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Abstract

Background: Developing novel uses of approved drugs, called drug repositioning, can reduce costs and times in
traditional drug development. Network-based approaches have presented promising results in this field. However,
even though various types of interactions such as activation or inhibition exist in drug-target interactions and
molecular pathways, most of previous network-based studies disregarded this information.

Methods: We developed a novel computational method, Prediction of Drugs having Opposite effects on Disease
genes (PDOD), for identifying drugs having opposite effects on altered states of disease genes. PDOD utilized
drug-drug target interactions with ‘effect type’, an integrated directed molecular network with ‘effect type’ and
‘effect direction’, and disease genes with regulated states in disease patients. With this information, we proposed
a scoring function to discover drugs likely to restore altered states of disease genes using the path from a drug
to a disease through the drug-drug target interactions, shortest paths from drug targets to disease genes in
molecular pathways, and disease gene-disease associations.

Results: We collected drug-drug target interactions, molecular pathways, and disease genes with their regulated states
in the diseases. PDOD is applied to 898 drugs with known drug-drug target interactions and nine diseases. We compared
performance of PDOD for predicting known therapeutic drug-disease associations with the previous methods. PDOD
outperformed other previous approaches which do not exploit directional information in molecular network. In addition,
we provide a simple web service that researchers can submit genes of interest with their altered states and will obtain
drugs seeming to have opposite effects on altered states of input genes at http://gto.kaist.ac.kr/pdod/index.php/main.

Conclusions: Our results showed that ‘effect type’ and ‘effect direction’ information in the network based approaches can
be utilized to identify drugs having opposite effects on diseases. Our study can offer a novel insight into the field of
network-based drug repositioning.
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Background
A drug is a chemical compound used to treat diseases
and it usually has opposite effects to disease states. The
traditional drug development remains expensive and time
consuming process with low success rate. Developing a
new drug to market takes about 15 years and 1 billion US

dollars [1] and more than 85 % of drugs are failed to be re-
leased [2]. The identification of new therapeutic indications
for existing drugs suggests an alternative for this situation
[3]. The repurposing of approved drugs reduces costs and
times involved in early phase of drug discovery.
In silico methods have provided candidates for novel

uses of existing drugs. With the emerging technologies
generating gene expression profiles, one of prevalent
computational approaches to identify novel indications
for existing drugs is based on drug and disease gene ex-
pression signatures from public databases [4–7]. These
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methods predicted drug and disease pairs showing thera-
peutic relationships through comparison of signatures of
drugs effect and diseases pathophysiology. They discovered
some previously uncharacterized uses of known drugs to
diseases. However, these studies may have low precision
since gene expression profiles, especially for drugs, can be
generated under various conditions such as different tissue,
cell line/types, and different doses of drugs [5].
Other recent popular in silico approaches in drug reposi-

tioning are network-based approaches including: 1. predic-
tion of interactions between drugs and target proteins and
using them for drug repositioning [8–11]; 2. prediction of
drug effects to disease genes on biological networks [9, 12,
13]. These network-based studies have revealed promising
results. However, even though there are diverse types of
drug-drug target interactions such as activation or inhib-
ition, the first type of network-based methods using drug-
target interactions (DTI) regarded drug-target protein
interactions as binary interactions, except for one [11],
which did not illustrate how this method could be used in
drug repositioning. The second type of network-based
methods using molecular biological networks did not fully
take into account the way drugs affect to disease genes
because these methods did not consider ‘effect types’, ‘effect
directions’, and ‘altered disease genes’ in diseases (Fig. 1).
Thus, candidate drugs for the treatment of diseases from
previous studies could activate over expressed genes in the
disease state or inhibit under-expressed genes and could
accelerate progression of the disease. In addition, candidate
drugs from previous studies could not exert influence on
diseases genes due to ‘effect direction’ (Fig. 1).
Here, we proposed a novel approach to identify novel

indications of existing drugs by predicting drugs having
opposite effects on altered disease genes. Our hypothesis is
that if a drug compensates differentially regulated states of

disease genes in patient, then that drug has the potential to
be a therapy of the disease. Entire routes from drugs to dis-
ease genes are considered with the ‘effect types’, ‘effect direc-
tions’, and ‘altered disease genes’ information: interactions
between drugs and drug targets; directed pathway between
drug targets and disease genes; regulated states of disease
genes in patients. This approach is termed as Predicting
Drugs having Opposite effects Disease genes (PDOD).
In our PDOD approach, we integrated directed path-

ways having ‘effect type’ and ‘effect direction’, mapped
drug-drug target interactions with their ‘effect types’, and
mapped disease genes with their differentially regulated
states. Based on this entire path, we predicted a drug
whose targets are close to disease genes and activate
down-regulated disease genes or inhibit up-regulated
disease genes in patients as a therapy for the diseases
(Fig. 2 and Additional file 1: Figure S1). We also showed
that our method would be able to verify known uses of
drugs and predict novel indications for existing drugs.

Methods
Datasets
To identify how drugs influenced on disease genes, we
considered the shortest paths from drugs to diseases.
We collected directed molecular pathways, drug-target
protein interactions, and disease related genes with their
regulated states from various data sources. The datasets
used in our method are described here.

Integrated directed pathways
We constructed a directed backbone network having
‘effect type’ and ‘effect direction’ by integrating Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
[14]. Although KEGG pathway does not cover entire
molecular entries and pathways in human, it provides

Fig. 1 The way a drug has effects on disease genes. The entire path from a drug to disease genes consists of ‘effect type’ such as activation or
inhibition, ‘effect direction’, and ‘altered states of disease genes’ like up- or down-regulated states in disease patients
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manually curated pathways with highly reliable relations
having ‘effect type’ and ‘effect direction’ information. We
downloaded KEGG Markup Language (KGML) files of
286 human pathways using KEGGgraph package [15]. We
only used gene entries and relations with obvious ‘effect
direction’ like activation, inhibition, expression, and re-
pression. Then, the 166 human pathways including signal
transduction and transcription pathways were merged into
a Directed KEGG pathways (DKEGG) consisting of 3,307
nodes and 28,808 directed edges. Each node in DKEGG is
a gene and each edge represents a relation with ‘effect
type’ and ‘effect direction’ from gene A to gene B, for ex-
ample, gene A activates (inhibits) gene B. In DKEGG, if
the effect type from gene A to gene B was ‘activation-like
effect types’ like activation or expression, we assigned the
edge weight from node A to B as ‘+1’ and if the effect type
from node A to B was inhibition or repression, the edge
weight from node A to B was set to ‘-1’.

Drug-drug target interactions
Drug-drug target interactions were obtained from Drug-
Bank database (version 4.0) [16]. We collected drugs which
possess known ‘activation-like’ or ‘inhibition-like’ drug-drug
target interactions. We regarded activation, agonist, activa-
tor, simulator, and partial agonist interactions as ‘activation-
like drug-drug target interactions’ and inhibition, inhibitor,

antagonist, negative modulator, inverse agonist, suppressor,
inhibitor (competitive), partial antagonist, reducer, and
blocker as ‘inhibition-like drug-drug target interactions’.
We filtered out drugs whose targets were not included in
DKEGG. Finally, we extracted 2,434 drug-drug target inter-
actions for 364 drug targets (genes) and 898 drugs.

Selection of diseases
We selected diseases satisfying several conditions: 1. Known
disease-gene associations with direct evidence are in Com-
parative Toxicogenomics Database (CTD) [17]; 2. Diseases
related tissues are clear; 3. Gene expression profiles of dis-
ease cases and controls obtained from related tissues exist
in Gene Expression Omnibus (GEO) database [18]. Based
on these conditions, we selected original 16 disease. Gene
expression data information and related tissues about 16
diseases we firstly chose were shown in Additional file 2:
Table S1.

Disease genes with their altered states
Disease-gene associations for 16 diseases were collected
from CTD. We only used disease-gene associations hav-
ing direct evidences. MeSH IDs [19] of diseases and the
number of the associated disease genes are described in
Additional file 2: Table S1.

Fig. 2 Overview of PDOD. a Integrating pathways whose edges have ‘effect type’ and ‘effect direction’ information. b Mapping drug-drug target
interactions on an integrated pathway with their ‘effect type’ and ‘effect direction’. c Mapping disease genes with their regulated states in patients.
d Predicting drugs having opposite effects on states of disease genes in disease states based on shortest paths
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We assigned altered states of disease genes using gene ex-
pression data. We downloaded microarray gene expression
datasets for each disease from GEO. The altered states
of disease genes were assigned to up-regulated or down-
regulated if disease genes are significantly differentially
expressed genes between disease and control samples. We
identified significantly differentially expressed genes using
linear models and empirical Bayes methods (limma) [20]
representing several practical advantages compared to other
methods [21]. We found altered disease genes of 16
diseases whose FDR corrected p-values were less than 0.05.
Five diseases, Alzheimer’s disease, bipolar disorder, chronic
obstructive pulmonary disease, idiopathic pulmonary fibro-
sis, and major depressive disorder, were excluded because
none of their disease genes was significantly differentially
expressed in disease states. Then, we checked whether dif-
ferentially expressed disease genes exist in DKEGG or not.
Multiple sclerosis was removed because its differentially
expressed disease genes do not exist in DKEGG. Pulmonary
hypertension was also filtered out because a differentially
expressed disease gene is an isolated node in DKEGG.
Finally, nine diseases were used in our further analysis.

Collecting therapeutic drug-disease associations
The chemical-disease association file was downloaded
from CTD. MeSH IDs, presented in Additional file 2:
Table S1, were utilized to match nine diseases in our
study to diseases in the chemical-disease association
field. We collected answer drugs for each disease which
mean the drugs could be used to treat the diseases. The
chemicals were employed as the answer sets in the fur-
ther analysis according to two criteria: 1. Chemicals have
therapeutic associations for diseases; 2. Chemicals have
DrugBank ID and drug-drug target interactions with
their effect types. The entire list of answer drugs with
DrugBank ID for each disease is shown in Additional file
3: Table S2.

Resolving conflicts in DKEGG
We hypothesized drugs whose targets have short distances
to disease genes and activate (inhibit) down (up)-regulated
genes in disease states can be used to treat the diseases.
To calculate distances between drug targets and disease
genes, we inferred all possible shortest paths from
each drug target to each disease gene using Breadth-
first-search algorithm in DKEGG with ‘effect type’ and
‘effect direction’. In our approach, a distance from
gene A to gene B can be a negative value if gene A inhibits
gene B.
In directed biological pathways, there exist conflicts.

Conflict refers to a situation that two or more contra-
dictory relations coexist in directed biological pathways

[22]. Conflicts usually occur in biological pathways due
to different biological contexts [23], for example, a dual
way of TAK1 working corresponding to different cellular
contexts [24]. In addition, conflicts were also observed in
shortest paths from node A and node B in the directed
pathway. For example, there were cases that gene A acti-
vated gene B in one shortest path while gene A inhibited
gene B in other shortest paths: gene A activates gene C
and gene C activates B; gene A activates gene D and gene
D inhibits B.
To resolve this problem, we searched all possible shortest

paths and set a distance dc(r, g) from a drug target r to
a disease gene g with the consideration of the conflict
problem by

dc r; gð Þ ¼ na þ ni
na−ni

d r; gð Þj j ð1Þ

where na is the number of ‘activation-like shortest paths’,
ni is the number of ‘inhibition-like shortest paths’, and
|d(∙)| is an absolute value of distances of shortest paths
between a drug target and a disease gene. Whether a
shortest path is an activation or inhibition-like path is
determined by the sum of the number of inhibition
and repression edges. If the sum of the number of inhib-
ition and repression edges is an even number including
zero in the shortest path, it is regarded as an activation-
like path and if an odd number, an inhibition-like path.
The sign of dC indicates whether the drug target would ac-
tivate or inhibit the disease gene. When the number of
activation-like shortest paths is greater than inhibition-like
shortest paths, the sign of dC is positive, or vice versa. The
absolute value of dC reveals how reliable the effect from a
drug target to a disease gene is. As the number of activa-
tion and inhibition-like paths are similar, the absolute
value of dC increases than an original absolute value of
distances |d(∙)| and it represents the drug target would
give little influence on the disease gene. If the number of
activation and inhibition-like paths are equal or a drug tar-
get r and disease gene g are not connected in DKEGG,
dC(r, g) will be a value of infinity. The distribution of dC
between all genes in DKEGG is presented in Additional
file 4: Figure S2.

A score between a drug and a disease
For each drug and disease pair, we calculated a score
using drug-target interactions, distances from drug targets
disease genes with consideration of conflicts, and the regu-
lated states of disease genes. In our PDOD approach, a
PDOD score between a drug R having drug targets ri and a
disease G with its associated disease genes gj was computed
as below:
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where α is the parameter of a bell shaped function
meaning the half width of the bell shaped function, nr is
the number of drug targets of the drug R, ng is the number
of disease genes of the disease G, i(ri) is the corresponding
value for the predefined ‘effect type’ of drug-target interac-
tions and it is assigned to ‘+1’ for ‘activation-like drug-drug
target effect type’ and ‘-1’ for ‘inhibition-like drug-drug tar-
get effect type’, s(gj) is ‘+1’ in case that gj is a down-regulated
gene in disease states and ‘-1’ in case of an up-regulated-
gene, and sign(∙) is the sign function. Thus, the function
sgn(ri , gj) has a positive value when a drug has on opposite
effect on a disease gene gj through a drug target ri. We set
our scoring function as a bell shaped function since we
thought that if the distances from drug targets to a disease
genes were longer than the specific distance, α, the possibil-
ity that the drug had an effect on the disease genes would
decrease rapidly. Thus, an absolute value of our PDOD
score is in inverse proportion to the norm of dc(ri, gj). We
divided our scores by the number of drug targets of the
drug because we thought target proteins which did not
affect disease genes might act as ‘off-targets’ for treatment
of diseases and these targets could lead to unexpected ef-
fects such as side effects [25]. Our scores were also divided
by the number of disease genes for normalization between
diseases and thus our scores had values between −1 and 1.
Finally, in our scoring function, a drug will receive a high
score in case that drug targets of the drug are close to dis-
ease genes, drugs targets activate down-regulated disease

genes and inhibit up-regulated disease genes in patients,
and the number of off-targets is small.

Results and discussions
We applied our PDOD approach to nine diseases,
adenocarcinoma of lung, acute myelocytic leukemia,
astrocytoma, asthma, glioblastoma, oligodendroglioma,
Parkinson disease, schizophrenia, and thyroid carcinoma.
For each disease, we estimated the possibility of 898 drugs
for the treatment of each disease based on PDOD scores
which use drug-drug target interactions with ‘effect type’
from DrugBank, shortest paths from drug targets to dis-
ease genes with the consideration of conflicts in DKEGG,
and changed states of disease genes in the disease with
disease genes from CTD and expression profiles of GEO.
The distribution of PDOD scores between all drugs and
nine diseases we used presented in in Additional file 4:
Figure S2–S3.

Performance of PDOD and previous methods
Comparison to a network-based method without directional
information
To verify the importance of directional information used
in PDOD, we make a Predicting Drugs having effects on
Disease genes (PDD) score which uses drug-drug target
interactions without ‘effect type’, paths from drug targets
to disease genes on DKEGG without ‘effect type’ and ‘ef-
fect direction’, and disease genes without their regulated
states.
We calculated PDOD scores and PDD scores between

all 898 drugs and each disease respectively and compared
performance of PDOD to PDD for predicting known drugs
of each disease from CTD. Fig. 3 shows the area under
receiver operating characteristic curves (AUC) values of
PDOD and PDD approaches for nine diseases. As shown
in Fig. 3, PDOD shows better performance than PDD in
the prediction of answer drugs for diseases except for
Parkinson disease. This illustrates the importance of
directional information used in PDOD. We set a value

Fig. 3 Comparison of PDOD with PDD. The AUC values of PDOD and PDD for nine diseases

Yu et al. BMC Systems Biology 2016, 10(Suppl 1):2 Page 21 of 119



of parameter α to three for AUC values of both PDOD
and PDD in Fig. 3. AUC values through various α values
are given in Additional file 5: Figure S4–S12. As shown in
figures of Additional file 5: Figure S4–S12, some diseases
like adenocarcinoma of lung and schizophrenia revealed
slightly different AUC values according to values of par-
ameter α and they have high AUC values when α is bigger
than three. It may be related to results from the previous
work [26] which shows that the averages of distances
between drug targets and disease genes are dependent
on the types of diseases.

Comparison to a previous method without directed network
Our approach was also compared with a previous method
using gene expression profiles of both drugs and diseases
[6, 7]. These previous approaches are analogous to PDOD
in that they intended to identify drugs likely to have
complementary effects on a disease state as therapies of
the disease. Thus, we compared performance of PDOD,
which is a network–based approach, to the previous
method using only gene expression profiles for predic-
tion of known therapeutic relationship between drugs
and diseases.
Disease gene expression signatures of the previous

method were obtained identical datasets from GEO
(Additional file 3: Table S1). We assigned that the num-
bers of up- and down-regulated disease gene expression
signatures for each disease are equal to the numbers of
up- and down-regulated disease genes used in PDOD.
With disease gene expression signatures, the enrichment
score (ES) introduced in Connectivity Map [6] was used
for determining the potentiality of a drug for the treat-
ment of the disease. A drug having high negative enrich-
ment score was expected to repress the disease. Since
some of answer drugs did not have drug exposure expres-
sion data in Connectivity Map and some drugs existing in
Connectivity Map did not have drug-target interactions

used in our approach. Thus, the intersection of two
drug sets, 317 drugs, was used in this evaluation. In this
process, the answer drug of astrocytoma and oligodendro-
glioma are filtered out. Thus, we compared performances
of PDOD and the previous method for seven diseases
(Fig. 4). Figure 4 indicates PDOD using directed network
usually outperformed a previous approach using only gene
expression signatures.

Potentiality of high ranked drugs in PDOD as therapies
Top 10 ranked drugs receiving high scores in our PDOD
for whole diseases are revealed in Table 1. All of the ten
drugs getting high scores are not included in answer
drugs for each disease. We investigated published litera-
ture which can support the possibility of uses of these
drugs for the treatment of the disease. Six drugs have
supporting evidence in literature for their expected usages
[27–36]. These results show the potential of our PDOD
approach for identification of novel drug indications.
Specially, tetracycline [DrugBank:DB00759], which is

the drug receiving the highest PDOD score and is not
contained in our answer drug sets for oligodendroglioma,
has already a supporting literature evidence for the treat-
ment of oligodendroglioma [27]. This drug inhibits its
target [Entrez ID:5621]. The distance dc from its target
[Entrez ID:5621] to up-regulated disease gene [Entrez
ID:3280] is ‘+3’ which is obtained by two ‘activation like
paths’ from DKEGG and thus its target activates up-
regulated disease genes. Therefore, this drug may in-
hibit an up-regulated disease gene [Entrez ID:3280] of
oligodendroglioma not directly but through its target
[Entrez ID:5621] and DKEGG.
Five drugs, fulvestrant [DrugBank:DB00947], cetuximab

[DrugBank:DB00002], gefitinib [DrugBank:DB00317],
erlotinib [DrugBank:DB00530], and panitumumab [Drug-
Bank:DB01269], do not exist in our answer drug sets but
they also have a potential to treat thyroid carcinoma

Fig. 4 Comparison of PDOD with a previous method using only gene expression profiles. The AUC values of PDOD and a previous method
which uses gene expression profiles of drugs and diseases
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according to literature. All of five drugs also inhibit an
up-regulated disease gene [Entrez ID:595] and activate
a down-regulated disease gene [Entrez ID:83439] through
their targets [Entrez ID:1956, 2099] and DKEGG. For ex-
ample, fulvestrant have an antagonistic effect on its target
[Entrez ID:2099]. The distance from its target [Entrez
ID:2099] to up-regulated disease gene [Entrez ID:595]
is ‘+1’ by one ‘activation like path’. The distance from
its target [Entrez ID:2099] to down-regulated disease
gene [Entrez ID:83439] is ‘-3’ by one ‘inhibition like
path’. Thus, fulvestrant would inhibit an up-regulated
disease genes and activate a down-regulated disease
gene. For another example, gefitinib have an antagonis-
tic effect on its target [Entrez ID:1956]. The distance
from its target [Entrez ID:1956] to up-regulated disease
gene [Entrez ID:595] is about ‘2.57’ by eight ‘activation
like paths’ and one ‘inhibition like path’. The distance
from its target [Entrez ID:2099] to down-regulated disease
gene [Entrez ID:83439] is ‘-2’ by one ‘inhibition like path’.
Therefore, gefitinib also would inhibit an up-regulated
disease genes and activate a down-regulated disease gene
and have an opposite effects on altered states of disease
genes through drug-drug target interactions and paths
from drug target to disease genes in DKEGG. These re-
sults not only are consistent with the previous study [26]
but also indicate the importance of the consideration of
biological networks in predicting indications of drugs.

Implementation in online
For researchers to infer drugs having opposite effects on
altered genes they interested, we implemented PDOD in
online (http://gto.kaist.ac.kr/pdod/index.php/main). Users
can submit a gene list with their Entrez gene IDs [37] and
altered states which they gained from their experiments.
Users can select and submit alpha values according to
the disease of interest [26] or the distribution of dC in
Additional file 4: Figure S2. Then, users will get a drug
list likely to have reverse effects on their genes if more

than one gene existed in DKEGG. In addition, users
can simply access our web page via mobile.

Conclusions
In this paper, we developed a novel network-based method,
PDOD, to identify novel indications of existing drugs. We
inferred drugs having reverse effects on altered states of dis-
ease genes with the consideration of ‘effect type’ and ‘effect
direction’ in directed network. For a given disease gene set
with altered states, we predicted a drug as a medicine of
the disease when the drug satisfies two conditions: 1. Target
proteins of a drug are close to disease genes; 2. A drug
restores altered states of disease genes through paths
from a drug to disease genes. We applied our method
to infer candidate therapies for nine diseases. Our PDOD
is compared to two previous approaches, the network-
based method without ‘effect type’, ‘effect direction’, and ‘al-
tered states of disease gene’ information and the method
which did not utilize any biological network. This
comparison showed the importance of this kind of in-
formation. In addition, we represented the potentialities of
some of high ranked drugs in PDOD as novel treatments
of the diseases.
We constructed a web based tool implementing PDOD.

Our online tool may help researchers to predict drugs
having opposite effects on disease genes and generate a
hypothesis easily by using PDOD. Since average values
of distances between drug targets and disease genes are
various according to categories of diseases [26], users
can set parameters depending on the disease of interest.
In addition, even though we identified altered states of
disease genes using expression data, researchers can input
genes with changed states from any kind of experiment.
In spite of our promising results for a case study, our

works have several drawbacks. One of the major draw-
backs in our approach is that the number of ‘effect types’
used in our method is limited to four interactions. Rela-
tions having ambiguous ‘effect type’ and ‘effect direction’,

Table 1 Top 10 ranked drugs in PDD and their potentiality for the therapy of diseases

Disease (MeSH ID) Drug (DrugBank ID) Description in DrugBank Supporting evidence
from literature

OG (D009837) Tetracycline (DB00759) Bacterial infections [27]

TC (D013964) Clomifene (DB00882) Female infertility due to anovulation n/a

TC (D013964) Fulvestrant (DB00947) Metastatic breast cancer [28]

TC (D013964) Ospemifene (DB04938) Dyspareunia n/a

TC (D013964) Cetuximab (DB00002) Metastatic colorectal cancer [29, 30]

TC (D013964) Gefitinib (DB00317) Certain types of cancer [31–33]

TC (D013964) Erlotinib (DB00530) Non-small cell lung cancer [34–36]

TC (D013964) Panitumumab (DB01269) Antineoplastic agent [36]

AML (D015470) Mecasermin (DB01277) Primary IGF 1 deficiency n/a

TC (D013964) Purvalanol (DB02733) n/a n/a
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for example, binding, association, and phosphorylation
were excluded at this present; thus, the scale of backbone
network is relatively small compared to a real molecular
network. We did not include these relations because they
can bring out false positives in prediction of drugs; how-
ever, it causes that some diseases like multiple sclerosis
cannot be applied PDOD to since genes related to these
diseases do not exist in our constructed network. Another
drawback of our approach is that we considered only the
shortest paths although there would be longer paths from
drug targets to disease genes. Even though we only used
the shortest paths based on the assumption that closer
genes may be more interactive, which is commonly
used in other papers using biological network [38, 39],
the consideration of longer paths could give us more
comprehensive results.
In further study, we plan to enlarge scales of the back-

bone network not only by including other interactions
like phosphorylation, methylation, binding/association,
and metabolic reaction but also by combining other data-
bases containing ‘effect type’ and ‘effect direction informa-
tion’ such as pathway interaction database (PID) and small
molecule pathway database (SMPDB). We will apply our
method to more disease cases and validate promising
drugs from our PDOD with wet lab experiment through
collaboration. In addition, we expect that a negative score
between a drug and disease in PDOD may explain the
drug that is likely to have same effects on altered states of
disease genes. In other words, the disease may be regarded
as side effects of the drug. Based on this idea, the pro-
posed approach may be feasible to predict side effects
of drugs and drug-drug interactions.
Homeostasis is one of the most fundamental features

of mankind. If a disease occurred and homeostasis could
not be maintained, a drug having opposite effects on the
disease could restore the altered states in patients. Our
approach would be appropriate to predict these kinds
of drugs.

Additional files

Additional file 1: Figure S1. Flow diagram of PDOD. The figure that
illustrates how the databases are used to generate the inputs and
expected outputs. (PDF 166 kb)

Additional file 2: Table S1. 16 diseases considered in this work.
Statistics and information of data for 16 diseases are described in this file:
Disease name; MeSH ID of diseases; GSE numbers we used; platforms of
the GSE; tissues where GSE are generated; the number of disease genes
from CTD; the number of differentially expressed disease genes; the
number of differentially expressed disease genes in DKEGG. (XLSX 12 kb)

Additional file 3: Table S2. Answer drugs used in this work for nine
diseases. Information about answer drugs used in this work are described
in this file: Disease name; MeSH ID of diseases; the number of answer
drugs for each disease; the list of answer drugs (DrugBank ID). (XLSX 11 kb)

Additional file 4: Figure S2–S3. The distribution of dc and PDOD
scores. Each figure presents the distribution of dc between all genes in

DKEGG and PDOD scores between all drugs and nine diseases we used.
(PDF 236 kb)

Additional file 5: Figure S4–S12. AUC values for nine diseases with
different values of α. AUC values of PDD and PDOD for nine diseases
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