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Abstract

Background: Recent advances in large datasets analysis offer new insights to modern biology allowing system-level
investigation of pathologies. Here we describe a novel computational method that exploits the ever-growing amount
of “omics” data to shed light on Alzheimer’s and Parkinson’s diseases. Neurological disorders exhibit a huge number of
molecular alterations due to a complex interplay between genetic and environmental factors. Classical reductionist
approaches are focused on a few elements, providing a narrow overview of the etiopathogenic complexity of
multifactorial diseases. On the other hand, high-throughput technologies allow the evaluation of many components
of biological systems and their behaviors. Analysis of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD) from a
network perspective can highlight proteins or pathways common but differently represented that can be
discriminating between the two pathological conditions, thus highlight similarities and differences.

Results: In this work we propose a strategy that exploits network community structure identified with a
state-of-the-art network community discovery algorithm called InfoMap, which takes advantage of information theory
principles. We used two similarity measurements to quantify functional and topological similarities between the two
pathologies. We built a Similarity Matrix to highlight similar communities and we analyzed statistically significant GO
terms found in clustered areas of the matrix and in network communities. Our strategy allowed us to identify
common known and unknown processes including DNA repair, RNA metabolism and glucose metabolism not
detected with simple GO enrichment analysis. In particular, we were able to capture the connection between
mitochondrial dysfunction and metabolism (glucose and glutamate/glutamine).

Conclusions: This approach allows the identification of communities present in both pathologies which highlight
common biological processes. Conversely, the identification of communities without any counterpart can be used to
investigate processes that are characteristic of only one of the two pathologies. In general, the same strategy can be
applied to compare any pair of biological networks.
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Background
Biological overview
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are
two age-related neurodegenerative diseases of the central
nervous system characterized by dysfunction and death of
specific neuronal populations [1, 2].
Neurological disorders exhibit a huge number of molec-

ular alterations due to a complex interplay between
genetic and environmental factors [1]. Classical reduc-
tionist approaches are focused on a few elements,
providing a narrow overview of the etiopathogenic com-
plexity of multifactorial diseases [3]. On the other hand,
high-throughput technologies such as transcriptomics,
proteomics, metabolomics and computational approaches
allow the evaluation of many components of biologi-
cal systems and their behaviors [3, 4], thus allowing for
system-level investigations.
AD is the most common cause of dementia and it is

characterized by progressive cognitive decline and neu-
ronal loss accompanied by the formation of extracellu-
lar plaques of amyloid-β (Aβ) aggregates and intracel-
lular neurofibrillary tangles (NTFs) of hyperphosphory-
lated Tau. It is also related to biochemical mechanisms,
such as the unfolded protein response (UPR), mito-
chondrial dysfunction, neuroinflammation and vascular
alterations [1].
PD is characterized by a progressive degeneration of the

nigrostriatial system with loss of dopaminergic neurons
in the substantia nigra pars compacta. Several environ-
mental and genetic factors are correlated with PD. Among
them, mutated or overexpressed α-synuclein aggregates
impair synaptic function, affect the proteasome sys-
tem and promote mitochondrial dysfunction and ROS
production [2].

Computational overview
algori One possible way of representing interaction data
is using graphs (or networks). A Graph G = (V ,E) is a
mathematical object defined as a pair of sets: one set of
vertices V (nodes, or proteins in a biological context) and
one set of edges E (links, or interactions). E contains pairs
(v1, v2), where v1 and v2 are contained in V. For instance,
protein interactions can be represented as graphs, inter-
actions between two proteins form a link between two
vertices, and a whole collection of proteins and interac-
tions forms a graph. These structures of linked entities
exhibit several recurring properties and characteristics
that can be used to analyze different phenomena from an
holistic level, instead of using the classical reductionist
approach.
Network community discovery is a procedure used to

identify groups of nodes from large networks of inter-
acting entities. These communities consist of elements
connected one another that share common characteristics

or features. Due to its complexity, the problem of
finding communities of interconnected entities is an
open problem in several disciplines varying from com-
puter science, mathematics, and bioinformatics. These
communities of interconnected entities are present in
natural and, in particular, in biological networks where
they represent functional modules [5]. Since it is known
that the characteristics of one protein are related to
the proteins sitting in its neighborhood [6], community
analysis can represent a valid tool to analyze protein
functions.
Generally speaking, network analysis is used to ana-

lyze biochemical pathways in larger networks [7]. As an
example, the Girvan-Newman (GN) Edge Betweenness
[8] algorithm is one possible approach to identify com-
munities of nodes. This algorithm was applied to investi-
gate how calculated communities can be used to analyze
mass-spectrometry data, confirming that the community
structure identified by the GN algorithm was biologically
meaningful [9]. Unfortunately, since the complexity of
the GN algorithm is O(n3), this algorithm does not scale
well for large networks, implying that different algorithms
need to be used.
Community discovery algorithms performances were

recently compared against networks with known struc-
ture showing that a better algorithm, which outperforms
GN algorithm [10], is the InfoMap [11] algorithm based
on information theory principles. This algorithm is both
fast and accurate for large networks with heterogeneous
community sizes.
Without taking into account a network structure among

interacting entities, lists of proteins or genes can be ana-
lyzed to extract common processes. More in general,
comparing two pathologies exploiting lists of involved
genes extracted, for instance, with some high-throughput
experimental methods, is a complex and time consum-
ing task that requires a lot of research. Entities need
to be analyzed and compared, often one by one, in
order to understand common and different character-
istics. Alternatively, the analysis of large lists of genes
can be done automatically using DAVID, which also
assigns a significance value (p-value) to characteristic
terms [12].
Comparative approaches were also useful to identify

cancer-specific gene signatures [13] and the relevance
of metabolism in human cancer [14, 15], as well as to
investigate networks and genes linking sleep and stress
disturbances in neuropsychiatric disorders [16].

Strategy description
In this work we propose a new strategy that exploits
network community structure identified with InfoMap in
order to compare two similar and yet different pathologies
AD [17] and PD [18].We introduce a graph-communities-
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based SimilarityMatrix that can be used to cross-compare
two pathologies in order to highlight similarities and
differences in terms of functions and network topology.
Communities present in both pathologies can be analyzed
to highlight common biological processes. Conversely,
communities without any counterpart are used to inves-
tigate processes that are characteristic of each of the two
pathologies separately. Figure 1 summarizes the entire
approach. Datasets supporting the results of this article
are included in Additional file 1.

Results and discussion
To compare AD and PD from a network perspective, we
took the two starting lists of AD [17] and PD [18] proteins
without considering network structure and we enriched
them with Gene Ontology terms describing biological
processes. We obtained 827 significant Gene Ontology
terms from AD list, and 550 terms from PD list. The sim-
ple intersection between these two lists resulted in 368
common terms, which was large and hard to evaluate.
Despite this richness of terms, known processes involved
in both pathologies, such as RNA splicing, histonemodifi-
cation, DNA repair and others, either were missing or had
not significant p-values, suggesting that a more refined
analysis was needed.
Using the two starting lists, we derived two networks

from the human interactome [19]. We found that both
networks were compliant with what are proposed to be
natural networks [20]. Both starting networks were small-
world, scale-free [8, 21] and ultra small [22] with an
average path length in the order of ln(ln(N)), where N is
the number of nodes in the network. Table 1 summarizes
this analysis.

Preliminary networks comparison
As shown in Table 2A, this preliminary analysis confirmed
that AD and PD networks have good similarities both in
terms of entities involved [12 %, which was higher than
Influenza (8 %) and mTOR (6 and 8 % versus AD and
PD, respectively)], and in terms of links contained in the
induced graphs (81 % of edges in common). Indeed, by
observing these measurements (Table 2B), we concluded
that AD and PD are more similar to each other in terms of
networks structure (81 %), than they are to Influenza (69
and 68 % versus AD and PD, respectively). A greater dis-
tance would not be reasonable, as both neuropathologies
and Influenza share inflammatory responses. Likewise,
Table 2A and B show that both AD and PD share enti-
ties (6 and 8 % versus AD and PD, respectively) and
interactions (77 and 86 %, respectively) with the mTOR
pathway, because of the central role of mTOR in regu-
lating neuronal homeostasis in response metabolic and
energy requirements, as well as in influencing neuronal
function and synaptic plasticity [23]. Moreover, inhibition
of mTOR signaling plays an essential role in neuropro-
tection by clearing aggregated proteins and dysfunctional
mitochondria in these and other neurodegenerative con-
ditions [23]. These considerations were also confirmed by
data in Table 2C, where we calculated the amount of com-
mon communities with GO terms similarity within the
first and fifth quintile. Not surprisingly, all networks over-
lapped and, as expected, mTOR had a good overlap with
both the neurodegenerative diseases at study. This result is
also a consequence of the vastness of the mTORmap ana-
lyzed, which contained more than 2300 different proteins
resulting in an induced graph with more than 8000 nodes
and more than 25,000 edges (see Table 1). On the other

Fig. 1 Experimental design. a Starting from the two induced networks, communities were calculated (blue circles) and for each of them a list of
Gene Ontology terms was retrieved. b Communities term lists were compared calculating Jaccard similarity, which was then reported in a similarity
matrix (red high overlap, blue low overlap). c The similarity matrix consists of communities that contain significant terms (Benjamini p-value < 0.05).
A clustering algorithm revealed areas (green squares) that represent common processes, while communities without any high overlap counterpart
(blue long rectangles) were analyzed to find specific processes of the two pathologies d) Network topology was analyzed to assess structure overlap
between pairs (Hamming distance) of communities concluding that topology implies biological process but not vice-versa. Clustered green areas
were further analyzed by assigning to terms in the clusters a significance p-value
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Table 1 Networks characteristics and metrics

Alzheimer’s Parkinson’s Influenza mTOR
disease disease

Seed nodes 302 454 176 2362

Induced graph nodes 5,262 6,051 4,010 8,009

Induced graph edges 20,205 22,296 16,632 25,812

Average degree 7.680 7.369 8.295 6.446

Average path length 3.013 3.031 2.841 3.244

Small-World 8.57 8.708 8.296 8.988

Ultra Small 2.148 2.162 2.116 2.196

Power-law exponent 2.885 2.831 1.743 1.509

Average transitivity 0.013 0.011 0.015 0.008

InfoMap communities 372 422 227 572

hand, it would be very difficult to find a biological network
without overlaps with AD/PD, as these neuropatholo-
gies are often associated with co-morbidities. Moreover,
neuronal degeneration also involves activation of cell cycle
events (see Additional file 2), which might be considered
as peculiar of cancer growth.

Considerations about signaling networks
Signaling networks, despite being different from PPI net-
works, may provide useful information to analyze com-
munities that exert signaling functions. Even though PPI
imply physical contacts while signaling interactions are
often “long range” interactions, which hampers the auto-
matic merge of these two kinds of networks, we partially
analyzed the largest published signaling networks [24].
Table 3 shows that the coverage of the utilized signaling

network is good but lower than the one of thementha PPI
network. Furthermore, among all the entities included in
the analyzed signaling networks, we calculated that 92 %
were also contained in mentha. Finally, since signaling
networks currently do not provide interaction reliability
scores, we could not perform the proposed method. In
our case the InfoMap [11] network community discovery
algorithm needs scored interactions.
These considerations do not rule out that an analy-

sis similar to the one proposed in our work might be
performed again in the near future, as these networks
grown in coverage and curation detail, hopefully with the
aid of a common curation policy that might also help
data integration, like it happened for protein interaction
networks [25].
We refined the basic Gene Ontology analysis by subdi-

viding the starting network into communities obtaining
372 communities for AD and 422 communities for PD.We
used these communities to analyze similarities in terms of
biological processes and network topology. By enriching

each community with Gene Ontology terms, we created
lists of biological processes that describe each identified
group. Only communities containing terms with a signif-
icant Benjamini corrected p-value (p-value ≤ 0.05) were
retained, thus reducing the number of analyzed commu-
nities from 372 to 186 in AD, and from 422 to 222 in
PD.
Instead of manually going through 186 × 222 pairs to

find relevant terms, we used a Similarity Matrix to per-
form a clustering algorithm in order to identify areas to
investigate.
Starting from the results obtained from the compu-

tational strategy, we performed two analyses. First, we
investigated pairs of communities that had a similarity
within the fifth quintile of the similarity distribution and
well clustered areas identified on the Similarity Matrix
(Fig. 2). This findings allowed us to conclude that most of
the biological processes involved in AD and PD are sim-
ilar, which is in compliance with the fact that AD and
PD are both neurodegenerative diseases. Furthermore,
we were able to identify processes such as DNA repair,
RNA metabolism and glucose metabolism that were not
detected by simple Gene Ontology Enrichment analysis.
Second, by analyzing communities with similarity within
the first quintile, we identified 10 communities in PD and
8 communities in AD that contained specific processes
for the two pathologies (Table 4). It is worth mentioning
that this approach also highlighted not yet clarified phe-
nomena that will be considered for our future studies and
promote new working hypotheses.
For instance, we found that community 174 of AD

includes enzymes catalyzing the synthesis of tetrahy-
dropterin (BH4). In addition to its role as a cofac-
tor in the biosynthesis of monoamine neurotransmitters
(adrenaline/noradrenaline, dopamine and serotonin) and
in the balance of nitric oxide, BH4 is also an important
regulator of the cellular redox state by shuttling reduc-
ing equivalents from NADPH to specific substrates. More
studies will be also needed to elucidate the significance of
PDGF or collagen (community 163) in AD, as well as the
relevance of FGF (community 179) in PD, most likely for
their role in neurogenesis and angiogenesis. Finally, com-
munity 185 in AD is particularly interesting as its terms
are related to the biosynthesis of purine and pyrimidine,
which is something poorly investigated. The entire list of
identified communities is available in supplementary data
(Additional files 2 and 3).
Using significantly functional communities, we also

investigated which communities actually had a similar
topology and which communities, despite their func-
tional similarity, had different topologies. In accordance
with the known relationship between communities and
biological functions, we did not find any community
with high topological similarity and low Gene Ontology



Calderone et al. BMC Systems Biology  (2016) 10:25 Page 5 of 10

Table 2 Entities, networks and communities overlap comparisons

A) Common entities

Alzheimer

Alzheimer - Parkinson

Parkinson 12 % - Influenza

Influenza 8 % 8 % - mTOR

mTOR 6 % 8 % 3 % - Random*

Random* 0.17 % 0.11 % 0.28 % 0.02 % -

B) Common interactions

Alzheimer

Alzheimer - Parkinson

Parkinson 81 % - Influenza

Influenza 69 % 68 % - mTOR

mTOR 77 % 86 % 64 % - Random*

Random* 8.83 % 7.7 % 8.97 % 3.5 % -

C) Similar communities

Alzheimer

Alzheimer - Parkinson

Parkinson 36 % - Influenza

Influenza 28 % 27 % - mTOR

mTOR 35 % 39 % 22 % - Random*

Random* 0.66 % 1.18 % 0.15 % 2.47 % -

A) shows the percentage of common entities among the four lists analyzed calculated with Jaccard distance. B) Shows the overlap in terms of links between the four induced
networks analyzed calculated with Hamming similarity. C) shows results obtained counting overlapping community pairs that have a functional similarity that falls in the fifth
quintile. (*) Values calculated by averaging the results obtained against 100 randomly generated sets of comparable sizes

similarity, suggesting that topology implies biological pro-
cesses but not vice-versa. This is not surprising as various
sets of proteins can exert similar biological processes,
such as transcription regulation, stress response and
so on.
Our InfoMap based computational strategy, while con-

firming the relevance of the PD-map by Fujita [18],
provided a new tool to capture the potential connec-
tion between neuronal mitochondrial dysfunction, glu-
cose metabolism and glutamate/glutamine cycle (which
also involve astroglial responses), as recently implemented

Table 3 Comparison with signaling networks. Protein-protein
interaction networks currently have an higher coverage than
signaling networks

Seed proteins in network

Alzheimer Parkinson Influenza mTOR

mentha (PPI) 99 % 100 % 91 % 98 %

Zaman et al. (Signaling) 87 % 76 % 82 % 73 %

in the on-line PD map [18]. This finding strengthens the
need for detailed metabolomic studies.

Conclusions
In conclusion, understanding neurodegenerative diseases
is a task that requires different strategies and approaches.
By using a community discovery algorithm based on infor-
mation theory principles and by using two community-
wise similarity measurements, we were able to identify
communities of proteins that describe processes involved
in two distinctive and yet similar pathologies. Overall, our
approach can be used to compare any pair of biologi-
cal networks. In particular, we identified similarities and
differences between AD and PD, which can in turn pro-
mote cross-seeding between groups working on the two
pathologies separately.

Methods
All datasets used in this work were publically available and
we did not require any ethic approval to access and use
them.
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Fig. 2 Similarity matrix. This matrix shows statistically significant communities found in Alzheimer’s and Parkinson’s diseases protein-protein
interaction networks clustered according to their Gene Ontology overlap. Green areas are clusters that might reveal strong significance. Single red
dots are communities that are almost exclusively overlapped between the two pathologies

Networks comparison
To start our analysis, we collected genes and proteins from
two SBML models describing AD [17] and PD [18] and
complemented these two lists with data downloaded from
the KEGG database [26]. AD list contained 302 proteins
while PD list contained 454 proteins.
Direct comparison of SBML models is not feasible due

to subjectivity: biochemical reactions can be described
at different level of detail and with different entities and
terminology. Therefore, we moved our analysis on the
human interactome [19] and, by using these “seed pro-
teins”, we extracted two subnetworks, one for AD and one
for PD.
At first, we assessed what was in common between

the starting lists of proteins and their respective induced
graphs extracted from the entire human interactome. At
the same time, we assessed whether AD and PD net-
works were actually closer to each other than they were
to other potentially unrelated networks. To this end, we
compared AD and PD networks against another large
SBML model describing Influenza [27] and a large SBML

model describing the mTOR pathway [28]. All models
were processed in the same way, as described in Networks
Assembly and Validation. The comparison between AD
and PD against these two models is justified by the fact
that all four models are large enough to be comparable.
Several smaller models are available [29] but they are not
as comprehensive as those considered in this work.
We calculated Jaccard similarity [30] (Common entities

over all entities) between the two starting lists and Ham-
ming distances [31, 32] (Common edges) between the two
starting networks. Details about these measurements are
reported in Similarity Measurements.

Networks assembly and validation
To uniform data extracted from SBMLmodels and KEGG,
we translated all proteins and genes to UniProt [33] Acces-
sion Numbers using UniProt mapping API. This allowed
us to extract protein-protein interaction networks from
the mentha [19] weighted human interactome, a free
database that offers ready-to-use merged data from dif-
ferent resources (namely IntAct [25, 34], MINT [35], DIP
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Table 4 Specific processes for AD and PD. List of processes that do not have a counterpart in both pathologies

Alzheimer’s disease Parkinson’s disease

Community Description Community Description

33 Cell motility and adhesion 96 Blood vessel development

135 Lipid metabolism and transport 109 Glutamatergic synaptic transmission

163 PDGF signaling pathway 150 TGF signaling pathway

174 Tetrahydrobiopterin biosynthesis 164 Synaptic vesicles secretion

175 IGF signaling pathway 169 Dopaminergic transmission

243 IL6 and CNTF signaling pathway 179 FGF signaling pathway

330 Blood coagulation 185 Purine/pyrimidine metabolism

365 Endothelin signaling pathway 323 Chemotaxis

364 Proteoglycan biosynthesis

385 Inner mitochondrial membrane organization

[36], MatrixDB [37] and BioGrid [38]). mentha uses the
same data curation policy promoted by the IMEx consor-
tium, granting for a manual-quality interaction network.
Since interactions archived in mentha are weighted, we

chose a filtering threshold to reduce false positives. We
performed three analysis: F-Score, Network Expansion,
Seed Proteins Recall (Fig. 3).
First of all, we wanted to find a filtering threshold that

could approximate the functional information archived in
Reactome [39], a well-established pathway database that
contains data similar to those of the biological models
used in our starting datasets (i.e. biochemical reactions).
We used Reactome as a positive set (152,267 interactions)
and added a ten times larger set of random interactions
not present in Reactome (negatives). To this end, we cal-
culated the best F-Score (the harmonic mean of precision
and recall). We performed a 100-fold validation to analyze
how mentha scores approximated Reactome interactions

as cutoff changes. Figure 3a shows how F-Score starts to
substantially decrease after a cutoff of 0.4.
Since we had to extract subgraphs from the entire

human interactome, we also wanted to be sure that the
induced graphs were not too large, to prevent compu-
tational problems and to minimize the amount of noise
introduced in the analysis. Using “seed proteins”, we inves-
tigated how large the induced graph became with respect
to the “neighborhood radius” - i.e., if we take only the
first neighbors or also neighbors of neighbors and so on.
We wanted that our induced networks were large enough
to capture the information needed to define communi-
ties without degenerating into a too large network. From
this second analysis, we concluded that taking the first
neighbors of each seed protein was a fair choice to control
Network Expansion, Fig. 3b. We concluded that an edge
score threshold of 0.4 and a neighborhood radius of 1 was
the best choice.

Fig. 3 Interactions filtering threshold. a F-Score against Reactome. 100-Fold validation. Averaged F-Score decreases after a cutoff of 0.4 suggesting
that any threshold greater than 0.4 would lose Reactome’s interactions. b Network Expansion. Induced graph expansion on a starting set of about
400 vertices. By taking neighbors at distance two or three from seed nodes we captured almost the entire human interactome suggesting that the
best choice was taking only the first neighbors. c Recall. Average fraction of seed proteins captured in both networks at each threshold. d Similarity
between networks and random networks. Dashed lines show distance from random networks, continuous lines show distance between AD and PD
networks. Distance 0, identical networks; distance 1, completely different networks. Difference between analyzed networks was of about 20 % at
threshold 0.4, which was lower than the difference between these networks and random networks (40 %) suggesting the two networks at study are
similar



Calderone et al. BMC Systems Biology  (2016) 10:25 Page 8 of 10

Finally, we wanted to be sure that we had the best Seed
Proteins Recall possible so that most of the starting pro-
teins were actually included in the induced graphs. To
verify this, we counted how many seed proteins were
contained in the induced graphs. Figure 3c shows that a
threshold of 0.4/0.5 captured more than 80 % of the seed
proteins, justifying once again the chosen threshold and
neighborhood radius.
Having these two networks, we wanted to verify that

they are dissimilar to random networks but similar to each
other, justifying their comparison. First of all, we quanti-
fied the actual difference between these induced graphs
and random graphs generated from comparable random
seed protein sets. Secondly, we calculated how AD and
PD networks are similar to each other. To calculate graphs
similarity, we used the H distance. Using this distance, we
confirmed that with a threshold of 0.4 and a neighborhood
radius of 1 we obtained networks that are distant from
random networks but similar to each other, Fig. 3d.

Similarity measurements
Throughout our study, we used two similarity mea-
surements, one that measures entities overlap (Genes,
Proteins, Gene Ontology terms), and one that considers
network structure. We computed Jaccard similarity (J)
[30] to quantify the ratio of the intersection of two sets
over their union. We calculated the complement of the
Hamming distance (H) [31, 32] for network topology; this
second measurement is similar to Jaccard similarity, but it
considers different network links (e : (e ∈ E(G), where e is
a link and G is a graph) instead of common entities.

J = |A ∩ B|
|A ∪ B|

H = 1 − |e : (e ∈ E(G1) ∧ e /∈ E(G2)) ∨ (e /∈ E(G1) ∧ e ∈ E(G2))|
|E(G1) ∪ E(G2)|

(1)

Communities and similarity matrix analysis
We divided the two starting networks in communities to
highlight areas that exert specific functions in the two
pathologies. To extract communities – i.e. relevant inter-
connected subareas of a network – we used the InfoMap
[11] algorithm which, as shown by Lancichinetti and
Fortunato, has good performances on networks charac-
terized by heterogeneous community sizes and degree
distributions [10]. InfoMap algorithm works by assigning
strings of bits to each node in the network. These bits are
assigned in ways that describe nodes organized in groups
of strongly interconnected entities. The algorithm min-
imizes the number of bits needed to describe network
structure.
After network communities were identified, we wanted

to analyze them from a biological process perspective.

To assign a biological meaning to each community, we
performed Gene Ontology enrichment at lower levels
“FAT” by using the RDAVIDWebService [40] Bioconduc-
tor [40–42] package. This kind of analysis allowed us to
automatically collect processes involved in the two neu-
rodegenerative diseases at study. These pathologies are
the result of a great variety of pathways and processes
that are hard to enumerate without an automatic proce-
dure like Gene Ontology Terms enrichment. In general,
Gene Ontology Enrichment labels entities with a series of
terms that are then statistically ranked according to their
abundance. This approach allowed us to assign to each
community a list of terms with their respective p-values.
By taking into account significance values with Benjamini
correction [43], only communities with statistically rele-
vant terms were analyzed. To find similar communities
and different ones, we compared network topology and
terms assigned to each community.
We calculated pairwise J similarity for terms and pair-

wise H distance for subnetworks. J similarity was used
to construct a Similarity Matrix (Fig. 2) that was then
clustered using euclidean distance. This clustering step
revealed areas in the Similarity Matrix that were statis-
tically evaluated, assigning to each term in the clusters
a p-value calculated with respect to the entire Simi-
larity Matrix. This calculation was performed by cre-
ating, for each cluster, 10,000 random sets with the
same terms distribution as the entire matrix. This last
step allowed us to identify statistically significant pro-
cesses contained in the clusters identified in the Similarity
Matrix.
Finally, while common processes were identified

through community dissection and clustering, distinc-
tive processes associated to the two pathologies were
extracted from the Similarity Matrix by scanning rows
and columns retaining communities with similarity
within the first quintile in order to find communities with
no relevant counterpart in the other pathology.
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