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Constructing an integrated genetic and
epigenetic cellular network for whole
cellular mechanism using high-throughput
next-generation sequencing data
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Abstract

Background: Epigenetics has been investigated in cancer initiation, and development, especially, since the
appearance of epigenomics. Epigenetics may be defined as the mechanisms that lead to heritable changes in gene
function and without affecting the sequence of genome. These mechanisms explain how individuals with the same
genotype produce phenotypic differences in response to environmental stimuli. Recently, with the accumulation of
high-throughput next-generation sequencing (NGS) data, a key goal of systems biology is to construct networks

for different cellular levels to explore whole cellular mechanisms. At present, there is no satisfactory method to
construct an integrated genetic and epigenetic cellular network (IGECN), which combines NGS omics data with
gene regulatory networks (GRNs), microRNAs (miRNAs) regulatory networks, protein-protein interaction networks
(PPINs), and epigenetic regulatory networks of methylation using high-throughput NGS data.

Results: We investigated different kinds of NGS omics data to develop a systems biology method to construct

an integrated cellular network based on three coupling models that describe genetic regulatory networks,
protein—protein interaction networks, microRNA (miRNA) regulatory networks, and methylation regulation. The
proposed method was applied to construct IGECNs of gastric cancer and the human immune response to human
immunodeficiency virus (HIV) infection, to elucidate human defense response mechanisms. We successfully
constructed an IGECN and validated it by using evidence from literature search. The integration of NGS omics data
related to transcription regulation, protein-protein interactions, and miRNA and methylation regulation has more
predictive power than independent datasets. We found that dysregulation of MIR7 contributes to the initiation and
progression of inflammation-induced gastric cancer; dysregulation of MIR9 contributes to HIV-1 infection to hijack
CD4+ T cells through dysfunction of the immune and hormone pathways; dysregulation of MIR139-5p, MIRLET7i,
and MIR10a contributes to the HIV-1 integration/replication stage; dysregulation of MIR101, MIR141, and MIR152
contributes to the HIV-1 virus assembly and budding mechanisms; dysregulation of MIR302a contributes to not only
microvesicle-mediated transfer of miRNAs but also dysfunction of NF-kB signaling pathway in hepatocarcinogenesis.

Conclusion: The coupling dynamic systems of the whole IGECN can allow us to investigate genetic and epigenetic
cellular mechanisms via omics data and big database mining, and are useful for further experiments in the field of
systems and synthetic biology.
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Background

With advances in molecular biology technologies for
whole genome sequencing, expression profiling, and high-
throughput experiments, large amounts of biological data
covering various biological levels have emerged [1-3].
These kinds of ‘omics’ data include genetic sequences
(genomics), microarray-based genome-wide expression pro-
files (transcriptomics), protein abundance data (proteomics),
and microRNA (miRNA) and methylation data, and they
provide an unprecedented view of cellular components
and their cellular mechanisms in biological systems [4].
With the large amount of genomic/transcriptomic and
epigenetic data that has accumulated, a more complex
cellular function understanding of living organisms is
possible. Computational systems biology techniques
able to combine these large, heterogeneous genomic/
transcriptomic and epigenetic data sets will provide use-
ful tools to gain additional systems biology insights into
cellular mechanism under a specific biological condition,
for example, cancer cells or infected cells [5].

Many studies have focused on gene regulatory net-
works (GRNs) and protein—protein interaction networks
(PPINs). Classical graph algorithms have been used to
integrate cellular networks of protein—protein and pro-
tein—~DNA interactions. Well-known simple and com-
plex regulatory circuits have been identified and many
putative regulatory circuits have been discussed. In [6],
this study includes searches for composite network mo-
tifs, which consist of both transcription regulation and
protein—protein interactions (PPIs) that recur signifi-
cantly more often than expected in random networks. In
[7], integrated networks comprise transcriptional and
PPI data. Interspecific analysis has shown that several
types of network motifs are not subject to any particular
evolutionary pressure to preserve the corresponding
interaction patterns of important biological functions.
Studies have also integrated protein—protein and pro-
tein—-DNA interactions to infer signaling regulatory
pathways, but they focus only on pathways that explain
gene expression changes in response to gene knockouts
[8]. Recently, an integrated cellular network of transcrip-
tion regulation and PPIs was introduced by Wang and
Chen [9, 10]. They use gene-expression data at multiple
time points to prune and combine candidate gene regu-
latory and signaling networks obtained from genome-
scale data. An integrated and focused network for a
specific condition of interest is then obtained. The tran-
scriptional network is characterized as a dynamical sys-
tem in which the expression of a target gene is modeled
as a function of the regulatory effect of its corresponding
transcription factors (TFs) and mRNA degradation. The
modeling of a signaling/protein interaction network
accounts for the activity of neighboring loci in the
network. Genomic/transcriptomic and high-throughput
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methods have successfully identified many GRNs and
PPINs. However, to explore cellular mechanism, we need
more genomic data, such as epigenetic regulation data.

In real cellular systems, the expression of protein-
coding genes is controlled by a complex network of gen-
etic and epigenetic regulatory interactions. In addition to
the abovementioned genetic regulation mechanisms, epi-
genetic regulation via DNA methylation is also an import-
ant regulatory mechanism in several cellular processes.
Recently, high-throughput next-generation sequencing
(NGS) data containing information on mRNAs, micro-
RNAs (miRNAs), and methylation has been generated.
Therefore, many compelling biological questions center
on how regulation and interactions among genes, pro-
teins, and epigenetic regulators give rise to specific cellular
mechanisms. To address this problem, we proposed a
method to construct an integrated cellular network that
can explain specific cellular mechanisms under genetic
and epigenetic regulation in response to specific biological
conditions, based on the coupling of stochastic dynamic
models. Recently, systems biology and computational biol-
ogy methods have been widely employed to develop sto-
chastic dynamic models that describe biological functions
from a dynamic systems perspective [11-23]. Dynamic
models to construct an integrated genetic and epigenetic
cellular network (IGECN) not only provide a quantitative
description of the integrated cellular network, but also
predict the cellular mechanism of the network in response
to various conditions, gene knockouts, treatments with
external agents, etc [24].

In this study, we integrated omics data, including NGS
[25], mRNA and miRNA expression [26], RNA sequencing
(RNA-seq) [27], PPIs [28], transcription regulation inter-
action [29-32], miRNA-target gene association [33-37],
and gene ontology (GO) data (http://geneontology.org/) to
construct a candidate IGECN. A schematic diagram of the
candidate IGECN is shown in Fig. 1. The candidate
IGECN mainly consisted of three sub-networks. The first
was the candidate PPIN, which included candidate PPIs in
signal transduction pathways and metabolic pathways; the
second was the GRN, which described transcription
regulation; the third was the candidate miRNA regulatory
network. Epigenetic DNA methylation was also consid-
ered, which involves the modification of DNA to influence
mRNA transcription. The TFs in Fig. 1 are at the interface
between the PPIN and GRN, and genes are at the interface
between the GRN, PPIN, and miRNA and methylation
regulatory networks.

Since the candidate IGECN was constructed using
omics data and big database mining, for data collected
under various experimental conditions (including some
that were gathered in vitro), it must contain many false
positive interactions and regulations in the candidate
PPIN and GRN, respectively. Therefore, it is necessary
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Fig. 1 Schematic diagram of candidate integrated genetic and epigenetic cellular networks (IGECN). The candidate IGECN was constructed using
omics data and database mining. The candidate IGECN mainly consisted of three sub-networks: the candidate protein-protein interaction network
(PPIN) including signal transduction pathways and metabolic pathways, the candidate gene regulatory network (GRN) in which transcriptional
regulation occurs, and the candidate miRNA regulatory network. The epigenetic regulation of DNA methylation was considered to influence gene
transcription. Transcription factors (TFs) represent the interface between PPINs and GRNs, and genes represent the interface between GRNSs,
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to prune these false positives, which may not explain
real-world cellular mechanisms of biological organisms.
In this situation, it is more appealing to evaluate these
interactions and regulations in the candidate IGECN for
investigating whole cellular mechanisms of a real organ-
ism under specific conditions (for example, HIV infec-
tions or cancer) using gene expression profile data,
protein expression profile data, and miRNA expression
profile data via dynamic interaction and regulation
models. The false positive interactions and regulations
can be pruned based on these real-time data to con-
struct an accurate IGECN for some specific cellular
mechanisms.

In this study, three coupling stochastic dynamic
models were proposed to develop a candidate IGECN
that describes the interplay between the GRN, PPI net-
work, and miRNA network and accounts for methyla-
tion regulation in the GRN. After system parameter
estimation for coupling stochastic dynamic models of
candidate IGECN by these time-profile data, the Akaike
information criterion (AIC) and the p-value statistical
method [10] were employed to detect the system order

(the number of interactions and regulations) of coupling
stochastic dynamic models, and then prune the false
positive regulations and interactions, which are not
significant and out of system order, to obtain the real
IGECN for some specific cellular mechanisms in re-
sponse to some specific biological condition. By the
interplay of genetic transcription regulation, PPIs, and
miRNA regulation and DNA methylation of the identi-
fied IGECN, the cellular machanism can be elucidated
comprehensively.

To investigate host-pathogen interspecies cellular
interactions and regulations in the host cells is a very
important research topic in attempts to understand
pathogenic and defensive mechanisms in the HIV in-
fection process and help control the clinic pathogenic
infections. In this study, the IGECN is constructed for
investigating host-pathogen crosstalks in HIV-infected
cells by gene expression profile and miRNA profile of
NGS data. Some significant cross-talk hubs in the inter-
species IGECN can be extracted as significant crosstalk
network marker, from which we could get more insight
into the pathogenic mechanism of HIV virus and the
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defense mechanism of human. Further, the IGECN is
also constructed for cancer cells and compared with nor-
mal cells to find the significant network marker to investi-
gate some significant cues from the genetic and epigenetic
regulatory mechanisms using NGS data.

Materials and methods for constructing IGECN
Data selection and processing in gastric cancer and

liver cancer

Kim and colleagues [26] proposed microarray data,
including gene expression data and miRNA expression
data, 1 pair of data for normal and tumor tissues of stage
I gastric cancer in humans, 10 pairs of data for normal
and tumor tissues of stage II gastric cancer in humans,
and 15 pairs of data for normal and tumor tissues of
stage III gastric cancer in humans. According to The
Cancer Genome Atlas (TCGA; https://tcga-data.nci.nih.
gov/tcga/), the mRNA and miRNA expression data
including 17 dataset for normal tissues and 163 dataset for
tumor tissues of stage I liver cancer, 7 dataset for normal
tissues and 82 dataset for tumor tissues of stage II liver
cancer, 8 dataset for normal tissues and 80 dataset for
tumor tissues of stage III liver cancer, and 1 dataset for
normal tissues and 6 dataset for tumor tissues of stage IV
liver cancer were available. The candidate associations for
miRNA-gene regulatory associations are available at the
TargetScan [38—41], TF-gene regulatory associations are
available at the Human Transcriptional Regulation Interac-
tions database (HTRIdb) [29] and Integrated Transcription
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Factor Platform (ITFP) [32], and PPIs can be found at The
Biological General Repository for Interaction Datasets
(BioGRID) [28] and available in the manually curated
human signaling network in Edwin Wang Lab website
(http://www.cancer-systemsbiology.org/) [42]. In order to
integrate the above databases, we use gene symbols in
NCBI human gene database to denote the standard names
of genes in this study. We used Matlab’s text-file and
string manipulation tools in text mining. The interaction
candidates were integrated and unified from different
databases.

Data selection and processing in CD4+ T cells of human
with HIV-1 infection

Mohammadi and colleagues [25] reported gene expression
data and miRNA expression data in HIV-1-infected cluster
of differentiation 4+ (CD4+) T cells and non-infected
(normal) cells to analyze host-pathogen interactions at
early (or reverse transcription), middle (integration/repli-
cation), and late (virus assembly/budding) infection stages.

Construction of the dynamic models in IGECN

Our goal was to construct an IGECN in which the tran-
scription regulation mechanisms, miRNA regulations,
PPIs, and epigenetic regulation via DNA3 methylation are
integrated for investigating whole cellular mechanisms
under specific biological conditions. A flow chart describ-
ing the proposed method to construct the IGECN is
shown in Fig. 2. Several kinds of NSG omics data and

Estimation of TF regulatory
and methylation param eters regulatory parameters (cz)
(@y) v
Identification of significant
miRNA-regulations

Experimental Estimation of miRNA

data

Identification of significant

Transcription regulation  High-throughput INA database BioGRID database Big
interaction database microarray data (miRBase)
atabase
Gene miRNA-gene P . 5 .
expression data regulatory associations L0 mining Blg database
ANOVA mining
Selection of
significant
response genes Candidate integrated genetic
“’""‘3“‘“'05) + v and epigenetic cellular
Retrieving of TF- Retrieving of miRNA- o network (IGECN) (Fig. 1)
$» gene regulatory gene regulatory STieVIRgio
> s : PPIs
associations associations
A
. A Candidat Dynamic models (I)-(3) to
Candidate Candidate miRNA-gene andidate signaling “andidate opi : cactions i
GENI € A lory R ok i T IGECN describe the interactions in
[ Rt candidate IGECN
Hig;::srt:ll:g(:pnl =4 Dynamic modeling in (1) miRNA dynamic Dynamic
of epigenetic and modeling in (2) of genetic modeling of Using system v
Methylation data 9 transcription regulations regulations PPIsin (3) identification to [ Parameter estimation of
4 estimate network | models (1)-(3) and pruning | Experimental

Estimation of
interaction
parameters (bj,)

coupling
parameters (ay,
bjm,cy) and using
AIC to prune the
false positive of

of false positive regulations € data

and interactions

TF-gene regulations and

Epigenetic miRNA
methylations re

regulatory network
Conbination of

network

GRN

through mod e
param eters

Integrated genetic and
epigenetic cellular network

significant PPIs

GRN and epigenetic N e P Signaling regulatory
pathways

PPIs

Fig. 2 Flowchart (a) and block diagram (b) of the proposed method to integrate genetic and epigenetic cellular networks

of | candidate IGECN IGECN

(Figs. 3-7)



https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://www.cancer-systemsbiology.org/

Chen and Li BMC Systems Biology (2016) 10:18

information derived from databases are integrated, includ-
ing microarray gene expression data, PPI data, miRNA ex-
pression data, and miRNA-target gene association data, as
the input for the proposed IGECN construction method.
From these data, the candidate GRN, PPIN, and miRNA
regulatory network using the broad TF-gene regulation
pool, PPI pool, and miRNA regulatory pool, respectively,
under various biological conditions were retrieved to con-
struct a candidate IGECN. In this study, NGS data includ-
ing gene expression and miRNA profiles were used to
validate these integrated TF-gene regulation data, PPIs,
and miRNA regulation data in the candidate IGECN.
Therefore, stochastic dynamic models were used to iden-
tify interactions and regulatory mechanisms in the candi-
date IGCEN by gene expression and miRNA expression
profiles using NGS data under a specific biological condi-
tion of interest, for example, cancer or infections.

In the transcriptional regulation sub-network of the
candidate IGECN, the candidate GRN was depicted as a
stochastic dynamic system in which the regulations of
TFs and miRNAs are the inputs and gene expression
levels of target genes are outputs (Fig. 1). For target gene
i in the candidate GRN, the stochastic dynamic model is
described by the following stochastic discrete dynamic
equation:

Ji Li
w(t+1) =0 + Y agy(t)- caxi(B)si(t) (1)
= =1

—/lixi(t) + k,’ + W,‘(t),

where x;(t + 1) denotes the mRNA expression level of
the ith target gene at time ¢ + 1, a;; represents the regula-
tory ability of the jth TF to the ith target gene (with a
positive or negative value indicating activation or repres-
sion), the regulatory ability a; is also influenced by the
DNA methylations of the corresponding gene [43], y(¢)
represents the regulation function of the jth TF binding
to the target gene i, A; indicates the degradation effect
from the present time ¢ to time ¢+ 1, k; represents the
basal level (which is also dependent on the methylation
of gene i), s/t) denotes the expression level of the /th
miRNA, the parameter c; represents the rate of miRNA-
mRNA coupling (and is dependent on the energy of
RNA-RNA binding [44]), and w;(t) denotes the stochas-
tic noise due to modeling residue and fluctuation in the
expression profile of the target gene. The biological in-
terpretation of equation (1) is that the mRNA expression
x(t + 1) of the target gene i at time ¢+ 1 is a function of
the present mRNA expression x;(£) and mRNA expres-
sion due to transcriptional regulation of J; TFs that bind
to the target gene at time ¢, minus the inhibitory regula-
tion of L; miRNAs at time ¢, minus the mRNA due to
the degradation over time, plus the basal level of mRNA
expression, and stochastic noise due to measurement
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and random fluctuations in the expression profile of tar-
get gene i.

In the candidate miRNA regulatory sub-network, the
stochastic dynamic model of the /th miRNA can be de-
scribed by the following stochastic discrete time dynamic
equation [45]:

si(t+1) = Sz(t)—zl: cusi(t)xi(t)-risi(t) + ki + @(¢),
(2)

where the degradation of miRNA, i.e. Zjilcilsl(t)xi(t),
is accompanied by mRNA degradation events induced
by the miRNA in (1). That is, the /th miRNA induces
the degradation of I, mRNAs at present. r; denotes the
self-degradation rate, k; denotes the production rate of
the /th miRNA, and @(f) denotes the stochastic noise.

In the PPI sub-network, the candidate PPIs were
depicted as a system in which expressions of mRNA and
TFs are input/output of the system (Fig. 1). For a target
protein j in the candidate PPI sub-network, the stochas-
tic dynamic model of protein expression level is given as
follows:

6 +1) = 200-3 by 0, (6) + a5 (6)-3 )
+ 1+ ()

(3)

where y;(t) represents the expression level at time ¢ of
the target protein j, b;, denotes the interaction ability
between the mth interactive protein y,,(f) and the target
protein y;(t), a; represents the effect of protein synthesis
from mRNA, x;(t) denotes the mRNA expression level of
the jth protein, /; represents the basal expression level,
and (j(t) is the stochastic noise. The rate of formation of
the protein complex y{(£)y,,(t) is proportional to the prod-
uct of the concentration of each proteins [46, 47], i.e., it is
proportional to the probability of molecular collisions be-
tween two proteins; thus, the protein interaction complex
was modeled as nonlinear multiplication scheme.

The biological interpretation of equation (3) is that the
expression level of the target protein j at time £+ 1 is a
function of the protein expression level at time £, minus
protein complex interactions with M; proteins, plus the
translation effect, minus the present protein degradation,
plus the basal protein level from other sources and sto-
chastic interactions. It is noted that there is no direc-
tionality for interacting proteins in the PPI sub-network.

The regulatory effects and interactions between genes,
proteins, miRNA, and DNA methylation in the candi-
date IGECN are described in the following. Some TFs
¥;(t) at the end of candidate signal transduction pathways
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(PPINs) regulate target genes according to the regulation
function a;y,(t) shown in equation (1), and mRNAs of
target genes are also negatively regulated by some miR-
NAs s)(¢). The regulated genes influence the corre-
sponding protein expression level via translation from
mRNA x;(f) to protein ax;(t), as described in (3). An
mRNA degradation event, -c;x;(t)s,(£), described in (1),
induced by miRNA s,(z), also leads to the degradation of
miRNA, -¢;s,(¢)x,(¢), in (2). Epigenetic DNA methylation
also influences the regulation parameter ; and basal
level k; in (1) and the translation rate a; from mRNA to
protein in (3). The interplay among genes, proteins,
miRNAs, and DNA methylation can be seen in (1)- (3)
and Fig. 1, in which TFs are at the interface between
PPINs and GRNs, and genes are at the interface be-
tween GRNs, miRNA, PPINs, and DNA methylation.
Based on the above stochastic dynamic models (1)-
(3), the candidate GRN can be linked through the regu-
latory parameters a;; in (1) between genes and their pos-
sible regulatory TFs (Fig. 1), and the candidate PPIN can
be linked through the interaction parameters b;,, in (3)
between possible interacting proteins. The candidate
GRN and miRNA regulatory network are linked through
the miRNA-mRNA coupling parameters ¢; in (1) and
(2). Since the candidate IGECN only indicated potential
TE-gene regulatory effects, PPIs, and miRNA-mRNA
couplings based on data collected by database mining,
they should be confirmed by gene expression profile,
protein expression profile, and miRNA expression pro-
file in NGS data. The regulatory effects a;; and c; in (1),
interaction bj,, in (3) and regulation c; in (2) , which
represent the edges of the candidate IGECN, should be
identified and validated by empirical gene, protein, and
miRNA expression data. These regulatory and inter-
active parameters were evaluated using temporal data by
solving the constrained least square parameter estima-
tion problem. Owing to the limited number of temporal
data points, to avoid overfitting when identifying the pa-
rameters in (1-3), the cubic spline method [10] was also
used to interpolate extra time points for gene expression
data. The gene regulatory parameters a; and c; were
identified gene by gene (and PPI parameters b;,, protein
by protein), so that the candidate integrated network
identification process was not limited by the number of
genes, proteins, and miRNAs in the candidate IGECN.
In other words, the regulatory parameters a; and c; in
(1) were first identified for target gene i and then for tar-
get gene i + 1, i + 2, etc. The models in (1-3) only repre-
sent a small fraction of real biology. For example, many
post-transcriptional regulators (RNA-binding proteins)
as well as epigenetic regulations beyond methylation
were involved. The model uncertainty of real biological
system and the fluctuation of expression data were in-
volved in the stochastic noises, w;(£) in (1), w,(t) in (2),
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and ((¢) in (3). A model order detection method such as
AIC and statistical assessment like the Student’s ¢-test
[10] were used to prune the false-positive regulatory ef-
fects and interactions and then detect the true inter-
action and regulation number of each in the candidate
IGECN. AIC [10, 48, 49] was applied to detect the real
regulations and interactions by pruning the false positive
regulations and interactions in the candidate GRN (1),
candidate miRNA regulatory network (2), and the candi-
date PPI network (3). AIC, which includes both esti-
mated residual error and model complexity in one
statistics, quantifies the relative goodness of fit of a
model The minimization achieved in AIC will indicate
the real network with the true model order. By applying
AIC detection method, the insignificant parameters, a;,
c¢; and b, out of network order are considered as false
positives and pruned from candidate IGECNs. We then
used Student’s t-test to evaluate the significance of each
regulatory parameter in (1-3) [10]. In this way, the can-
didate GRN, candidate PPIN, and candidate miRNA
regulatory network based on large-scale data mining
were pruned using the temporal data, leading to the
construction of an accurate GRN, PPIN, and miRNA
regulatory network. Based on the interactive effects be-
tween GRNs and signal transduction pathways (or
PPINs) via TFs, and among GRNs, miRNA regulatory
networks, and PPINs via coupling genes, these three net-
works were coupled to consist of the IGECN.

We proposed a general method to construct the
IGECN using large-scale database mining and system
identification for cellular functions. In the following,
two examples are given to illustrate the application of
the IGECN system to investigate cellular mechanisms
under different biological conditions. In the first ex-
ample, an IGECN was constructed to investigate cellular
mechanisms under cancer conditions and in the second
example, an IGECN was constructed to investigate
pathogenic and defensive cellular mechanisms under
HIV infection conditions.

Identification of the regulatory parameter a;; from the ith
TF to the jth target gene, interaction b;,, between the jth
and mth proteins, and coupling rate c; between the Ith
miRNA and the ith mRNA in IGECN

After constructing the coupling dynamic models (1)-(3)
in the candidate IGECN, the regulative and interactive
parameters have to be identified using NGS data. The
strategy is to identify the IGECN gene by gene, protein
by protein, and miRNA by miRNA. Before applying the
identification method, we first examine the dynamic
models carefully. In (1), the basal level k; should be
always non-negative, because the gene expressions are
always non-negative. Because the parameters in (1)
have certain constraints, the regulatory parameters
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were identified by solving the constrained least square
parameter estimation.

The mRNA model (1) was rewritten as the following
linear regression form

xi(t+1) = [n(0) -

ai

y,(8) x(t) —s1()xi(t) - s (Hxi(t) 1]

+wi(t) (4)

CiL;

Lki ]
= $i()0} + wi(t)

where ¢,(£) denotes the regression vector which can be
obtained from the processing above and 6} is the param-
eter vector of target gene i to be estimated. In order to
avoid overfitting in the parameter estimation process,
when identifying the regulatory parameters, the cubic
spline method [50-52] was also used to interpolate extra
time points for y,(¢), x,(¢) and s{(£) from NGS data.

The mRNA model (4) at different time points can be
arranged as follows.

xi(2) ¢i(t1) wi(t1)
xi(fa) _ ¢i(’t2) o' + Wi(‘tS) (5)
xi(ﬁ) ¢)i(£L—1) Wi('f‘L—l)

where L is the number of expression time points of NGS
data after cubic spline interpolation.

For simplicity, we define the symbols X;, @;, and W; to
express (5) as follows.

X; = ®,0; + W, (6)

The constrained least square parameter estimation
problem of 6} is showed as follows.

mlinHCD,»H}—XiH; subject to A0}<b (7)
0;
Ji+1 Li+1
where 0 . 0 -1 0 0 and b=[0"0]"
A = N . . 0 ‘. 0 5

that give the constraints to force the miRNA inhibition -c;
to be always non-positive, and the basal level k; to be
always non-negative in (1), i.e. -¢; <0, and k; > 0.The con-
strained least square problem was solved using the active
set method for quadratic programming [53, 54].

Similarly, the miRNA model (2) was rewritten in the
following regression form.
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1—}”1
C1
si(t+1) = [si(t) —si()i(t) ~si(t), () 1] + m(t)
4
= y)(0)6] + @i(t)
(8)

where () denotes the regression vector and 67 indicates
the parameter vector to be estimated. By cubic spline
method, at different time points, (8) can be represented as
the following equation.

S = ‘I"lalz + W, (9)

The parameter identification problem is then expressed
as follows.

m}n”‘l’;@f—S,Hi subject to B, <b (10)
0;
I+1
o -1 0 O T
whereB= g o - ¢ |,andb=[0"0] that give
0 0O 0 -1

the constraint to force the miRNA degradation -¢; to be
always non-positive, and the basal level k; to be always
non-negative in (2), i.e. -¢; <0, and k; > 0. Finally, the pro-
tein model (3) uses the same way like above to make
sure —b;, <0, and a@; h;20. According to large-scale
measurement of protein activities, 73 % of the variance in
protein abundance could be illustrated by mRNA abun-
dance [55]. mRNA expression levels were frequently used
to substitute for the protein expression levels. If the simul-
taneously measured genome-wide protein expression data
and mRNA expression data in each cancer stage are avail-
able, the general models in (1-3) can also be applied to
identify the real network in cancer. After the parameter
identification problem was solved, we can identify the
IGECN. For example, we identified the regulatory param-
eter aggmsers: =-0.22 from the TF ETS1 to the target
gene RBM5, interaction parameter bpgrncoaz =0.06 be-
tween the 2 proteins PGR and NCOAZ2, and coupling rate
cusp1s,mir3s1 =0.001 between the miRNA MIR381 and the
mRNA USP15 in gastric cancer cells.

By using Student’s t-test [56], the p-values for the esti-
mated parameters, including the regulatory ability a;; in
(1), the miRNA-mRNA coupling rate ¢; in (1) and (2),
the protein interaction ability b;,, in (3), were calculated
to determine the significance of the parameters. By using
one-way ANOVA, we calculated the p-value for each
gene to determine the significance of expression change
between normal and tumor cells in cancers, and between
normal and HIV-infected human cells. The human DNA
methylation profiles of liver cancers (including 41
normal and 369 tumor cells), and gastric cancer (including
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2 normal and 396 tumor cells) were available in TCGA. A
One-Way ANOVA was also used to calculate the p-value
of each gene to determine the significance of DNA methy-
lation change between normal and tumor cells in each
cancer.

Results

The construction of IGECN is very useful to investigate
the whole cellular mechanisms of specific biological
conditions by big database mining and NGS data. The
following two examples were given to illustrate how to
construct IGECN to investigate the roles of genetic and
epigenetic methylation and miRNA dysregulations in gas-
tric tumorigenesis and HIV infection. Based on these
significant core network biomarkers in IGECN, potential
multiple drug targets were also proposed for the develop-
ment of therapeutic treatment.

(I) Construction of IGECN to investigate significant
cellular mechanisms in gastric tumorigenesis and
hepatocarcinogenesis
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Cancer is a complex and heterogeneous disease that is
highly robust against therapeutic interventions. It is a
constellation of diverse and evolving disorders character-
ized by the uncontrolled proliferation of cells that may
eventually lead to fatal dysfunction of the cellular system.
Although some cancer subtypes can be cured by early
diagnosis and specific treatment, no effective treatment
has been established for many subtypes. Due to the com-
plex, heterogeneous, and evolving nature of cancer, it is
appealing to construct an IGECN to gain insight into the
carcinogenesis process using large-scale data mining and
systematic genetic modeling and various types of omics
and temporal data.

Based on the importance of epigenetic modifications
in cancer, we identified IGECNs using raw data collected
at various stages of cancer as the temporal information
for gastric tumorigenesis (Fig. 3) and hepatocarcinogen-
esis (Fig. 4), demonstrating large differences between
miRNA regulations of normal and tumor tissues in gas-
tric tumorigenesis. The results (Fig. 3) show that two cell
cycle genes, ubiquitin C (UBC) and ataxia telangiectasia
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Fig. 3 The integrated genetic and epigenetic cellular network for investigating the cellular mechanisms of normal and tumor tissues in gastric
cancer. The associations include the networks in tumor cells (dotted lines), normal cells (dashed lines), and both (solid lines). The bold lines indicate large
genetic and epigenetic regulatory effects or genetic expression. Dysregulation of MIR7 contributes to initiation and progression of inflalmmation-
induced gastric cancer, and PML, a potential drug target, overcomes platinum resistance in platinum-based chemotherapy in gastric cancer
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mutated (ATM), and one chromosomal translocation
gene, CREB binding protein (CREBBP), play important
roles in gastric tumorigenesis via genetic and epigenetic
regulation. ATM is an important cell cycle checkpoint
kinase [57] , and chromosomal translocation plays a crit-
ical role in gastric tumorigenesis [58]. We identified that
7 genes have basal level difference between cancer
and normal cells, including RUNXI (P-value < 1.4X 103,
ARHGDIB (P-value < 1.6X10%), PSMEI (P-value <4X107),
VAMPS (P-value < 2X107%), POLG (P-value<1.3X107),
GZMB (P-value <1.44X107%), and RBMS (P-value<
8.2X107®), which are mainly due to DNA methylation of
the corresponding genes. In order to validate our finding,
we used the epigenomics data of human gastric cancer in
TCGA. According to DNA methylation profiles of gastric
cancer cells and normal gastric cells from TCGA, we found
that 5 genes have methylation change, including RUNX1
(P-value < 3.56X10™"), ARHGDIB (P-value < 1.81X10™),
PSMEI (P-value < 2.59X10™), GZMB (P-value < 1.79X10™),
and RBM5 (P-value <3.94X10™), and 2 genes have small
methylation change including VAMPS (P-value < 8.61X10™),
POLG (P-value < 8.38X10™) between gastric cancer cells and
normal gastric cells (Fig. 3).

Moreover, we also identified that 5 genes have basal
level difference between Hepatocellular Carcinomas
(HCCs) and normal cells, including ELAVLI (P-value <

3.69X107°), JMJDIC (P-value < 3.59X10™""), GADD45A
(P-value < 7.32X107"), EIF2AK3 (P-value <5X107°), and
GSN (P-value < 1.19X107%), which is mainly due to DNA
methylation of the corresponding genes (Fig. 4). We
used the epigenomics data of HCCs in TCGA to support
the results. According to DNA methylation profiles of
HCCs and normal liver cells from TCGA, we found that
5 gene have methylation changes, including ELAVLI (P-
value < 5.7X10°%), JMJDIC (P-value < 1.4X10?), GADD45A
(P-value < 9.6X10%), EIF2AK3 (P-value < 1.85X10°), and
GSN (P-value < 8.71X107™).

(II) Construction of an IGECN for investigating
pathogenic and defensive mechanisms of
HIV-1-infected cells

Human HIV was first identified in 1983 and rapidly
emerged as a virus responsible for a pandemic. At the
beginning of this century, the HIV epidemic received
global attention, and methods to halt and reverse the
AIDS epidemic became an important United National
Millennium topic. Currently, approximately 35 million
people are living with HIV worldwide. With the advent
of highly active antiretrovial therapies, HIV now can be
managed as a chronic disease, but developing a cure re-
mains a significant challenge. Therefore, the investigation



Chen and Li BMC Systems Biology (2016) 10:18

of interspecific host-pathogen regulatory mechanisms and
interactions in cellular genetic and epigenetic systems is a
very important research topic to improve understanding
of pathogenic and defensive mechanisms in the HIV
infection process and to help control clinical patho-
genic infections. In this section, using two-sided time-
profile HIV-human high-throughput sequence data
(NGS), RT-PCR data, miRNA data, and other omic
data, the interspecific host-pathogen IGECN was con-
structed for the HIV infection process. To construct this
model, the coupling dynamic equations (1)-(3) should be
modified to consider the pathogen in addition to the host
species as follows:

(t + 1 + Z ﬂt/)’} Z Ctlxz Sl
+Z dioho (£)-Aixi(t) + ki + wi(t),
y(t+1 Zblmy] ym Zgﬂ’y/
Faj;(£)-By;(t) + hy + §(2),
L,
ho(t+1) Z Golo(D)y;(£)=> _ motho(t)si(2)
=1
_Koho(t) +d, + fo(t),
O
si(t+1) =s(t Z cisi(£)x:( )—Z mys(t)ho(t)
o=1

-risi(t) + ki + @i(t),
()

where /1,(¢) denotes expression of the oth pathogen pro-
tein, and the crosstalk effect of pathogen proteins /,(t)
are considered. After system identification of coupling
IGECN between host and pathogen in (11) by NGS data
at different infection stages, we found that 3 genes had
differences in their basal levels between cancer and nor-
mal cells at the early infection stage, TAF5 (P-value <
2.4X10™), DDX3X (P-value <2X107'), and CELFI (P-
value < 9.47X107%); 2 genes had basal level differences
between cancer and normal cells at the middle stage,
TAF5 (P-value <5.8X1032), and CELFI (P-value<
2.07X107); 2 genes had basal level differences between
cancer and normal cells at the late stage, ZNF451 (P-
value < 9X102), and CELFI (P-value < 1.6X107%). These
genes with different basal levels at different infection
stages are mainly due to DNA methylation of stage-
specific genes. Previous evidence for DNA methylation,
including TAF5 [59] and DDX3X [60] methylation in
individuals with HIV infection, ZNF451 methylation in
individuals with Epstein—Barr virus (EBV) infection [61],
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and CELFI methylation in individuals with Moloney
leukemia virus infection [62], supports our findings.
However, DNA methylation of genes are highly tissue-
specific. If the methylation profiles of genes in HIV-
infected and mock cells are available in the future, the
results can be specifically supported.

By applying the raw expression data and the candidate
associations in cancer cells to our model (4), we identi-
fied the IGECNs at the three infection stages (Figs. 5, 6
and 7). In the following section, we discuss the contri-
bution of miRNA dysregulation to gastric cancer, HIV-1
infection progress, and liver cancer with respect to bio-
logical functions. The results have applications to the de-
velopment of therapeutic treatments.

Briefly, dysregulation of MIR7 contributes to the initi-
ation and progression of inflammation-induced gastric
cancer; dysregulation of MIR9 contributes to HIV-1 in-
fection to hijack CD4+ T cells through dysfunction of
the immune and hormone pathways; dysregulation of
MIR139-5p, MIRLET7i, and MIR10a contributes to the
HIV-1 integration/replication stage through DNA hyper-
methylation and immune system dysfunction; dysre-
gulation of MIR101, MIR141, and MIR152 contributes
to the HIV-1 virus assembly/budding stage through
DNA hypermethylation, ubiquitin transfer, and endoplas-
mic reticulum-associated degradation; dysregulation of
MIR302a contributes to not only microvesicle-mediated
transfer of miRNAs but also dysfunction of NF-«kB signal-
ing pathway in hepatocarcinogenesis.

Discussion
(a) Gastric Cancer

MIR7 contributes to the initiation and progression of
inflammation-induced gastric cancer

Until now, it has been suggested that miRNAs play
important roles in regulating proliferation and apoptosis
to promote the invasion, metastasis, and angiogenesis of
gastric cancer cells [63—65]. Although a few connections
between genetic-and-epigenetic regulatory mechanisms
in gastric cancer cells can be considered independently
using biological experiments [63—66], the precise bio-
logical functions of miRNAs in gastric cancer cells and
miRNAs affecting gastric cancer progression need to be
determined by comparing the IGECN with that of
normal cells.

In this study, we identified the IGECN including the
largest differences in miRNA regulation between normal
and cancer cells (Fig. 3). We identified that MIR7 re-
presses SMG1 (p-value < 10) in cancer cells. It has been
reported that both MIR7 and SMG1 are involved in the
initiation and progression of inflammation-induced gastric
cancer [67, 68]. The significant expression changes of
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Fig. 5 The integrated genetic and epigenetic cellular network for investigating the cellular mechanisms of normal and HIV-infected T cells at the
first HIV-1 infection stage, i.e, the reverse transcription stage. The associations include those in HIV-infected cells (dotted lines), normal cells (dashed
lines), and both cell types (solid lines). The bold lines indicate large genetic and epigenetic regulatory effects or genetic expression. Dysregulation
of the signaling cascade from MIR9 to SUMO3 contributes to HIV-1 infection, hijacking CD4+ T cells via dysfunction of the immune and hormone

pathways at the early infection stage

MIR7 (p-value <0.151) and SMG1 (p-value < 0.009) be-
tween normal gastric cells and gastric cancer cells also
supported the result that MIR7 and SMG1 play important
role in Human gastric carcinogenesis.

We identified that the expression change of MIR381
(p-value < 0.83) contributes to the expression changes of
RNA-binding protein 5 (RBM5) (p-value <0.008) and
ubiquitin specific peptidase 15 (USP15) (p-value < 6X10™%)
via significant miRNA regulations (p-value <107®) in
cancer cells. The activities of RBM5 and USP15 were also
significantly activated in gastric cancer. It has been repor-
ted that the reduced RBM5 and USP15 expressions result
in tumor cell proliferation [69, 70] and induce tumor cell
apoptosis [71], respectively. It has also been suggested that
dysregulation of two proteins, IL4 and CD40, leads to
dysfunction of cell proliferation in mantle cell lymphoma
[72], and dysregulation of MIR381 leads to dysfunction of
proliferation in esophageal cancer [73]. Thus, we proposed
that dysregulation of miRNAs in gastric cancer contrib-
utes substantially to the dysfunction of proliferation and
apoptosis in gastric cancer via the ubiquitin-proteasome
system [74]. TCGA offers a multilayered view of genomics
and epigenomics data of many human cancer types.
According to DNA methylation profiles of gastric cancer

cells and normal gastric cells from TCGA, the methy-
lation changes of GZMB (p-value <0.18), ARHGDIB
(p-value < 0.18), PSME1 (p-value < 0.26), RUNX1 (p-value
<0.36), RBM5 (p-value<0.39), POLG (p-value < 0.84),
and VAMP5 (p-value < 0.86) were found by the IGECN.
Although the methylation changes of POLG and VAMP5
were insignificant, the gene expression changes of POLG
(p-value <0.01) and VAMP5 (p-value <0.02) were still
significant. Therefore, we suggested that other regulators
may exist in regulating the expressions of POLG and
VAMPS5 in gastric cancer.

PML, a potential drug target, overcomes platinum
resistance in platinum-based chemotherapy in gastric
cancer

Although platinum-based chemotherapy has been used
to treat most malignant diseases, platinum resistance
still limits its efficacy. The nuclear receptor coactivator
family (NCOAs) and the p160 steroid receptor coactivator
family (SRCs) in gastric cancer cells exhibit significant
differences in interactions observed in the IGECN than in
normal cells. It has been proposed that SRC3 plays an
important role in intrinsic resistance to platinum therapy
in cancers [75]. The results revealed that dysregulation of
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Fig. 6 The integrated genetic and epigenetic cellular network for investigating the cellular mechanisms of normal and HIV-infected T cells at the
intermediate HIV infection stage, i.e, the integration/replication stage. The associations include those in HIV-infected cells (dotted lines), normal
cells (dashed lines), and both cell types (solid lines). The bold lines indicate large genetic and epigenetic regulatory effects or genetic expression.
Dysregulation of MIR139-5p, and MIRLET7i contributes to dysfunction of the immune response and viral replication via DNA hypermethylation

NCOA2 is transduced by signaling cascades via promyelo-
cytic leukemia (PML) and RUNX1, which is transcription-
ally regulated by v-ets erythroblastosis virus E26 oncogene
homolog 1 (ETS1). It has been suggested that ETS1 plays
an important role in regulating gastric cancer cell in-
vasion, metastasis, and angiogenesis [66, 76]. Because
RUNXI1 is essential for the development of human he-
matopoietic stem cells [77], we proposed that PML is a
potential drug target that can overcome platinum resist-
ance in the platinum-based chemotherapy in gastric
cancer. It has also been suggested that PML mediates
glioblastoma resistance to the mammalian target in
rapamycin-targeted therapies [78]. Two pharmaceutical
drugs, arsenic trioxide and retinoin, potentially target PML
to overcome platinum resistance in gastric cancer.

(b)Hepatocellular Carcinoma (HCC)

Dysregulations of DNA methylation and MIR141 contribute
to dysfunction of DNA damage response in HCC

HCC frequently occurs in the context of chronic disease
that promotes DNA damage and chromosomal aberra-
tions [79]. Recently, it has been found that the overex-
pressed MIR141 results in extensive DNA damage [80],
and JMJD1C and TP73 are the components of DNA-

damage response pathway with implications for tumori-
genesis [81, 82]. The accumulated alterations in the
DNA-damage response pathway could trigger hepatocar-
cinogenesis [83, 84]. In this study, we identified that the
3 genetic and epigenetic regulations, including the
gain of the miRNA regulation of MIR141 to JMJD1C
(p-value < 0.789) and the genetic regulation of TP73
to GADD45A (p-value <0.037) in cancer cells, and
DNA methylations of JMJD1C and GADD45A, led to
not only changes of gene expression profiles of JMJD1C (p-
value < 7.3X10™) and GADD45A (p-value <7.3xX10™)
but also changes of DNA methylation profiles of J]MJD1C
(p-value < 0.014) and GADD45A (p-value < 0.096) between
human normal liver cells and liver cancer cells (Fig. 4). The
changes also resulted in the gain of PPI between JMJD1C
and GADDA45A (p-value < 0.48) in hepatocarcinogenesis.
Therefore, we suggested that the dysregulations of DNA
methylation and MIR141 give rise to dysfunction of DNA
damage response in HCC.

Dysregulation of MIR335 contributes human HCC cell
proliferation

Recently, it has been proposed that down-regulation of
PTPMTT1 is sufficient to trigger cancer cell death [85],
and TRIM27 participates in regulating cell proliferation
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01, MIR141, and MIR152 to the HIV-1 Gag protein contributes to HIV-1 budding and release via DNA hypermethylation,
ubiquitin transfer, and endoplasmic reticulum-associated degradation at the late infection stage
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in the development of cancer [86]. We identified that
the change in the miRNA expression profile of MIR335
(p-value < 0.808) results in the significant change in the
gene expression profile of PTPMT1 (p-value < 8.4X107)
between normal liver cells and liver cancer cells (Fig. 4).
The expressions of TRIM27 and PTPMT1 were signifi-
cantly activated in HCC. The significant genetic alter-
ations of TRIM27 (p—value<8.4X10’4) and PTPMT]1,
and their interaction (p-value <0.32) in HCC promote
aberrant proliferation. Therefore, we suggested that dys-
regulation of MIR335 contributes human HCC cell
proliferation.

Dysregulation of MIR302a contributes to not only
microvesicle-mediated transfer of miRNAs but also dysfunction
of NF-kB signaling pathway in hepatocarcinogenesis

It has been identified that microvesicles transfer miRNA
between cells and alter biological functions by affecting
signaling pathways in hepatocarcinogenesis [87]. Micro-
vesicles are enriched with maladjusted miRNAs, which
could regulate zinc finger proteins. We identified that
the change in the miRNA expression profile of MIR302a
(p-value < 0.734) leads to the change in the gene expres-
sion profile of teashirt zinc finger homeobox 3 (TSHZ3)

(p-value < 0.189), also known as zinc finger protein 537
(ZNF537), between normal liver cells and liver cancer
cells (Fig. 4). The expression change of TSHZ3 further
contributes to the change in the gene expression profile
of TNF receptor-associated factor 2 (TRAF2) (p-value <
1.73X10™™), which mediates the dysfunction of the
nuclear factor-kappa B (NF-«B) signaling pathway in
hepatocarcinogenesis. The dysregulated NF-kB signaling
pathway results in HCC angiogenesis and metastasis
[88]. Suppression of TRAF2 inhibits the proliferation of
several cancer cells [89], and the oncogene in epithelial
cancers, TRAF2, contributing to the dysregulated NE-
kB signaling pathway has been also identified [89].
Therefore, dysregulation of MIR302a contributes to
not only microvesicle-mediated transfer of miRNAs
but also dysfunction of NF-kB signaling pathway in
hepatocarcinogenesis.

Dysregulation of the hormone receptors, ESR2 and AR,
contributes to hepatocarcinogenesis

The most recent study proposed that menopause,
which results from growing estrogen deficiency and
physiological aging, increases risk of immune system dis-
orders, mitochondrial dysfunction, cellular senescence,



Chen and Li BMC Systems Biology (2016) 10:18

and imbalance between antioxidant formation and oxida-
tive stress [90]. The physiologic and biochemical changes
in those functions have a direct effect on liver function
and mediate the development of liver disease. In this
study, we identified two hormone receptors, estrogen re-
ceptor 2 (ESR2) and androgen receptor (AR), which were
involved in multiple changes in intracellular signaling cas-
cades. The gene expression profile of ESR2 showed the
change (p-value < 0.091) between young and old normal
liver cells, and the change (p-value < 0.063) between young
normal liver cells and young liver cancer cells (Fig. 4). The
relatively small change in the gene expression profile of
ESR2 (p-value < 0.45) between old normal liver cells and
old liver cancer cells implicates that the gene expression
change of ESR2 could be necessary but not sufficient for
hepatocarcinogenesis. The significant change in the gene
expression profile of AR not only between young normal
liver cells and young liver cancer cells (p-value < 2.46X107°)
but also between old normal liver cells and old liver cancer
cells (p-value < 6.13X107) implicates that the gene expres-
sion change of AR may be required for hepatocarcinogen-
esis. The result can be supported by the most recent study
in hepatocarcinogenesis [91].

(c)HIV-1 Infection

The signaling cascade from MIR9 to SUMO3 contributes
to HIV-1 infection to hijack CD4+ T cells through dysfunction
of the immune and hormone pathways at early stage
Owing to the available HIV-1 mRNA gene expression
data at middle and late infection stages and the lack of
HIV-1 protein expression data, the impact of HIV-1 pro-
teins on the host cells cannot be identified, directly. In
this study, we identified the IGECNs at early, middle,
and late infection stages (Figs. 5, 6 and 7), including the
largest differences in the miRNA regulation and HIV-1
protein interactions at the middle and late stages be-
tween normal and infected cells. At early infection stage
(Fig. 5), we identified that the expression changes of
MIR9 (p-value < 0.448) and general transcription factor
IIi (GTF2I) (p-value < 0.96) contribute to the expression
change of small ubiquitin-like modifier 3 (SUMO3) (p-
value < 0.016) via respectively regulating zinc finger pro-
tein 131 (ZNF131) (p-value<9.3X10'*) and DEAD
(Asp-Glu-Ala-Asp) box helicase 3, X-linked (DDX3X)
(p-value < 1X107). By comparing miRNA expression
profiles between the wildtype HIV-1 infected human
CEMXx174 lymphocytes and Tat RNA silencing suppres-
sor in HIV-1 infected human CEMx174 lymphocytes
[92], Tat RNA silencing suppressor contributed to the
expression change of MIR9 (p-value < 0.035). It has been
also proposed that Tat can induce MIR9 to control inflam-
matory responses [93], and Tat can also control GTF2I ex-
pression during HIV infection [94]. Additionally, it has
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been also reported that SUMO modification of ZNF131
suppressed estrogen signaling [95], and HIV transcription
was suppressed by inducing estrogen signaling [96].
Therefore, we suggested that the HIV infection leads
to dysregulation of immune and hormone pathways
to hijack CD4+ T cells.

Dysregulation of MIR34c-5p and MIR449a contributes to
the frequency of latent HIV infection

Moreover, we also identified that the expression changes
of MIR34c-5p (p-value < 0.33), and MIR449a (p-value <
0.50) contributed to the expression changes of TATA
binding protein-associated factor 5 (TAF5) (p-value <
0.25) via miRNA regulations (p-value < 1X107'). It has
been suggested that the genetic and epigenetic regula-
tions in TATA protein binding may control the fre-
quency of latent HIV infection [97]. Therefore, we
suggested that genetic and epigenetic regulations in
TAF5 also contribute to control HIV infection at early
stage.

Dysregulation of MIR139-5p contributes to HIV-1
replication via DNA hypermethylation

At the intermediate HIV infection stage, we identified that
the expression change of MIR139-5p (p-value < 0.23) con-
tributes to the expression change of DDX3X (p-value <
0.14) via miRNA regulation (p-value < 1X10¢). The ex-
pression of DDX3X was also activated at the intermediate
HIV infection stage. Therefore, we suggested that DDX3X
could regulate HIV replication through MIR139-5p regu-
lations [98, 99].

Dysregulation of MIRLETZi contributes to dysfunction of
the immune response and viral replication

It has been reported that the HIV-1 Vif/Vpr protein is
essential for viral replication [100, 101]. We determined
that the Vif/Vpr protein is regulated by MIRLET7i (p-
value < 1X107%%) and interacts with the human STAT1
protein (p-value < 1X10719) (Fig. 6). Therefore, the ex-
pression change of MIRLET7i (p-value < 0.079) leads to
the expression change of Vif/Vpr protein (p-value <
0.318) during the intermediate HIV infection stage. It
was supported by the previous observations that MIR-
LET7i has high homology to HIV-1 sequences (90—100 %)
[102] and the immune response of T cells induced by the
Vpr-STAT1 interaction was involved in regulating HIV-1
replication [100]. Moreover, by comparing miRNA expres-
sion profiles between the wildtype HIV-1 infected human
CEMXx174 lymphocytes and Vif/Vpr RNA silencing sup-
pressor in HIV-1 infected human CEMx174 lymphocytes
[92], Vif/Vpr RNA silencing suppressor contributes to the
expression change of MIR7i (p-value < 0.107). Therefore,
we proposed that the miRNA regulation of MIRLET7i to
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the Vif/Vpr protein is involved in the induction of the
immune response and viral replication (Fig. 6).

Dysregulation of MIR10a contributes to dysfunction of
immune response in CD4+ T cells and viral replication

At the second infection stage, we determined that
MIR10a regulates HIV-1 proteins including Gag/Pol (p-
value < 1X107*°), which significantly interacts with small
subunit (SSU) processome component, homolog (yeast)
(KRR1) (p-value <1X107°), also known as HIV-1 Rev
binding protein 2 (HRB2) (Fig. 6). Therefore, the expres-
sion change of MIR10a (p-value <0.86) contributes to
the expression change of Gag/Pol (p-value < 0.36). It has
been reported that KRR1, an evolutionarily conserved
gene, is essential for viral replication [103]. Additionally,
MIR10a is involved in the regulation of immune re-
sponse in CD4+ T cells [104] and coxsackievirus group
B type 3 (CVB3) replication [105]. Moreover, it has been
shown that the copy number of loci belonging to the
MIRLET?7 family and MIR10a is correlated with HIV-1
viral load during viral infection [106]. Therefore, we pro-
posed that dysregulation of MIR10a is involved in HIV-1
replication via post-transcriptional regulation of HIV-1.

Dysregulation of MIR101, MIR141, and MIR152 to HIV-1
budding and releasing through DNA hypermethylation,
ubiquitin transfer, and endoplasmic reticulum-associated
degradation at the virus assembly/budding infection stage
The final steps of HIV-1 replication are virus assembly
and budding. It has been proposed that the HIV-1 Gag
protein is involved in the regulation of these steps
[107, 108]. At the late infection stage, we determined
that regulation of MIR101, MIR141, and MIR152 to Gag
(p-value < 1X107°) results in dysfunction of the infected
cells through a signaling cascade of 5 proteins, PRMT1,
inositol 1,4,5-trisphosphate receptor type 1 (ITPR1),
autocrine motility factor receptor (AMFR), tripartite
motif containing 25 (TRIM25), and ubiquitin-conjugating
enzyme E2N (UBE2N) (Fig. 7). The 4 genes were also
highly expressed in HIV-1-infected T cells. Therefore, the
expression changes of MIR101, MIR141, and MIR152
(p-value < 0.037, p-value <0.108, and p-value < 0.126,
respectively) contributed to the expression change of Gag
(p-value < 0.090). We proposed that DNA methylation-
associated proteins including PRMT1 and UBE2N
contributes to virus release from HIV-1-infected cells to
dysregulated uninfected cells through aberrant hyperme-
thylation of host target genes [109]. It has been also sug-
gested that MIR101 [110], and MIR152 [111] induce
aberrant DNA hypermethylation in the hepatitis B virus
infection. Moreover, ubiquitin transfer is required for effi-
cient HIV-1 release during the final step of viral replica-
tion. Therefore, we suggested that the UBE2N-associated
ubiquitin transfer is induced by a signaling cascade leading
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to dysregulation of MIR101, MIR141, and MIR152.
Additionally, we also found that ITPR1 is induced to regu-
late HIV-1 infectivity through endoplasmic reticulum-
associated degradation [112].

Conclusions

In this study, we proposed a new method to construct
IGECNSs for describing cellular mechanisms by system
dynamic modeling and large-scale database mining of
NGS data. Furthermore, we applied the method to
identify differences in the IGECNs between normal and
cancer cells to investigate carcinogenesis, and between
HIV-1-infected and non-infected cells to investigate
pathogenic and defensive mechanisms at the reverse
transcription stage, integration/replication stage, and
virus assembly/budding stage based on omics databases
and NGS data. Database mining provided all possible
candidates for genetic and epigenetic regulatory effects
and interactions in the IGECNs related to cellular func-
tions. We used AIC and statistical assessment to prune
the false-positive regulatory effects and interactions by
applying the dynamic coupling model to NGS data.
Finally, we compared the major differences in IGECNs
between different biological conditions to identify mech-
anistic differences to explore the evolution of cellular
mechanisms. Based on these network comparisons, we
examined how genetic and epigenetic regulation mech-
anism affects gastric tumorigenesis, hepatocarcinogen-
esis, and the progression of HIV-1 infections in CD4+ T
cells. Therefore, the proposed IGECN construction
method allowed us to unravel cellular network mecha-
nisms from genetic and epigenetic mechanisms using
omics databases and NGS data. A cancer hallmark net-
work framework has been proposed 9 cancer hallmark
networks, including angiogenesis-inducing network,
mutating network, dedifferentiation network, EMT
(epithelial-mesenchymal transition) network, genome
duplication network, immune-escaping network, survival
network, metabolic network, and Stroma-network [113].
By comparing the hallmark network difference between
normal and cancer cells, cancer clonal evolution and clin-
ical phenotypes, which will have impact on diagnosis and
personalized treatment, can be predicted.
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