For exam-
ple, kinase inhibitors specific to JNK1 and ERK could be
used to confirm that activity of both kinases is required for
expression and secretion of IL-1α. Performing the experi-
ment is beyond the scope of this study, but this hypothesis
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Fig. 5 Signalling network downstream of TNFα and EGF in human colon carcinoma cells. a The model for the merged TNFα and EGF pathways.
Node colours represent the activity level of the corresponding modelled reactants at time t = 15 min after a stimulation of 100 ng/ml TNFα + 100
ng/ml EGF. bModelled production of IL-1α after stimulation with 100 ng/ml TGFα (24 h). cModelled activation of JNK1 and MK2 after stimulation
with 5 ng/ml TNFα + 10 μg/ml C225 (2 hours). The _data suffix identifies experimental data; all other series are computed by ANIMO

finds support in literature: transcription factors c-Jun and
c-Fos together form a heterodimer known as AP-1 and are
activated by JNK1 and ERK, respectively [28, 29]. AP-1 has
been reported to bind to the promoter of IL-1α, providing
evidence for a role in the regulation of IL-1α expression
[30]. Based on these findings in literature we included c-
Jun and c-Fos in our model as transcriptional activators of
IL-1α (Fig. 6a, model available in Additional file 2).
As a second example, we considered the behaviour of

JNK1 and MK2. In the model, both proteins were located
downstream of TNFα but not TGFα or EGF. Hence, the
model did not show an effect of C225, a pharmacolog-
ical inhibitor of ligand-EGFR binding, on activation of
JNK1 orMK2 after stimulation with TNFα (Fig. 5c). How-
ever, experimental data show that C225 strongly reduces

activation of JNK1 andMK2 upon stimulation with TNFα
[27]. This fact is indicative of a role for EGFR in activation
of JNK1 and MK2. Since both JNK1 and MK2 are located
downstream of MEKK1, we hypothesized that activation
of MEKK1 is dependent on both TNFα-signalling and
TGFα-signalling. In the model we added a new hypothet-
ical node Hyp 2 (hypothesis 2) to link EGFR to MEKK1
(Additional file 1: Figure S11). This addition led to an
improved fit of the model to the data upon treatment
with TNFα + C225: activation of both MK2 and JNK1
was strongly suppressed by C225 (Fig. 6c). Stimulation
with EGF alone did not lead to activation of JNK1 and
MK2. These data support the validity of the modifica-
tion to the model. Further support for a link between
EGFR and MEKK1 was found in literature. Specifically,
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Fig. 6 Signalling network downstream of TNFα and EGF in human colon carcinoma cells: improved model. a The model for the merged TNFα and
EGF pathways after addition of the two hypotheses (highlighted). Hypothesis 1 assumes IL-1α expression to depend on AP-1 activity, which in turn
requires both c-Jun en c-Fos to be activated by JNK1 and ERK, respectively. Hypothesis 2 assumes RAS as an activator of MEKK1. Node colours
represent the activity levels 15 minutes after stimulation of 100 ng/ml TNFα + 100 ng/ml EGF. b After the addition of the first hypothesis (activation
of IL-1α production depending both on JNK1 and ERK): production of IL-1α after stimulation with 100 ng/ml TNFα (series IL-1a (TNFa)) compared
with stimulation with 100 ng/ml TGFα (series IL-1a (TGFa)) (24 h). The IL-1a (TGFa) series is always 0. c After the addition of the second hypothesis
(activation of MEKK1 downstream of EGFR): activation of JNK1 and MK2 after stimulation with 5 ng/ml TNFα + 10 μg/ml C225 (2 hours). The JNK1
series is always 0. Additional file 1: Section B.3 explains how the dosage of 5 ng/ml TNFα was represented in the model. The _data suffix identifies
experimental data; all other series are computed by ANIMO

Ras has been reported as a direct activator of MEKK1
[31]. EGFR is a well-known and potent activator of Ras,
which is why it was already in our network [24]. Other
studies also report activation of JNK1 and phosphoryla-
tion of c-Jun downstream of Ras, which is consistent with
an interaction between Ras and MEKK1 [29, 32]. Based
on these findings, we adapted our model by removing
the Hyp 2 node and creating a direct interaction between
Ras and MEKK1 (Fig. 6a). Experimentally, the role of Ras
could be confirmed by using a pharmacological inhibitor
of Ras activity, and measuring the effect of this inhibitor
on the activation of JNK1 and MK2. Together, our model

suggests that EGFR activity is required but not sufficient
for activation of JNK1 and MK2 in HT-29 cells.
There are other nodes for which the experimental data

deviates from the model in one or more of the exper-
imental conditions. A comparison between model and
experimental data can be found in Additional file 1:
Figures S12, S13 and S14. Comparing these results with
the ones from [33] shows a better fit of the ANIMO
model, which is also intrinsically more precise, beingmore
mechanistic in nature (see Fig. 2). A complete deciphering
of the signalling events in this biological system is out-
side the scope of this paper. Instead, we illustrated how
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interactive modelling of the dynamic behaviour of a sig-
nal transduction network can be used to extend previous
pathway topologies and can lead to the generation of novel
hypotheses.

Discussion
Final remarks on the models
We first described the construction of an ANIMO model
of the circadian clock in Drosophila Melanogaster. This
shows that the more abstract modeling paradigm of
ANIMO is able to capture the dynamics of the reg-
ulatory network, leading to similar conclusions as an
ODE model that had been published previously [19].
The biggest difference between the construction of these
models is that the model in [19] is constructed on the
basis of a detailed representation of the relevant bio-
chemical reactions. ANIMO describes an abstract and
aggregated view in terms of interactions, where the qual-
itative effect of each interaction is captured by a sin-
gle parameter (see [11] for more details). In ANIMO a
number of network nodes is drawn for the molecules
involved. These nodes are then linked by directed inter-
actions that represent cause-and-effect relationships. This
abstract and graphical way makes it easier for biologists
to create large networks in a compositional way: each
node in the network can be disabled at any time by
the user, or extra nodes can be added, without having
to change any of the existing interactions. So ANIMO
may yield models that are less complex than ODE mod-
els, possibly at the price of lower model precision: the
curves representing oscillation of protein activities in
the ANIMO model are not as precise as those obtained
from the original ODE model (see Additional file 1:
Figure S6).
We also showed the construction of an executable

model of signalling events downstream of TNFα and EGF
in human colon carcinoma cells. This data set has been
used for previous modelling studies, based on partial
least-squares regression and fuzzy logic [33, 34]. The par-
tial least-squares regression model describes an abstract
data-driven model that uses statistical correlations to
relate signal transduction events to various cellular deci-
sions. This type of modelling is very useful in uncovering
new and unexpected relations. It is also successful in
making predictions, but gives little direct insight in the
dynamic behaviour of the network (see Fig. 2). Fuzzy
logic analysis led to a model that gives a better fit to the
dynamic network behaviour than discrete logic (Boolean)
models. Inspection of the inputs to the logical gates that
were used to model protein behaviour led to the pre-
diction of novel interactions between proteins, showing
the usefulness of this approach. For most of the proteins,
such as JNK1, time was used as an input parameter. This
means that the activity of some nodes at time point t was

made dependent also on the value of t itself: thus, time
becomes a variable in the model. For example, discretiz-
ing values in the two categories high and low, the logical
gates “if TNFα is high AND time is low, then JNK1 is
high” and “if TNFα is high AND time is high, then JNK1
is low” were used to describe the dynamic behaviour of
JNK1. Although this leads to a representative descrip-
tion of the dynamic behaviour of JNK1, peaks in protein
activity at early time points, as measured in wet-lab exper-
iments, were not reproduced by the fuzzy logic model.
Moreover, the fuzzy logic model gave no insight in the
molecular interactions that are involved in activation or
inhibition.
Here we used a data set based on the wet-lab experi-

ments described in [26].We used the resulting experimen-
tal data, together with knowledge from curated databases
[24, 25] to construct an executable model of the biolog-
ical system. In contrast to the two approaches described
above (partial least-squares regression and fuzzy logic),
ANIMO is aimed at the construction of more mechanis-
tic models, mimicking biochemical interactions in silico.
This way of modelling gives a different type of insight.
In the process of model construction, we extended a
prior-knowledge network with time-dependent extracel-
lular crosstalk that has been reported previously [27]. To
come up with possible explanations for a disagreement
between the model and the experimental data, two addi-
tional layers of crosstalk were introduced, at the signal
transduction and transcriptional level. These modifica-
tions improved the fit of the model to the data and can be
interpreted as novel testable hypotheses. Finally, we pro-
posed new experiments that could be carried out to test
these hypotheses, closing the empirical cycle. Together,
our model sheds more light on the intricate entanglement
between the TNFα and EGF pathways at multiple cellu-
lar levels. But above all, the model provides an excellent
starting point for further investigation.

User experience: ANIMO and other modelling tools
Different formalisms are in use in the field of compu-
tational modelling of biological systems, each with their
specific characteristics. Many of these formalisms have
been implemented into software tools to support mod-
elling efforts. To compare ANIMO with existing tools, we
have selected a number of mathematical formalisms, each
connected to a supporting tool. With an emphasis on the
modelling process rather than the final model, and in an
attempt to evaluate the degree of “interactivity” of these
tools, we compared them on the basis of the following
parameters:

1. Domain-specific interface: the underlying
formalism is manipulated through an interface
targeted towards the biological domain
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2. Visual modelling: the tool allows the user to model
using a visual interface, and is not exclusively founded
on formula-, text- or table-based input forms

3. Qualitative parameters: parameters for reactions
can be input as approximated estimations, and not
exclusively as numbers

4. Tight coupling with topology:models are tightly
and clearly coupled to the networks they represent,
showing the visual representation of the model in a
shape similar or comparable to the representation
currently used by biologists for signalling pathways

5. User-chosen granularity: if discretization is applied
during the modelling process, the user can change the
granularity with which such discretization is made,
possibly for each component of the model separately

Table 1 shows the comparison between ANIMO and
the selected tools. The tools are grouped by underlying
formalism, following the ordering of Fig. 2. The compar-
ison encompasses no tools using statistical methods, as
we concentrate on tools that allow to define the dynamics
of biological networks from a more mechanistic point of
view.
Among related work, we would like to highlight the

powerful tool CellNOpt [35]. CellNOpt is a software
which can work with logic descriptions (Boolean, fuzzy)
and differential equations, and automatically suggests the
best network topologies to match a given data set. Thanks
to the CytoCopteR plug-in for Cytoscape [36], which pro-
vides an accessible user interface, CellNOpt can be used
in tandem with ANIMO: after computing the most likely
network topologies with CytoCopteR, the biologist can
carry on the analysis process with ANIMO, working on
new hypotheses to explain the experimental data. Please
note that this workflow is currently not implemented
in a user-friendly way, and in order to perform it both
CytoCopteR and ANIMO need to be installed. It is also
possible to import SBML qual [37] models thanks to Cyto-
CopteR’s import function and use them in ANIMO, as
the basic properties of nodes and edges are automatically
inferred. However, the k parameters of interactions as well
as initial activities of nodes are set to default levels, and the
user may need to change some of them in order to obtain
a working network. We plan to extend ANIMO in such a
way that the integration with CytoCopteR and other tools
is made as smooth as possible. Full support of widely used
model formats such as SBML qual will improve ANIMO’s
interoperability, and this will positively reflect on the user
experience.
Going beyond the user interface, there are a number of

“pros and cons” for using ANIMO and Timed Automata
in the biological context. First and foremost, as Timed
Automata is an executable formal language, a state space
can be derived from a Timed Automata model. This

means that state space-related analyses such as model
checking can be performed on Timed Automata: this
can be done directly in ANIMO, as ANIMO acts as an
intermediary towards the powerful model checking tool
UPPAAL.
While ANIMO does not require the user to know

Timed Automata or UPPAAL, it is necessary to possess
some biological knowledge in order to build useful mod-
els. In particular, estimating activity rates may present
difficulties that can be reduced with the help of biolog-
ical intuition. As an example, consider the difference in
rate between the production of a protein and a post-
translational modification such as phosphorylation: bio-
logical knowledge leads to choose a (much) lower rate
for the former than for the latter. A second example, and
an additional rationale for the development of tools like
ANIMO that put the biologist in charge, is the transla-
tion of experimental numerical data into activity levels. It
is necessary to have semi-quantitative data as reference
[11] (the data used as reference in the TNFα-EGF model
is mostly based on semi-quantitative western blot experi-
ments [26]), together with biological knowledge to define
a sensible correspondence between experimental values
and activity levels.
For each reactant modelled in ANIMO we assume that

the total amount of active and inactive molecules remains
constant. While this assumption is not always applicable,
it encourages abstract thought: many biological processes
can be represented as networks driven by activity-based
interactions (see Methods section). Even if with a lim-
ited scope, ANIMO can be applied also in the analysis of
metabolic processes, using activity to represent concen-
tration as proposed in the Background section. While it
cannot be expected from such models to be a completely
realistic representation of their target biological processes,
they can still be a useful tool. This can be seen for exam-
ple in the circadian clock model in the Results section,
where mRNA and protein concentrations were abstracted
to activity-driven processes in the ANIMOmodel.
Finally, a note on the performance: the interactive use

for which ANIMO is conceived implies that model anal-
ysis should require an amount of time small enough to
encourage the user to experiment with different model
configurations. The simulation of an ANIMOmodel is not
computationally expensive, requiring minimal amounts of
memory and CPU time. For example, on an Intel® Core™ i7
CPU working at 2.80GHz, computing a 24-h simulation
run of the model in Fig. 3a takes about 0.69 sec while the
model in Fig. 6a takes about 1.14 sec. The larger model on
which we are working [22, 23] is an order of magnitude
larger than the ones presented in this paper (92 nodes and
123 interactions), and in that case computing a simula-
tion where the state of the network dramatically changes
(nearly all nodes undergo significant activity variations)
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Table 1 Comparison between ANIMO and some existing approaches to modelling biological systems

Tool Formalism Domain-specific interface Visual modeling Qualitative parameters Tight coupling with topology User-chosen granularity

GINsim [40] Boolean Networks Yes Yes Yes Yes Yes a

BooleSim [41] Boolean Networks Yes Yes No No No

CytoCopteR [35] Fuzzy logic b Yes Yes Yes Yes Yes c

ANIMO [10] Timed Automata Yes Yes Yes Yes Yes

Odefy [42] Logic-based ODE No Yes d Yes No No

COPASI [43] ODE, stochastic models No e No No No No

CellDesigner [44] ODE Yes Yes No Yes No

GNA [45] PLDE Yes Yes Yes Yes Yes a

Virtual Cell [46] ODE, PDE, stochastic models Yes Yes No Yes No

Bio-PEPA Workbench [47] Bio-PEPA No No No No Yes

COSBI LAB [48] BlenX Yes Yes No Yes No

Cell Illustrator [49] Petri Nets Yes Yes No Yes No

A “Yes” under a column indicates that the modelling tool (mostly) fulfils the parameter, “No” indicates very limited or no fulfilment
aThe user can choose the number of levels for each reactant, allowing to define multi-level models based on Boolean reaction dynamics
bBoolean logic and logic-based ODE models are also available
cThe choice for the type of logic to be used determines also the granularity of the model
dOnly if coupled with the yEd [50] graph editor
eWhile visual network modeling is absent, the MultiState Model Builder (MSMB [51]) editor provides an interactive support during the phase of model definition
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takes about 16 sec. All the averages were computed based
on 100 simulation runs.

Conclusions
In this paper we discussed the placement of ANIMO
among other modelling paradigms and tools, highlighting
ANIMO’s strong points.
From the point of view of model precision, we posi-

tion ANIMO between fuzzy logic and ODEs. Being less
parameter-intensive than ODEs and more precise than
logic-based models, ANIMO models are useful for a wide
range of applications.
ANIMO adds a dynamic component to the static

networks already familiar to biologists, allowing the
domain experts to build formal executable models of
complex biological networks. ANIMO is not the first
tool to provide an interface to a modelling formalism:
as shown in Table 1, such interfaces exist in many
other tools. Focusing on user-friendliness and interac-
tive modelling, ANIMO makes computational modelling
more accessible to experts in biology. Thanks to the
visual interface provided by Cytoscape, networks are
represented according to biological conventions. Model
parameters are kept to a minimum and can be directly
accessed by mouse-clicking on nodes and edges. Because
of the automatic translation of the network topology
and user-defined parameters into an underlying formal
model, training in the use of formal methods is not
needed.

Methods
Modelling biological interactions with timed automata
Timed Automata have been shown to be a powerful
formalism to model biological processes [17, 38, 39].

A timed automaton consists of locations and tran-
sitions between these locations (see Fig. 7), and a
system of timed automata can be used to model a
system of interacting molecules. At any time, each
automaton is in a specific location, and together these
locations represent the current state of the biologi-
cal system. Each timed automaton can have one or
more clocks associated to it, allowing temporal con-
trol of transitions between locations. The transitions
are used to represent interactions between molecules.
Fast interactions take less time than slow interac-
tions to perform an activation or inhibition step. We
have previously described in detail how approximated
reaction kinetics [10] can be used to calculate the
timing of molecular interactions (see also Additional
file 1: Section A.1). Figure 7 presents a small exam-
ple that illustrates the basic properties of Timed
Automata. This model describes the activation of ERK by
MEK.

Example: building a model based on data
To illustrate the use of ANIMO in a practical envi-
ronment, we will demonstrate the generation of a
basic version of the model described in the Results
section. The model is based on a literature com-
pendium of signal transduction events in HT-29 human
colon carcinoma cells [26]. This data set comprises
triplicate measurements of 11 different protein activi-
ties or post-translational modification states at 13 time
points after treatment with different combinations of
tumour necrosis factor-α (TNFα), epidermal growth fac-
tor (EGF) and insulin. The data set contains relative
protein levels and activities, and no absolute quanti-
ties, which is the typical situation in biochemistry. To

Fig. 7 Abstraction of a biochemical reaction to a Timed Automata model. a Classical depiction of a well-studied intracellular signal transduction
reaction: protein MAPK-ERK kinase (MEK) activates downstream protein extracellular-regulated kinase (ERK). b A Timed Automaton model of ERK,
consisting of two locations (circles), inactive_ERK and active_ERK, and one transition (edge) between the locations. This transition will take place
when it is possible to synchronize with the corresponding action activate_ERK! in the MEK automaton. c A Timed Automaton model of active MEK,
consisting of one location and one transition. t < 20 is called an invariant on the location, allowing residence in this location as long as clock time t
is smaller than 20 units. t > 18 is called a guard on the transition, allowing the transition to take place when clock t is greater than 18 units.
Together, the invariant and guard in this example ensure that the transition must take place in the (continuous) time interval 18 < t < 20. When the
transition takes place, the action activate_Erk! is performed (thus allowing the ERK automaton to reach the active_ERK location) and the local clock
coupled to this automaton is reset, t := 0
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Fig. 8 Construction of an ANIMO model of signal transduction events in human colon carcinoma cells upon stimulation with 100 ng/ml TNFα.
Graphs below show the dynamic behaviour of the corresponding models above, comparing it to the measured activity values from [26] (error bars
represent the standard deviation). On the vertical axis, “100” represents the maximum protein activity in the complete experiment. A red vertical line
in each graph highlights an arbitrary time point in the time course: nodes in the corresponding model are coloured according to their activity at
that time point. a, d Basic model showing direct activation of JNK1 and MK2 by TNFα. No peak dynamics are observed because no inactivating
processes are present. b, e The model after addition of inactivating phosphatases and a negative feedback loop that down-regulates TNFR. Note
that adding TNFR internalization or phosphatases alone would not be enough to reproduce activity peaks. c, f The model after addition of IKK,
IL1-secretion (abstracting the autocrine IL-1 signalling described in [27]), Casp8 and Casp3, showing the late response to TNFα signalling. As the
data set did not contain values for cleaved caspase-3, but only for its non-cleaved precursor pro-caspase-3, we computed the Casp3_data series as
100 %−[ pro-Casp3]

start, we normalized measurements for each protein
to the maximum value in the complete experiment,
resulting in a nondimensionalized data set that is
suitable for use with ANIMO (see Additional file 1:
Section B.2).
In Fig. 8 we show the stepwise construction of a model

of a small part of the network that is able to account
for measured variations in activity of inhibitor of nuclear
factor kappa-B kinase (IKK), c-Jun N-terminal kinase-1
(JNK1), mitogen-activated protein kinase-activated pro-
tein kinase 2 (MK2), Caspase 8 (casp-8) and Caspase 3
(casp-3) upon stimulation with 100 ng/ml TNFα. In this
example we aimed for inclusion of a minimum num-
ber of nodes in the network, while preserving biolog-
ical relationships. Multi-step cascades were aggregated
into a single step when possible. Parameters for all
reactions were set manually, resulting in a close match
between the model and the patterns observed in the
dataset.
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7. Barnat J, Brim L, Černá I, Dražan S, Fabriková J, Šafránek D. On
algorithmic analysis of transcriptional regulation by {LTL} model checking.
Theor Comput Sci. 2009;410(33-34):3128–48. Concurrent Systems
Biology: To Nadia Busi (1968–2007).

8. Monteiro PT, Ropers D, Mateescu R, Freitas AT, de Jong H. Temporal
logic patterns for querying dynamic models of cellular interaction
networks. Bioinformatics. 2008;24(16):227–33.

9. Alur R, Dill DL. A theory of timed automata. Theor Comput Sci.
1994;126(2):183–235.

10. Schivo S, Scholma J, Wanders B, Urquidi Camacho RA, van der Vet PE,
Karperien M, Langerak R, van de Pol J, Post JN. Modelling biological
pathway dynamics with Timed Automata. IEEE J Biomed Health Inform.
2014;18(3):832–9.

11. Scholma J, Schivo S, Urquidi Camacho RA, van de Pol J, Karperien M,
Post JN. Biological networks 101: Computational modeling for molecular
biologists. Gene. 2014;533(1):379–84.

12. Killcoyne S, Carter GW, Smith J, Boyle J. Cytoscape: a community-based
framework for network modeling. Methods Mol Biol (Clifton, N.J.)
2009;563:219–39.

13. Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional
regulators. Nature. 2000;403(6767):335.

14. Larsen KG, Pettersson P, Yi W. UPPAAL in a nutshell. Int J Softw Tools
Technol Transfer (STTT). 1997;1:134–52.

15. Schivo S, Scholma J, Karperien HBJ, Post JN, van de Pol JC, Langerak R.
Setting parameters for biological models with ANIMO In: André E, Frehse
G, editors. Proceedings 1st International Workshop on Synthesis of
Continuous Parameters, Grenoble, France. Electronic Proceedings in
Theoretical Computer Science, vol. 145. Australia: Open Publishing
Association; 2014. p. 35–47.

16. ANIMO. 2015. http://fmt.cs.utwente.nl/tools/animo. Accessed date 11
June 2016.

17. Batt G, Salah RB, Maler O. On timed models of gene networks. In:
Proceedings of the 5th International Conference on Formal Modeling and
Analysis of Timed Systems, FORMATS’07. Berlin, Heidelberg: Springer;
2007. p. 38–52.

18. Goethem SV, Jacquet JM, Brim L, Šafránek D. Timed modelling of gene
networks with arbitrarily precise expression discretization. Electron Notes
Theor Comput Sci. 2013;293:67–81. Proceedings of the Third International
Workshop on Interactions Between Computer Science and Biology
(CS2Bio’12).

19. Fathallah-Shaykh HM, Bona JL, Kadener S. Mathematical model of the
drosophila circadian clock: Loop regulation and transcriptional
integration. Biophys J. 2009;97(9):2399–408.

20. Ma B, Leijten JCH, Wu L, Kip M, van Blitterswijk CA, Post JN, Karperien
M. Gene expression profiling of dedifferentiated human articular
chondrocytes in monolayer culture. Osteoarthr Cartil. 2013;21(4):599–603.

21. Leijten JCH, Emons J, Sticht C, van Gool S, Decker E, Uitterlinden A,
Rappold G, Hofman A, Rivadeneira F, Scherjon S, Wit JM, van Meurs J,
van Blitterswijk CA, Karperien M. Gremlin 1, Frizzled-related protein, and
Dkk-1 are key regulators of human articular cartilage homeostasis.
Arthritis Rheum. 2012;64(10):3302–12.

22. Scholma J, Schivo S, Kerkhofs J, Langerak R, Karperien HBJ, van de Pol
JC, Geris L, Post JN. ECHO: the Executable CHOndrocyte. In: Tissue
Engineering & Regenerative Medicine International Society, European
Chapter Meeting, Genova, Italy, vol. 8. Malden: Wiley; 2014. p. 54.

23. Scholma J, Schivo S, Karperien HBJ, Langerak R, van de Pol JC, Post JN.
An ECHO in biology: Validating the Executable CHondrocyte. In: 2014
World Congress on Osteoarthritis, Paris, France. Osteoarthritis and
Cartilage, vol. 22. Amsterdam: Elsevier; 2014. p. 157.

24. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Res. 2000;28(1):27–30.

25. Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B.
PhosphoSite: A bioinformatics resource dedicated to physiological
protein phosphorylation. Proteomics. 2004;4(6):1551–61.

26. Gaudet S, Janes KA, Albeck JG, Pace EA, Lauffenburger DA, Sorger PK. A
compendium of signals and responses triggered by prodeath and
prosurvival cytokines. Mol Cell Proteomics. 2005;4(10):1569–90.

27. Janes KA, Gaudet S, Albeck JG, Nielsen UB, Lauffenburger DA, Sorger
PK. The response of human epithelial cells to TNF involves an inducible
autocrine cascade. Cell. 2006;124(6):1225–39.

28. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell.
2000;103(2):239–52.

29. Bannister AJ, Brown HJ, Sutherland JA, Kouzarides T. Phosphorylation of
the c-Fos and c-Jun HOB1 motif stimulates its activation capacity. Nucleic
Acids Res. 1994;22(24):5173–6.

30. Bailly S, Fay M, Israël N, Gougerot-Pocidalo MA. The transcription factor
AP-1 binds to the human interleukin 1 alpha promoter. Eur Cytokine
Netw. 1996;7(2):125–8.

31. Russell M, Lange-Carter CA, Johnson GL. Direct interaction between Ras
and the kinase domain of mitogen-activated protein kinase kinase kinase
(MEKK1). J Biol Chem. 1995;270(20):11757–60.

32. Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ.
JNK1: A protein kinase stimulated by uv light and ha-ras that binds and
phosphorylates the c-Jun activation domain. Cell. 1994;76(6):1025–37.

33. Aldridge BB, Saez-Rodriguez J, Muhlich JL, Sorger PK, Lauffenburger DA.
Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/Insulin-
induced signaling. PLoS Comput Biol. 2009;5(4):1000340.

http://fmt.cs.utwente.nl/tools/animo


Schivo et al. BMC Systems Biology  (2016) 10:56 Page 15 of 15

34. Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB.
A systems model of signaling identifies a molecular basis set for
cytokine-induced apoptosis. Science. 2005;310(5754):1646–53.

35. Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris
M, Iersel Mv, Lauffenburger D, Saez-Rodriguez J. CellNOptR: a flexible
toolkit to train protein signaling networks to data using multiple logic
formalisms. BMC Syst Biol. 2012;6(1):133.

36. Gonçalves E, Saez-Rodriguez J. Cyrface: An interface from Cytoscape to R
that provides a user interface to R packages. F1000Research. 2013;2:192.

37. Chaouiya C, Berenguier D, Keating S, Naldi A, van Iersel M, Rodriguez N,
Drager A, Buchel F, Cokelaer T, Kowal B, Wicks B, Goncalves E, Dorier J,
Page M, Monteiro P, von Kamp A, Xenarios I, de Jong H, Hucka M,
Klamt S, Thieffry D, Le Novere N, Saez-Rodriguez J, Helikar T. Sbml
qualitative models: a model representation format and infrastructure to
foster interactions between qualitative modelling formalisms and tools.
BMC Syst Biol. 2013;7(1):135.

38. Siebert H, Bockmayr A. Temporal constraints in the logical analysis of
regulatory networks. Theor Comput Sci. 2008;391(3):258–75.

39. Bartocci E, Corradini F, Merelli E, Tesei L. Model checking biological
oscillators. Electron Notes Theor Comput Sci. 2009;229(1):41–58.
Proceedings of the Second Workshop From Biology to Concurrency and
Back (FBTC 2008).

40. Chaouiya C, Remy E, Mossé B, Thieffry D. Qualitative analysis of
regulatory graphs: A computational tool based on a discrete formal
framework In: Benvenuti L, De Santis A, Farina L, editors. Positive
Systems. Lecture Notes in Control and Information Sciences, vol. 294.
Berlin/Heidelberg: Springer; 2003. p. 830–2.

41. Bock M, Scharp T, Talnikar C, Klipp E. Boolesim: an interactive boolean
network simulator. Bioinformatics. 2014;30(1):131–2.

42. Krumsiek J, Polsterl S, Wittmann D, Theis F. Odefy - from discrete to
continuous models. BMC Bioinforma. 2010;11(1):233.

43. Mendes P, Hoops S, Sahle S, Gauges R, Dada J, Kummer U.
Computational modeling of biochemical networks using COPASI. In:
Systems biology, Methods in Molecular Biology, vol. 500. Totowa, NJ:
Humana Press; 2009. p. 17–59. Chap. 2.

44. Matsuoka Y, Funahashi A, Ghosh S, Kitano H. Modeling and simulation
using celldesigner In: Miyamoto-Sato E, Ohashi H, Sasaki H, Nishikawa
J-i, Yanagawa H, editors. Transcription Factor Regulatory Networks.
Methods in Molecular Biology, vol. 1164. Springer; 2014. p. 121–45.

45. de Jong H, Geiselmann J, Hernandez C, Page M. Genetic Network
Analyzer: qualitative simulation of genetic regulatory networks.
Bioinformatics. 2003;19(3):336–44.

46. Resasco DC, Gao F, Morgan F, Novak IL, Schaff JC, Slepchenko BM.
Virtual Cell: computational tools for modeling in cell biology. Wiley
Interdiscip Rev Syst Biol Med. 2012;4(2):129–40.

47. Ciocchetta F, Duguid A, Gilmore S, Guerriero ML, Hillston J. The
Bio-PEPA Tool Suite. Int Conf Quant Eval Syst. 2009;309–310. http://
ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5290656.

48. COSBILab. 2012. http://www.cosbi.eu/index.php/research/cosbi-lab.
Accessed date 11 June 2016.

49. Nagasaki M, Saito A, Jeong E, Li C, Kojima K, Ikeda E, Miyano S. Cell
illustrator 4.0: a computational platform for systems biology. Stud Health
Technol Inform. 2011;162:160–81.

50. yEd. 2015. http://www.yworks.com/en/products/yfiles/yed. Accessed
date 11 June 2016.

51. Palmisano A, Hoops S, Watson LT, Jones Jr TC, Tyson JJ, Shaffer CA.
Multistate Model Builder (MSMB): a flexible editor for compact
biochemical models. BMC Syst Biol. 2014;8(1):1–13.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5290656
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5290656
http://www.cosbi.eu/index.php/research/cosbi-lab
http://www.yworks.com/en/products/yfiles/yed

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Modelling in cell biology
	An introduction to ANIMO

	Results
	Modelling oscillation in Drosophila Melanogaster circadian clock
	Using ANIMO to generate hypotheses in human colon carcinoma cells

	Discussion
	Final remarks on the models
	User experience: ANIMO and other modelling tools

	Conclusions
	Methods
	Modelling biological interactions with timed automata
	Example: building a model based on data

	Additional files
	Additional file 1
	Additional file 2

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

