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Integrating transcriptional and protein
interaction networks to prioritize
condition-specific master regulators
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Abstract

Background: Genome-wide libraries of yeast deletion strains have been used to screen for genes that drive phenotypes
such as stress response. A surprising observation emerging from these studies is that the genes with the largest changes
in mRNA expression during a state transition are not those that drive that transition. Here, we show that integrating
gene expression data with context-independent protein interaction networks can help prioritize master regulators that
drive biological phenotypes.

Results: Genes essential for survival had previously been shown to exhibit high centrality in protein interaction networks.
However, the set of genes that drive growth in any specific condition is highly context-dependent. We inferred regulatory
networks from gene expression data and transcription factor binding motifs in Saccharomyces cerevisiae, and found that
high-degree nodes in regulatory networks are enriched for transcription factors that drive the corresponding phenotypes.
We then found that using a metric combining protein interaction and transcriptional networks improved the enrichment
for drivers in many of the contexts we examined. We applied this principle to a dataset of gene expression in normal
human fibroblasts expressing a panel of viral oncogenes. We integrated regulatory interactions inferred from this data
with a database of yeast two-hybrid protein interactions and ranked 571 human transcription factors by their combined
network score. The ranked list was significantly enriched in known cancer genes that could not be found by standard
differential expression or enrichment analyses.

Conclusions: There has been increasing recognition that network-based approaches can provide insight into critical
cellular elements that help define phenotypic state. Our analysis suggests that no one network, based on a single data
type, captures the full spectrum of interactions. Greater insight can instead be gained by exploring multiple independent
networks and by choosing an appropriate metric on each network. Moreover we can improve our ability to
rank phenotypic drivers by combining the information from individual networks. We propose that such
integrative network analysis could be used to combine clinical gene expression data with interaction
databases to prioritize patient- and disease-specific therapeutic targets.
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Background
The sequencing of the yeast genome in the 1990s pro-
vided a catalog of genes, most of which were of un-
known function. To functionally characterize the many
newly discovered protein-coding genes, a genome-wide
library was constructed of single gene deleted yeast

strains, representing 96 % of all open reading frames [1].
This library was first used to screen for growth under
stressful conditions such as high osmotic pressure, non-
optimal glucose sources, or high pH, leading to the iden-
tification of distinct sets of driver genes responsible for
growth under each of these conditions. Expression pro-
filing of the same conditions revealed that the overlap
between driver genes and differentially expressed genes
was small and statistically insignificant [1–6]. This
showed that the genes transcriptionally activated by a
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perturbation are not the same genes that drive pheno-
typic changes in response to that perturbation.
Systematic genome-wide deletion screens are now be-

coming possible in mammalian cells through the use of
technologies such as TALENs and CRISPR-Cas9 [7–10].
However, it is infeasible to carry out such screens for every
condition, drug, disease and patient. Characterizing mul-
tiple genetic perturbations would become exponentially
complicated. As a consequence, such screens often fail to
provide insight into why some genes are important and
others are not. What is needed is a principled way to build
models of driver genes in the context of their biological
interactions.
Gene expression analysis, using expression arrays or

RNA-sequencing, is the most widely used method to assay
differences in cellular state between phenotypes. Robust
statistics have been introduced to detect differential ex-
pression [11]. Clustering genes and looking for common
binding sites upstream of their promoters can help iden-
tify transcription factors responsible for gene expression
changes [12]. The Dynamic Regulatory Events Miner
(DREM) is an example of a tool that searches for tran-
scriptional regulators. DREM uses time-series expres-
sion data and physical interactions to find bifurcations
in expression levels and the transcription factors re-
sponsible for them [13].
Network inference methods attempt to find coordinated

patterns of expression, including the interactions between
transcription factors (TFs) and genes. These methods are
based on a wide variety of metrics, like pairwise correlation,
linear regression, mutual information, classifiers and ordin-
ary differential equations. Since TFs often act nonlinearly,
through cooperativity or oligomerization, mutual informa-
tion can perform better than linear models at detecting
network interactions. Conditional mutual information
has been used to infer more complex regulatory schemes
[14, 15]. However, the most successful network inference
methods combine the results of many algorithms or inte-
grate information from sources other than gene expression
[16]. A method called PANDA (Passing Attributes be-
tween Networks for Data Assimilation) explicitly models
the activity of regulators and promoters by combining se-
quence motif data with gene expression through use of a
message-passing algorithm [17]. The result of applying
network inference methods is typically represented as a
graph where the nodes represent the genes and the edges
between them represent the presence of an interaction
with likelihood above a specified threshold. The network
edges can either be undirected, as in the case of a correl-
ation based network, or directed, as in gene regulatory net-
works such as those produced by PANDA, where edges
point from the regulator to their targets.
Protein-protein interaction (PPI) networks are used

to represent physical binding events measured between

protein pairs. In graphical representation, each node rep-
resents a protein and edges connect proteins that physic-
ally bind each other. The topology of PPI networks has
been shown to reflect some properties of biological sys-
tems. The highly connected nodes, or high-degree “hubs,”
in the yeast PPI network are enriched in essential
genes that are lethal if deleted [18]. PPI networks have
also been shown to possess a “community structure”
that groups together proteins that interact more often
with each other, and these communities are associated
with common functions or biological processes [19]. It
has been shown that disease genes are located close to
each other in the human PPI network, and disease
module proximity can be correlated with disease co-
morbidity [20, 21].
The problem with physical interaction networks is that

they are difficult to measure in phenotype-specific con-
texts, so the PPI networks reflect an aggregate of likely
networks, not accounting for whether proteins are
expressed together in individual samples or disease
states. In contrast, sequencing and gene expression pro-
filing are flexible technologies allowing individual condi-
tions or cellular states to be independently sampled. The
networks inferred from sequence or expression data can
thus carry information specific to the conditions of the
experiment. However, fewer studies have examined how
the topology of context-dependent networks can pro-
vide insight into critical genes driving individual pheno-
types [22].
Here, we describe the construction and structural ana-

lysis of context-dependent and –independent networks
in Saccharomyces cerevisiae and Homo sapiens, and the
role of phenotypic drivers in these networks (Fig. 1). In
yeast, we first analyzed data from an experiment de-
signed to measure the transcriptional response of yeast
to rapamycin, an antifungal drug that targets the Target
of Rapamycin (TOR) pathway. We then investigated six
other common stress perturbations in yeast: menadione,
dithiothreitol (DTT), hydrogen peroxide, heat shock, di-
amide, and sorbitol. We found that the driver genes spe-
cific to each condition are often enriched among the
central nodes of the transcriptional and protein inter-
action networks, and that combining the two networks
increases the power to find drivers.
In humans, we performed a similar analysis on gene

expression data from primary human fibroblasts per-
turbed by viral oncogenes, and looked for drivers of the
viral-transformed phenotypes. We found that an inte-
grative network analysis was able to enrich for cancer
drivers that were not differentially expressed in the
dataset. This suggests that combining data types to
infer networks, and examining the structure of the
resulting network, is a fruitful pipeline for analysis of
transcriptional data.
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Results and discussion
Differential expression is not a good predictor of drivers
of rapamycin response
We first examined a dataset consisting of gene expression
measured using the Affymetrix GeneChip Yeast Genome
2.0 Array platform in 97 strains of yeast upon exposure to
rapamycin [23] (ArrayExpress accession: E-MTAB-412).
The 97 strains consist of two parental strains called BY4716
and RM11-1a, and 95 haploid segregants that were created
by crossing the parental strains. All the strains were profiled
at six time points: 0, 10, 20, 30, 40, and 50 minutes. The
data for all 97 strains and six time points were collectively
normalized by the authors of [23] using robust multi-array
average (RMA) normalization. Because we were inter-
ested in modeling expression changes due to rapamy-
cin, we chose the strains that were the most sensitive to
rapamycin. To do this we downloaded a separate data-
set with measurements of the growth rates of the same
yeast strains under various drug perturbations includ-
ing rapamycin [24]. For each of the 79 strains that over-
lapped between the gene expression and growth rate
datasets, we computed a score by taking the average of the
growth rates (relative to growth under normal conditions)
under the seven rapamycin-related conditions reported
in [24]. We selected the 30 strains with a score of less
than −0.1, corresponding to low growth rate in the pres-
ence of rapamycin. (The results of our analysis are robust
to the choice of the growth rate cutoff; see Additional file 1:
Supplementary Text and Figure S1 for more details.) We
also collected a benchmark set of 396 experimentally vali-
dated driver genes that cause significantly altered growth
under rapamycin from a separately published screen of a
genome-wide deletion library [25].
We first tested whether a differential gene expression

analysis would suffice to prioritize the drivers of rapamycin
response. We used LIMMA (Linear Models for Microarray
Data) [11] to assess differential expression between the

0 minute and 50 minute time points and selected the top
20 % genes with the most significant p-values under the as-
sumption that genes which change their expression are
likely to include those driving the phenotypic response. To
visualize the data, we took the profiles of the top 20 %
genes across all the time points and standardized them on
a gene-by-gene basis by subtracting the average expression
for that gene and dividing by the standard deviation. We
then applied model-based clustering (using the R package
mclust) to cluster the standardized profiles. We found 25
clusters which showed distinct patterns of expression over
time (Fig. 2a) [26]. We carried out functional enrichment
analysis by using the R package GOstats to apply Fisher’s
exact test for overlap with Gene Ontology (GO) Biological
Process terms. For each cluster, we computed the p-values
for all the GO terms, and then adjusted for multiple testing
using the Benjamini-Hochberg (BH) method. The results
show that many of these clusters represent expected down-
stream effects of the TOR pathway, including changes in
nitrogen metabolism, actin polymerization, and autophagy,
as well as a large module of RNA processing genes. We in-
clude the full list of enriched GO terms in Additional file 2.
Among the differentially expressed genes, we found no

evidence of enrichment in driver genes (Fig. 2b). In fact,
the top 10 % of differentially expressed genes was signifi-
cantly depleted in drivers (P = 0.002; Fisher’s exact test).
The lack of enrichment was independent of the arbitrary
cutoff at 10 %. Traversing down the full list of 5655
genes on the array, ranked according to their LIMMA
p-values, never resulted in any statistical significance.
Finally, the receiver-operator characteristic (ROC) curve
shows that driver genes are not overall enriched among
the ranking of differentially expressed genes (P = 0.58;
Kolmogorov-Smirnov [KS]). These results are consistent
with previous reports that the genes with the greatest
change in mRNA expression are not the genes that drive
phenotypic transitions [1].
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Fig. 1 Workflow. Flowchart depicting how networks are constructed from different data types and combined to search for enrichment in driver genes
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Transcription factor enrichment analysis improves
detection of drivers of rapamycin response
A common method for finding drivers of gene expres-
sion is to look for transcription factor binding sites in
the promoters of the genes. We used a high-probability
map of TF binding motif sequences [27] to annotate the
promoters of the cluster genes. We selected binding sites
that passed the P < 0.005 cutoff and did not apply any fil-
ter based on evolutionary conservation. This produced a
network with 118 transcription factors linked to 3942 tar-
get genes. To identify enriched TFs, we used Fisher’s exact
test to determine the p-value for each TF in each cluster.
For each cluster, the vector of p-values corresponding to

all 118 TFs was adjusted using the Benjamini-Hochberg
method. Eleven transcription factors were significantly
enriched (PBH < 0.05) in at least one cluster. Ten TFs are
drivers of rapamycin response, as defined by the deletion
screen. There are only three TFs that overlap between the
11 enriched TFs and the 10 driver TFs, and the overlap is
on the border of being statistically significant (P = 0.051;
Fisher’s exact test) (Fig. 2c). Therefore this method can
help detect a small subset of driver TFs.
We also used DREM [13], a method which models bifur-

cations in time-series expression data and uses TF-target
binding sites to extract the regulators responsible for those
bifurcations. We ran DREM with default parameters and
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Fig. 2 Standard gene expression analyses are not sufficient to identify drivers. a Heatmap depicting 25 gene expression clusters in 30 strains of
rapamycin-sensitive yeast over six time points. Red and blue colors represent, respectively, positive and negative standardized expression
(mean-subtracted and normalized by standard deviation in a row-wise manner) that has been averaged over the genes in each cluster.
Examples of enriched GO terms are provided for selected clusters. Rows are labeled by cluster numbers as defined in Additional file 2.
b Venn diagram shows the overlap between the top 10 % differentially expressed genes (DEGs) and the driver genes present on the
array. P-value is from Fisher’s exact test. Number in blue denotes number of genes in universe not counted inside the Venn diagram. Top
plot depicts the significance of the overlap as the number of DEGs is varied. Red dashed line indicates the minimum value for statistical significance.
Bottom plot shows the receiver-operator characteristic (ROC) for the ranked list of DEGs and its overlap with driver genes. Dashed black line indicates
expected ROC from random chance. P-value corresponds to a Kolmogorov-Smirnov test. c Venn diagrams indicating overlaps between driver
transcription factors (TFs) and either the enriched TFs in all clusters, or from DREM analysis. P-values are from Fisher’s exact test. Number
in blue denotes number of genes in universe not counted inside the Venn diagram. Plot shows the output of DREM with the master regulators
listed on top of expression profiles of target gene clusters
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used as input the same binding site data (see above) and
gene expression data (the 30 most sensitive strains at all
six time points) as we used for the TF enrichment analysis.
DREM identified 15 putative master regulators, three of
which are drivers (Fig. 2c). This overlap was not statisti-
cally significant (P = 0.12; Fisher’s exact test).

Drivers have high degree in regulatory networks but are
not the biggest hubs
We used two network inference methods to infer transcrip-
tional networks from the rapamycin gene expression data
(see Methods for further details about network inference).
The first, Global Mutual Information Test (GMIT), com-
putes conditional mutual information to find the optimal
set of regulators for each gene [28]. We restricted the set of
potential regulators to those that have high-probability
binding sites in the promoters of the gene. The resulting
network had 3615 edges between 109 TFs and 2741 genes.
The second, PANDA, uses message-passing to develop an
optimal model for the activity of each transcription
factor and each target gene’s promoter [17]. The

network found by PANDA had 5171 edges between
36 TFs and 3315 genes.
We tested whether driver TFs are associated with high

degree, defined as the number of neighboring nodes on
both outgoing and ingoing edges, in the transcriptional
network. We ranked the nodes of the GMIT network by
their degree and plotted the ROC curve, showing that
driver genes tend to have higher degree than expected
by chance in transcriptional networks (Fig. 3a). The
highest-degree driver TFs are listed in Additional file 3.
Since TFs that have bigger changes in expression might
have stronger correlations and thus more connections in
the network, we tested whether differential expression
alone could recapitulate this result. Overall, both differ-
ential expression and network degree were significantly
enriched in driver TFs (P = 0.006 and P = 0.017 respect-
ively; Wilcoxon rank-sum test). However, ranking TFs by
their network degree yielded a higher odds ratio (OR) at
the top 10−20 % of the list than ranking by differential
expression (Fig. 3b). This improvement in specificity
among the top candidate master regulators would allow

Fig. 3 Driver TFs have high degree in inferred regulatory network associated with rapamycin response. a Receiver-operator characteristic (ROC)
curves showing performance of two different measures – degree in GMIT transcriptional network and differential expression after addition of rapamycin
for 50 minutes – in identifying driver TFs. P-values are computed using Wilcoxon test. b Bar graphs show the odds ratio for the overlap between driver
TFs and the top 10, 20 and 30 % of TFs ranked by degree or differential expression. c Transcriptional network inferred by GMIT in rapamycin-perturbed
yeast. Only TFs and their interactions are shown. Red nodes denote rapamycin driver genes. The size of the node is proportional to its degree in the full
network, including all target genes
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more efficient design of further experimental and func-
tional validation.
We repeated the same analysis for the PANDA net-

work (see Additional file 1). The PANDA network had
different topology and characteristics than the GMIT net-
work (Fig. 3c and Additional file 1: Figure S2C), due to their
very different underlying methodologies. Nevertheless, we
found that ranking the TFs by the degree in the PANDA
network led to significant enrichment in drivers (P = 0.048;
Wilcoxon) (Additional file 1: Figure S2A). The top of the
list ranked according to degree showed a modest improve-
ment in odds ratio when compared with the list ranked by
differential expression (Additional file 1: Figure S2B). These
results together show that the number of regulatory inter-
actions is a useful metric for ranking master regulators, and
that this is not an artifact of the particular algorithm used
to infer them.
Since essential genes tend to have high degree in pro-

tein interaction networks, we wondered if the high de-
gree of the driver genes was simply due to them also
being essential genes [29]. However, inspection of the in-
ferred transcriptional networks shows that the set of es-
sential TFs does not overlap with the rapamycin driver
TFs (Fig. 3c and Additional file 1: Figure S2C). In fact,
the highest-degree nodes in the transcriptional network
tend to be essential genes. In contrast, the rapamycin re-
sponse drivers tend to be medium-degree nodes in the
transcriptional network.

Combining protein interaction and transcriptional
networks helps predict drivers
We built a protein interaction network by combining
yeast two-hybrid (Y2H) data, reported protein co-
complexes, and the list of interactions in the BioGRID
(Biological General Repository for Interaction Datasets)
database [30–32]. This network had a total of 236577
unique edges between 6466 proteins. Inspecting the net-
work, we found that ranking the nodes by degree resulted
in enrichment of rapamycin driver genes (Fig. 4a and b).
The highest-degree drivers are listed in Additional file 3.
These drivers are not transcription factors but are proteins
involved in cell proliferation (SLT2, BRE1) and endocyto-
sis (ACT1, GET2, UBP3).
We hypothesized that the protein interaction network

provides information complementary to the transcriptional
network, and so the two data sources could be combined
for maximal impact. We therefore created a score that
combines the degree of each TF in the two networks. The
degree distributions of inferred regulatory networks and
protein interaction networks are very different, so simply
summing the degrees in the two networks can lead to
biases. We instead used the rank of the degree of the
TF among all other TFs in the network, effectively
“normalizing” the two degree distributions so that their

characteristics can be combined. Any TF that did not ap-
pear in the network (and so had degree 0) was assigned a
random rank at the bottom of the list. For every TF, we
computed the rank in the transcriptional network RT and
the rank in the protein interaction network RP and took
the average to get a score for that TF: S = (RT + RP)/2. We
then re-ranked the transcription factors according to this
new combined score S.
The resulting list was highly enriched in driver genes

(P = 0.02; Kolmogorov-Smirnov) and the top 20 % of the
list contained 6 of the 10 driver TFs (Fig. 4b). The com-
bined rank performs better than either the protein inter-
action or transcriptional degree alone, as measured by
several metrics. The area under curve (AUC) statistic
for the ROC curve was higher for the combined score
(AUC = 0.76) than for the transcriptional network de-
gree (AUC = 0.69) or the protein interaction degree
(AUC= 0.74). The overlap of the top 20 % of the TFs as
ranked by the combined score was more significant by
Fisher’s exact test (P = 0.004) and had greater odds ratio
(OR = 8.0) than the corresponding overlaps for the tran-
scriptional (P = 0.1; OR = 3.1) or protein interaction net-
work (P = 0.1; OR = 3.1). The KS statistic was comparable
for all three ranked lists (P = 0.03 (transcriptional), P = 0.02
(protein), P = 0.02 (combined)). Therefore, combining the
degrees from different network types can help to prioritize
true phenotypic drivers, screening out the more general
interactors that may appear as dominant hubs in one of
the individual networks but do not specifically drive rapa-
mycin response.
We repeated this analysis with the PANDA network and

found similar results (Fig. 4b), showing that the combined
score is beneficial for any effective network inference algo-
rithm. To ensure that the results were not biased by indi-
vidual proteomic studies, we also repeated the analysis
using only the Y2H protein interaction network [30], which
provides an unbiased genome-wide dataset. The conclu-
sion remained the same (Additional file 1: Figure S3). We
also tried combining the rank of the protein interaction
network degree with the differential expression rank, in-
stead of with the transcriptional network degree. We found
that incorporating the protein interactor information re-
sulted in a significant improvement in enrichment among
the top differentially expressed TFs (see Additional file 1:
Figure S4 and Supplementary Text in Additional file 1 for
further details).
We next examined the degree of driver TFs in conditions

other than rapamycin. We downloaded gene expression
data measured using custom DNA microarrays in the study
by Gasch et al. (http://genome-www.stanford.edu/yeast_s-
tress/data/rawdata/complete_dataset.txt) [33]. We identi-
fied all the conditions that had more than five microarray
samples (either replicates or time course) and had been in-
terrogated for drivers using a deletion library screen. These
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six conditions were: heat shock, hydrogen peroxide, mena-
dione, DTT, sorbitol, and diamide (see Methods for more
details on data preprocessing). We collected a set of driver
TFs for each condition from the following studies: heat
shock [4, 5], hydrogen peroxide and menadione [34], DTT
[35], sorbitol [1] and diamide [6]. For each condition, we
inferred transcriptional networks using both GMIT and
PANDA. We then ranked all TFs by their degree in either
the transcriptional or the protein interaction networks or
by the combined score S (Fig. 4c and Additional file 1:
Figure S5 and S6). Many of the inferred transcriptional
networks were not significantly enriched in driver TFs.
The gene expression datasets had only about ten samples
each, so the quality of the inferred networks may have de-
creased due to the low sampling rate. Only three of the six
conditions—menadione, DTT and diamide—showed good

enrichment for drivers among the high degree TFs, with
an AUC greater than 0.7 (Fig. 4c).
When the TFs were ranked by their degree in the protein

interaction network, four of the six stress conditions
showed significant enrichment in drivers: hydrogen perox-
ide and diamide (P < 0.01), heat shock (P = 0.04) and mena-
dione (P = 0.01). Furthermore, in the cases where the
transcriptional network showed enrichment in drivers with
AUC > 0.7, we found that ranking the TFs by the combined
score led to improved AUC and p-values (Fig. 4c). For ex-
ample, when the menadione GMIT network was combined
with the protein interaction network, the AUC increased
from 0.77 (transcriptional only) or 0.84 (protein interaction
only) to 0.87 and the p-value decreased correspondingly.
The results for the networks with AUC < 0.7 are shown in
Additional file 1: Figures S5 and S6 for completeness.
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Fig. 4 Combining degree in transcriptional network and protein interaction network improves enrichment in driver genes. a Protein interaction
network. Only the top 2000 most differentially expressed proteins from the rapamycin gene expression data are shown in order to reduce the
complexity of the network. Red nodes denote rapamycin driver genes. The size of the node is proportional to its degree in the pictured network.
b ROC curves showing performance of three different measures – degree in transcriptional network, degree in protein interaction network, and
combined network score – in identifying driver TFs. P-values are computed using Kolmogorov-Smirnov test. AUC = area under the curve. Bar graphs
show odds ratio for the overlap between driver TFs and the top 20 % of TFs ranked by each of the three measures. c ROC curves for three other
growth conditions, with transcriptional networks inferred using GMIT or PANDA, as indicated
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In summary, integrating protein interaction data with
the transcriptional network almost always increased the
power to rank drivers, as compared to the transcriptional
network alone. Secondly, in the cases where the transcrip-
tional network was itself enriched in drivers, combining
the networks using our degree-rank score improved en-
richment in drivers beyond either the protein interaction
network or transcriptional network alone.

High degree nodes in viral oncogene transcriptional
network are enriched for cancer drivers
We constructed a transcriptional network for a human
disease-associated dataset (GEO Accession: GSE38467)
[36]. These data were generated by introducing 63 proteins
from tumor viruses individually into IMR-90 normal hu-
man fibroblasts. The resulting cell lines were assayed for
gene expression using Affymetrix Gene 1.0 ST microar-
rays, and host interactors of the viral proteins were identi-
fied by both tandem affinity purification followed by mass
spectrometry (TAP-MS) and by Y2H. The interactors of
viral proteins were found to be enriched in cancer drivers
[36]. The top 15 % (2944 genes) most frequently differen-
tially expressed genes across all viral perturbations were
grouped using model-based clustering into 31 clusters.
DNase-I-hypersensitivity data for IMR-90 cells was inte-
grated with TF binding sites to build an IMR-90-specific
prior network consisting of 571 transcription factors and
4059 target genes [36]. Sixty TFs were categorized as ac-
tively regulating the clusters, because they were differen-
tially expressed in response to viral proteins, and had
target genes that were significantly enriched in at least one
cluster [36]. However, these TFs were not significantly
enriched in cancer drivers, as defined by the list of
known cancer genes from the Sanger Cancer Gene Census
(P = 0.17; Fisher’s exact test) (Fig. 5a) [37].
We applied PANDA and GMIT to the gene expression

data to construct viral oncogene-associated transcrip-
tional networks. We first created two groups of samples,
one corresponding to the 37 viral proteins that are clas-
sified as “transforming” due to their tumorigenic proper-
ties, and the second corresponding to all control cell
lines (including IMR-90 cells expressing empty vectors
or green fluorescent protein (GFP)) that were part of the
gene expression dataset. For the GMIT analysis, we
computed conditional mutual information between each
gene and the regulators whose DNase-I-hypersensitive
binding sites are present in the promoter of the gene
(Fig. 5b). For the PANDA analysis, we combined the
microarray data for each sample group with the IMR-
90-specific prior network described above to infer edge
weights for each sample group. The two sets of edge
weights were then compared (see Methods for further
details) to find the significantly active edges in the viral
oncogene-associated regulatory network (Fig. 6a). We

ranked the transcription factors by their degree in the
two networks and evaluated the rankings for enrichment
in cancer genes from the Sanger Cancer Gene Census.
Of the 571 known cancer genes, 86 of them are tran-
scription factors with known binding motifs. In both the
GMIT and PANDA networks, we found that TFs ranked
by degree were significantly enriched in these driver TFs
(P = 0.001 and P = 0.011 respectively; Wilcoxon) (Fig. 5c
and 6b). On the other hand, we found a lack of enrichment
among the top 5 % TFs by degree, consistent with our ob-
servation that the highest-degree nodes in regulatory net-
works do not tend to be phenotypic drivers (P = 0.66
(GMIT) and P = 0.45 (PANDA); Fisher’s exact test).
We compared this with simply ranking the transcription

factors by differential expression between the “transforming”
viral gene samples and the control samples. We ranked the
TFs by their p-value according to LIMMA. The top 5 % was
significantly enriched in cancer drivers (P= 0.02; Fisher’s
exact test) but the ranking as a whole was not signifi-
cant (P = 0.44; Wilcoxon). Furthermore, the top-ranked
drivers from differential expression analysis had little over-
lap with the top-ranked drivers from network analysis
(Additional file 4). Therefore, the network approach can
be used to prioritize new drivers that cannot be found
using standard analysis of gene expression data.

Integrating protein interactions improves enrichment of
cancer genes
We used the human Y2H dataset to build a protein
interaction network (http://interactome.dfci.harvard.edu/
H_sapiens/download/HI-II-14.tsv) [38]. This dataset cor-
responds to ~13,000 proteins and covers about 42 % of
the search space of potential protein-protein interactions.
We did not use literature-based protein interaction data-
bases because published studies on human protein inter-
actions are heavily biased towards known cancer genes, so
the degree of cancer drivers in such a network cannot be
interpreted in a meaningful manner.
We ranked each TF by its degree in the Y2H network

and computed the enrichment in Sanger cancer drivers
using several different statistical tests (Fig. 5c). The top
5 % TFs by Y2H network degree did not demonstrate sig-
nificant enrichment in cancer drivers (P = 0.13; Fisher’s
exact test) and the overall ranking was also not significant
(P = 0.19, Wilcoxon; P = 0.52, Kolmogorov-Smirnov). We
next computed the combined score that we defined earlier
as the average of the degree ranks in the transcriptional
and protein interaction networks: S = (RT + RP)/2. For the
GMIT network, the combined ranking did not surpass the
protein interaction network degree in the enrichment
of drivers among the top 5 % TFs (P = 0.26 [combined],
P = 0.66 [GMIT only], P = 0.13 [Y2H only]; Fisher’s
exact test) (Fig. 5c). On the other hand, the combined
score performed better (OR = 2) than either individual
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network (OR = 1.2) when considering the top 10 % of
TFs. The overall significance of the combined ranking
(P = 0.003; Wilcoxon) was similar to that of the tran-
scriptional network degree (P = 0.001), and was an im-
provement over the PPI network degree (P = 0.19). In
summary, the combined network metric did not im-
prove the overall ranking, but did improve the specifi-
city among the top 10 % of the ranked list.
In the case of the PANDA network, ranking the TFs

using this combined score led to marked improvement
in the enrichment in cancer genes, both among the top
5 % of the list (P = 0.02, Fisher’s exact test) as well as
throughout the entire ranking (P = 0.016, Wilcoxon test;
P = 0.054, Kolmogorov-Smirnov) (Fig. 6b). The particular
characteristics of the PANDA algorithm could explain

why the combined score works better with the PANDA
network than with the GMIT network. The improved
enrichment from combining the networks depends on the
existence of drivers that are moderately active in both the
regulatory and protein interaction networks, and which
then score higher than the hubs in each individual net-
work. Since PANDA independently models the activity of
TFs and target promoters, it can better detect TFs that are
post-translationally regulated and whose expression doesn’t
necessarily have high mutual information with its targets’
expression. Mammalian regulation relies more on such
post-translational and epigenetic mechanisms – like phos-
phorylation, acetylation, chromatin modifications and en-
hancer regions – than simpler organisms like yeast.
Methods like PANDA could be better at teasing out these

Fig. 5 Combined score for viral oncogene-associated GMIT network and protein interaction network improves specificity for identifying cancer
genes. a Venn diagram depicting overlap between enriched TFs in gene expression clusters and cancer driver TFs. P-value computed using Fisher’s exact
test. Number in blue denotes number of genes in universe not counted inside the Venn diagram. b GMIT transcriptional network for the transforming viral
oncogenes. Sanger cancer genes are depicted as red nodes. Size of node is proportional to degree of node. c Line plot shows the ROC curves for overlap
with cancer drivers for each of three network measures – degree in GMIT network, degree in yeast two-hybrid network, or combined network score. Bar
graph (above) shows the odds ratio of the overlap between cancer drivers and the top 10 % (or top 57 out of 571) TFs. Bar graphs (below) show the
significance of the enrichment in cancer drivers using three different statistical tests: W =Wilcoxon rank test, K = Kolmogorov-Smirnov test, F = Fisher’s
exact test for the overlap between the top 5 % (or top 29 out of 571) ranked TFs and cancer drivers. Black dotted line indicates lower bound for
statistical significance
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complex patterns of regulation in human cells, and thus
contribute more to the combined network metric.
As in the case of the rapamycin data, we compared

these results with directly combining the differential ex-
pression rank and the degree in the protein interaction
network. In contrast to the rapamycin case, we found
that using differential expression to compute the com-
bined metric resulted in decreased enrichment both in
the top 10 % of the list as well as throughout the ranking
(Additional file 1: Figure S7). See Supplementary Text in
Additional file 1 for more details.
We examined in greater detail the top 30 regulators

ranked by the combined network score applied to the
PANDA network, and found that 10 are validated cancer
genes included in the Sanger Cancer Gene Census (Table 1).
In addition, 5 more regulators have been functionally linked
to cancer in multiple reports. The regulator ranked third is
TFCP2, which is known to be an oncogene in hepatocellu-
lar carcinoma (HCC), and enhances angiogenesis and che-
moresistance in several cancer types [39, 40]. The regulator

ranked eighth, SMAD3, is a well-known signal for growth
and development and plays a role in carcinogenesis and
metastasis [41–43]. The ninth TF is BCL6B, a protein that
associates with BCL6, an established clinical marker of
lymphoma [44]. BCL6B is thought to be a tumor suppres-
sor in colorectal cancer and HCC [45, 46]. MXI1 antag-
onizes c-MYC and appears to have tumor suppressive
capacity in several cancers, including neuroblastoma
and renal carcinoma [47, 48]. Finally, the TF ranked
#28, TFAP4, is a target of c-MYC and is involved in
promoting cell cycle progression [49]. It has been
linked to non-small cell lung cancer and colorectal can-
cer [50–52]. All told, 15 (or 50 %) of the top 30 TFs
have strong evidence in the literature for being master
regulators in cancer.

Conclusions
Gene expression analysis has been widely used to
assay how biological systems respond to a variety of
perturbations, including environmental stresses and

Fig. 6 Combined score for viral oncogene-associated PANDA network and protein interaction network improves enrichment and specificity for
identifying cancer genes. a PANDA transcriptional network for the transforming viral oncogenes. Sanger cancer genes are depicted as red nodes.
Size of node is proportional to degree of node. b Line plot shows the ROC curves for overlap with cancer drivers for each of three network measures –
degree in PANDA network, degree in yeast two-hybrid network, or combined network score. Bar graph (above) shows the odds ratio of the overlap
between cancer drivers and the top 10 % (or top 57 out of 571) TFs. Bar graphs (below) show the significance of the enrichment in cancer
drivers using three different statistical tests: W =Wilcoxon rank test, K = Kolmogorov-Smirnov test, F = Fisher’s exact test for the overlap between the
top 5 % (or top 29 out of 571) ranked TFs and cancer drivers. Black dotted line indicates lower bound for statistical significance
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drug treatments. In particular, gene expression profiling is
used to characterize tissue samples from patients with dis-
eases of complex origin. These profiles are analyzed to

identify genes perturbed by the disease and to potentially
discover new biomarkers. However, genome-wide screens
and expression profiling in yeast have established that the
most differentially expressed genes are not the same genes
that drive the response to a perturbation. Therefore, it re-
mains a challenge to prioritize drivers of complex pheno-
types, such as disease and drug response, using gene
expression data.
Most genes do not work in isolation but rather function

together in pathways and complexes. They form a net-
work of molecular interactions whose activity and dynam-
ics determine the biological processes that are deployed in
response to changes in the environment. Thus, a natural
alternative to studying differential gene expression is to
examine the underlying gene interaction networks and
their structure to extract features that drive phenotypic
transitions. Analysis of protein-protein interaction net-
works has found that highly connected “hub” nodes are
significantly enriched in the essential genes that are neces-
sary for survival. We found that the regulators that drive
the response to rapamycin or other yeast stress conditions
also have higher degree in the PPI network than expected
by chance. However, the PPI network is measured under
normal growth conditions and thus represents a context-
independent pool of all possible interactions between pro-
teins. Master regulators, on the other hand, are highly
dependent on the context and the exact perturbation
under study. Therefore, more data is necessary to deter-
mine which high-degree proteins are important for medi-
ating the cellular response to any particular condition.
We addressed this challenge by using gene expression

data to build context-specific regulatory networks. To test
the generality of our approach, we used two different algo-
rithms to integrate gene expression data with transcription
factor binding sites in order to infer realistic models of
regulation. We used GMIT to compute conditional mu-
tual information between a target gene and the potential
regulators that have binding sites in the promoter of that
gene, and PANDA to apply message-passing to find the
best-fit model for TF and target gene activity, and their in-
teractions. We hypothesized that the regulators that drive
response to environmental perturbations would have high
degree in this network. Applying this analysis to rapamy-
cin response in yeast, we observed that driver TFs indeed
have higher degree than expected by chance. However, the
highest-degree nodes are not drivers but instead tend to
be either essential for normal growth or widely active reg-
ulators that partner with RNA polymerases and are in-
volved in housekeeping processes. This suggests that
when a cell is perturbed, it activates specific functional
pathways in tandem with more general activators or re-
pressors that modulate the landscape of transcription. The
former are associated with the response to that particular
perturbation, whereas the latter lead to sweeping patterns

Table 1 Top thirty viral oncogene-associated TFs ranked by
combined network score

Rank Regulator PPI
degree

Transcr.
degree

Combined
score S

Annotation

1 TCF4 132 41 8.5

2 TCF12 29 43 11 Sanger cancer gene

3 TFCP2 47 32 16.5 Oncogene in
hepatocellular carcinoma
(HCC); enhances
angiogenesis and
chemoresistance [39, 40]

4 ZBTB7B 12 43 17.5

5 SP4 11 46 17.75

6 IKZF1 57 28 19.25 Sanger cancer gene

7 MYOG 11 42 21.5

8 SMAD3 8 34 31.5 Plays role in
carcinogenesis
and metastasis [41–43]

9 BCL6B 14 20 32.75 Tumor suppressor in
colorectal cancer and
HCC [45, 46]

10 WT1 3 43 39.5 Sanger cancer gene

11 LMO2 66 12 40.25 Sanger cancer gene

12 SP2 3 36 45.5

13 CREB5 35 11 48.25

14 TCF3 2 51 48.5 Sanger cancer gene

15 MXI1 11 13 49.5 Potential tumor
suppressor
in neuroblastoma and
renal cancer [47, 48]

16 NRF1 4 20 50.5

17 CREB3L1 16 11 52 Sanger cancer gene

18 USF1 5 15 54.5

19 GABPB1 10 12 56

20 NHLH1 2 38 56.25

21 MAX 3 20 57.25 Sanger cancer gene

22 NR1H3 3 17 61.75

23 USF2 3 15 65

24 SMAD4 2 20 69.25 Sanger cancer gene

25 STRA13 2 20 69.25

26 NR1H2 2 18 72

27 EBF1 2 15 77 Sanger cancer gene

28 TFAP4 3 9 82.5 Linked to non-small
cell lung cancer and
colorectal cancer
[50–52]

29 RXRB 2 12 85.25

30 NFE2L2 2 12 85.25 Sanger cancer gene
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of expression that dominate differential expression pat-
terns. As a corollary, though the true drivers have signifi-
cantly higher degree on average, the degree alone is not
enough to enrich for the true phenotypic drivers in regula-
tory networks with high specificity.
We next asked whether combining transcriptional net-

works with the protein-protein interaction data could im-
prove the detection of drivers. We reasoned that the two
data types could complement each other, because protein
interactions and gene regulation are inherently distinct pro-
cesses but both significantly contribute to the functioning
of the cell. We first noted that the degree distributions of
the two networks are very different. The regulatory net-
works we inferred were generally smaller and had less of
the “heavy tail” characteristic of scale-free networks. In
other words, they did not have as many nodes with ex-
tremely high degree. The protein interaction networks were
larger and had more high-degree hubs. Instead of directly
combining the degrees in the two networks, we first ranked
the nodes by their degree in each network separately, and
then computed the average of the ranks. Similar to non-
parametric statistical tests like the Wilcoxon rank-sum test,
this procedure ensures that the score is not dependent on
the exact forms of the degree distributions.
We applied this combined PPI and transcriptional net-

work score to compute the enrichment in drivers in the
response of yeast to rapamycin. The combined score was
able to better prioritize drivers, especially at the top of
the list of ranked TFs. This was because the regulators
that control specific functions downstream of the TOR
pathway had more protein interactions than the hub TFs
that activate general stress response or other basic cellu-
lar programs. We next applied the combined network
score to other yeast conditions. In the cases where the
regulatory network alone was enriched in drivers (mena-
dione, DTT and diamide), we again found that combin-
ing it with the PPI data improved our ability to prioritize
driver TFs.
We wondered whether this principle could be applied to

human biology. We used gene expression profiles derived
from primary human fibroblasts expressing a variety of
viral oncogenes, and applied both GMIT and PANDA to
build viral oncogene-associated regulatory networks. We
found that established cancer master regulators, as anno-
tated in the Sanger Cancer Gene Census, tended to have
higher degree in this network than expected by chance.
However, the highest-degree nodes in the network com-
prised a cancer gene “desert” and were not enriched in
drivers. We then integrated the regulatory networks with
the human yeast two-hybrid interactome using our com-
bined network score. In the case of the GMIT network, in-
tegrating it with the Y2H degree increased enrichment
among the top 10 % of the TFs, whereas for the PANDA
network, the enrichment was increased among the top 5 %

of the TFs and the significance of the overall TF ranking
increased as well. In particular, the combined PANDA and
Y2H network score boosted the number of cancer genes
at the top of the ranked list of regulators. Six of the ten
most highly ranked regulators have strong evidence in the
literature of causal links to carcinogenesis, angiogenesis,
and metastasis.
In the case of rapamycin in yeast, we found that combin-

ing differential expression with protein interactions could
produce the same level of enrichment in drivers as using
the transcriptional network. In contrast, in the human
dataset, the combination of differential expression and PPI
degree was not as effective as the combined network score.
This could be due to differences in the complexity of regu-
latory networks in yeast and humans. A multilayered regu-
latory system, like that of humans, could result in more
complicated TF activity patterns that require analysis be-
yond simply comparing mRNA expression levels. The net-
work metric may therefore be more widely applicable as it
captures the effects of genes that do not change in expres-
sion but serve as links between genes that do.
Overall, we found the best enrichment and specificity for

drivers by using a combined network score that prioritizes
TFs that regulate many target genes and also physically
interact with many proteins. One simple reason for this
may be that integrating the two data types helps to buffer
against the noise and variation in each network. The most
robust signal remains after being filtered through the two
independent datasets. However, another possible interpret-
ation is that the high degree in the protein interaction net-
work represents more activity in the signaling pathways of
the cell, and high degree in the transcriptional network
means a TF has more gene targets and can affect functional
processes through the regulation of gene modules. The
drivers ranked higher by the combined network metric
may tend to significantly interact with both protein and
mRNA regulation in the cell.
We delved deeper into how the protein interaction

network data helps to prioritize driver TFs. We first
used heatmaps to visualize the ranks of driver TFs in
each network individually, and in the combined net-
work score (see Figs. 7 and 8 and Supplementary Text
in Additional file 1). Inspecting the heatmaps, we ob-
served that there are two types of driver TFs that end
up being highly ranked by the combined network score.
The first class of TFs already have a high rank in either
the transcriptional or protein interaction network, and
therefore are still highly ranked in the combined score.
The second class of drivers has a more moderate degree
in both the transcriptional and protein interaction net-
works, but their score in the combined network score
is even higher than each individual rank, leading to an
overall increase in the specificity and enrichment of
drivers at the top of the list. This second group of
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drivers represents the power of combining the network
degrees.
We examined the protein interactors of this second

group of drivers to better understand the biological pro-
cesses that contribute to the increased enrichment in the
combined network score (see Additional files 1 and 5 for
more details). We found that many of the interactors are
involved in chromatin assembly and histone modifica-
tion. For example, RSC3 is a member of a chromatin-
remodeling complex and interacts with YAP1, a driver of
menadione response. The rapamycin driver RTG3 interacts
with the histones HHT1, HTA2, and HTB2. Another com-
monly enriched function involves nuclear transport and TF
localization, including CRM1, which exports mRNA and
protein from the nucleus and interacts with YAP1, or SRI,
a human protein that can bind calcium and translocate to
the cytoplasm and regulate the activity of calcium channels.
In the human network, we also found a significant enrich-
ment for developmental signaling pathways, exemplified by
proteins like ID3 and UNC45A, which are involved in cell
differentiation and proliferation, and which interact with
the cancer drivers MAX and TCF12 respectively.

Taken together, these observations suggest that the com-
bined network score prioritizes TFs that regulate functional
gene modules and are also highly regulated themselves at
the protein level, either by nuclear translocation, chromatin
modification partners, competitive binding, or signaling
pathways. Thus they constitute flexible channels by which
condition-dependent signals are transmitted through the
protein interaction network to the transcriptional net-
work. This suggests a general principle for biological
networks: that the nodes responsible for biological state
transitions tend to have the highest rate of information
flowing through them, as signals are transmitted from
the environment through the molecular networks and
to the final response (or phenotype) of the cell. Such an
organizing principle could be applied to integrate other
types of networks as well, like those constructed using
metabolomic or phosphoproteomic data.
This also suggests that therapeutic interventions ought to

target highly regulated nodes in disease-associated networks.
Transcriptional networks could be constructed from gene
expression profiles of patients, and combined with protein
interaction databases and other information from the

Fig. 7 Rapamycin drivers with high combined network score interact with proteins enriched for nucleosome assembly and respiration. Heatmap
shows the ranks of all rapamycin driver TFs according to either the transcriptional network degree, the protein interaction degree, or the combined
network score, with red depicting higher ranks and blue depicting lower ranks. Network diagram shows all direct protein interactors of the rapamycin
driver TFs that had a higher rank in the combined network score than in either individual network alone. Edges represent evidence of direct protein
interaction from yeast two-hybrid experiments

Padi and Quackenbush BMC Systems Biology  (2015) 9:80 Page 13 of 17



literature to prioritize regulators that are driving the disease,
and to identify potential therapeutic strategies that target
these pathways. We believe that further development of
principled techniques for network integration and analysis
would be beneficial for interpreting biomedical data and
finding the elements that drive biological states and diseases.

Methods
Data preprocessing
To preprocess the data from [33], all rows and columns
that had more than 80 % missing values were eliminated
from the analysis. The rest of the missing values were
imputed using the k-nearest-neighbor algorithm. The
corresponding driver genes were found in the following
studies: heat shock [4, 5], hydrogen peroxide and mena-
dione [34], DTT [35], sorbitol [1] and diamide [6]. For
hydrogen peroxide and menadione, we used a cutoff of
1.5 for the ratio of growth under normal conditions to
growth under stress conditions, as recommended by the
authors [34]. For the sorbitol screen, we used a signifi-
cance cutoff of 20 for the generation 5 experiments, and
a significance cutoff of 100 for the generation 15 experi-
ments, also as recommended by the authors [1]. Note

that, in all cases, we included genes associated with both
resistance and sensitivity whenever possible.

Yeast annotation
Wherever yeast genes were annotated as gene symbols
rather than systematic open reading frames (ORFs), we
translated all annotations to systematic ORF names
using a table of chromosomal features downloaded
from the Saccharomyces Genome Database (http://down
loads.yeastgenome.org/curation/chromosomal_feature/
dbxref.tab) on May 5, 2015.

Inferring transcriptional networks
To bin expression data for GMIT network inference, we
computed quantiles for each gene and classified its ex-
pression in each sample into one of three bins. Since it
is computationally intensive to exhaustively search every
combination of regulators, we set the number of potential
regulators for each gene to ten. For promoters that con-
tained more than ten unique binding sites, we ranked each
potential regulator by the absolute value of its Pearson
correlation with the target gene. We then used the top ten
TFs to search exhaustively for the maximum conditional
mutual information using the GMIT method as

Fig. 8 Cancer drivers with high combined network score interact with proteins enriched in cellular localization or developmental pathways. Heatmap
shows the ranks of cancer drivers that were among the top 10 % TFs according to either the transcriptional network degree, the protein interaction
degree, or the combined network score, with red depicting higher ranks and blue depicting lower ranks. Network diagram shows all direct protein
interactors of the cancer driver TFs that had a higher rank in the combined network score than in either individual network alone. Edges represent
evidence of direct protein interaction from yeast two-hybrid experiments
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implemented in C++. For the rapamycin and viral onco-
gene data, we used a stringent p-value cutoff of 0.001; for
the rest of the yeast stress conditions, we used a p-value
cutoff of 0.05 due to the smaller number of samples. Note
that, although GMIT can be applied to learn dynamic net-
works by correlating time-lagged expression profiles, in
this case, we used it to learn a static network and did not
incorporate a time lag. Since there was no dynamic com-
ponent to the inferred network, we made sure to not allow
self-loops, as every TF would trivially have maximal cor-
relation with its own expression.
We ran PANDA with default parameters and no

protein-protein interaction data. For the yeast data, we
ran PANDA on both the original gene expression data
as well as a randomized version. The randomization was
carried out by independently permuting both the gene
and sample identities. To create the final network, we
converted the z-scores output by PANDA for each edge
to a probability, assuming a normal distribution. For
each edge, we then computed the difference in prob-
ability between the original and randomized data. This
value was then multiplied by the probability of the edge
being present in the original data. The final edge score
thus evaluates whether a particular edge is significantly
present in the experimental condition, and is also sig-
nificant compared to randomized data [53]. We con-
structed the final network using all edges with a score
above 0.8, as described in [53]. For the viral oncogene
data, we used the control samples as a comparison, in-
stead of creating an artificially randomized dataset.

Code
All codes and data input files that were used to arrive at
the above results can be found at https://bitbucket.org/
meghapadi/networkdriverdiscovery/.

Availability of supporting data
The datasets supporting the analysis in this article are
available from the following repositories and publications.
Yeast rapamycin gene expression: http://www.ebi.

ac.uk/arrayexpress/experiments/E-MTAB-412/
Yeast drug-perturbed growth rates: [24]
Yeast rapamycin driver genes: [25]
Yeast ORF annotation: http://downloads.yeastgen

ome.org/curation/chromosomal_feature/dbxref.tab
Yeast TF binding sites:
http://fraenkel.mit.edu/improved_map/

orfs_by_factor.tar.gz
Yeast essential genes:
http://www-sequence.stanford.edu/group/yeast_deletion_

project/Essential_ORFs.txt
Yeast Y2H data: [31] and http://interactome.dfci.harvard.

edu/S_cerevisiae/download/Y2H_union.txt

Yeast BioGRID data: http://thebiogrid.org/download.php
(accessed on May 18, 2015)
Yeast stress gene expression: http://genome-www.stan

ford.edu/yeast_stress/data/rawdata/complete_dataset.txt
Yeast heat shock driver genes: [4] and [5]
Yeast hydrogen peroxide and menadione driver genes:

http://depts.washington.edu/sfields/deletion/index.html
Yeast DTT driver genes: [35]
Yeast sorbitol driver genes: http://genomics.lbl.gov/

YeastFitnessData/websitefiles/cel_index.html
Yeast diamide driver genes: [6]
Human viral gene expression: http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE38467
Sanger cancer gene census: http://cancer.sanger.ac.uk/

census/
Human Y2H data: http://interactome.dfci.harvard.edu/

H_sapiens/download/HI-II-14.tsv
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