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Abstract

Background: The size and complexity of published biochemical network reconstructions are steadily increasing,
expanding the potential scale of derived computational models. However, the construction of large biochemical
network models is a laborious and error-prone task. Automated methods have simplified the network reconstruction
process, but building kinetic models for these systems is still a manually intensive task. Appropriate kinetic equations,
based upon reaction rate laws, must be constructed and parameterized for each reaction. The complex
test-and-evaluation cycles that can be involved during kinetic model construction would thus benefit from
automated methods for rate law assignment.

Results: We present a high-throughput algorithm to automatically suggest and create suitable rate laws based upon
reaction type according to several criteria. The criteria for choices made by the algorithm can be influenced in order to
assign the desired type of rate law to each reaction. This algorithm is implemented in the software package
SBMLsqueezer 2. In addition, this program contains an integrated connection to the kinetics database SABIO-RK to
obtain experimentally-derived rate laws when desired.

Conclusions: The described approach fills a heretofore absent niche in workflows for large-scale biochemical kinetic
model construction. In several applications the algorithm has already been demonstrated to be useful and scalable.
SBMLsqueezer is platform independent and can be used as a stand-alone package, as an integrated plugin, or
through a web interface, enabling flexible solutions and use-case scenarios.

Keywords: Biological networks, Information extraction, Mathematical modeling, Metabolic engineering, Regulatory
networks, Software engineering

Background
Models of biochemical networks are being constructed
on increasingly large scales [1, 2]. Automatic procedures
have been suggested to derive draft networks from anno-
tated genomes, such as theModel SEED [3]. Thesemodels
promise to serve as in silico experimentation platforms
to probe complex biological systems. The reconstruction
of genome-scale networks is a highly laborious long-term
effort, which requires intensive curation [4]. However,
when building kinetic models, the determination of the
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underlying network structure is just the first step [5].
For each reaction within the network, a specific kinetic
equation, or rate law, needs to be derived. These rate laws
typically contain parameters such as Michaelis constants
that must be defined [6].
A large number of software suites exist that allow users

to specify rate laws for kinetic modeling. Programs, such
as COPASI [7], CellDesigner [8], the MASS Toolbox1,
and Cellerator [9], provide pre-defined lists of kinetic
equations and also allow the user to modify these rate laws
or to even create customized equations. CellDesigner 4.4
provides a dialog that assists the user to obtain rate laws
from the kinetics database System for the Analysis of Bio-
chemical Pathways Reaction Kinetics (SABIO-RK) [8, 10].
TheMASS-Toolbox focuses on the creation of elementary
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rate laws and automatically derives pseudo-elementary
rate constants with their units. Inference programs, such
as NetGenerator [11, 12], estimate a topology and gener-
ate specific rate laws for gene-regulatory processes. Odefy
[13] converts discrete Boolean networks into quantitative
differential equation systems by applying Hill-type rate
laws [14] to each transition.
However, existing software tools are not designed to

quickly construct rate laws for large models. Manually
deriving both kinetic equations and all units brings several
problems with it, because it is a) highly error-prone, and
b) time-consuming, and thus is undesirable in large-scale
or automated approaches. For these reasons, automatic
procedures are highly desirable for the assembly of rate
laws. Furthermore, standard data formats would be use-
ful for encoding of networks and provide a formalization
of concepts and data structures that enable cross-platform
use of created models [15].
We introduce SBMLsqueezer 2, a software package

designed for rapid, consistent prototyping of large-scale
biochemical kinetic models. SBMLsqueezer 2 aids the
user in themodel construction process by applying several
criteria to automatically suggest appropriate equations for
each reaction. The user can influence these criteria and
choose which rate law to apply. The aims of this approach
are a) to ensure that only applicable rate laws can be
selected and thus ensure the consistency of themodel, and
b) to reduce the required manual labor and error checking
to a minimum.
SBMLsqueezer 2 is intended to be useful for modeling

not only metabolic networks but also signal transduction
processes and gene-regulatory mechanisms.
This article describes the details of a method that we

call context-sensitive rate law assignment. We explain the
implementation of this approach in the software SBML-
squeezer 2 and discuss possible use-case scenarios.

Implementation
Software architecture
SBMLsqueezer has been planned and implemented as a
modular program that follows established software design
patterns, such as the Model-View-Controller pattern, and
hence strictly discriminates between its (graphical or
command-line) user interface, its data model, algorithms,
etc. A schematic of the program’s design can be seen in
Fig. 1.
SBMLsqueezer contains a core package that provides

a general infrastructure for the program. The core deals
with user preferences and command-line arguments
(see Additional file 1), and searches for online updates.
Furthermore, the core is responsible to launch the pro-
gram. This can be done in diverse ways, e.g., in command
line mode, as a plugin of CellDesigner, as a gadget in
Garuda, etc.

A graphical user interface can be launched from the core
and has then control over all functions of the program. For
details about which functions are available and how to use
the user interface, see Additional file 1.
All implemented rate laws are gathered in the kinet-

ics package and are grouped by twelve interfaces that
are described in the next section. For version 2, a new
SABIO-RK package has been implemented that obtains
kinetic equations from the rate law database SABIO-RK
[10]. A mathematics package contains an implementation
of the Gaussian rank calculation, which is required for
convenience rate laws [16].

Data structures and dependencies
SBMLsqueezer 2 is based on the data format Systems
Biology Markup Language (SBML) [17]. The internal data
structure of the program is provided by JSBML [18, 19].
Converters can read and write input SBML documents
through libSBML [20] or CellDesigner’s Application Pro-
gramming Interface (API) [21], or JSBML can directly
parse these files. In this way, JSBML acts as an abstraction
layer between diverse forms of input and synchronizes all
changes made by the program back to the original source.
In case that JSBML is being directly used, the synchro-
nization step can be omitted. It is entirely implemented
in Java™ and runs on every platform for which a Java™
is available. Reading and writing of SBML files is done
with JSBML [18], which also acts as the internal data
structure. SBMLsqueezer 2 can also be launched using
a libSBML [20] back-end. The online program version
is based on the command-line interface of the stand-
alone tool, which is wrapped in a Galaxy [22] framework.
For writing model reports, SBMLsqueezer 2 contains a
development release of SBMLLaTeX [23]. The Garuda
gadget [24] is implemented based on the back-end API for
Java™. The CellDesigner plugin uses the communication
interface between CellDesigner’s plugin API and JSBML.
Changes made by SBMLsqueezer 2 are synchronized with
CellDesigner through a change listener interface. SBML-
squeezer 2 determines the type of reaction by interpreting
Systems Biology Ontology (SBO) and Minimal Informa-
tion Required In the Annotation of Models (MIRIAM)
annotations [25] of all components as well as the number
and kind of reaction participants. Access to SABIO-RK
[10] requires an active Internet connection and uses the
Representational State Transfer (RESTful) API provided
by SABIO-RK through a Java™ Uniform Resource Locator
(URL) connection.
It should be noted that for some levels and versions

of SBML numbers cannot be associated with units and
that some rate laws can under certain conditions not be
evaluated to reaction extend per time units.
When being used as a CellDesigner plugin, the follow-

ing special cases apply: a SBO terms are inferred from the
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Fig. 1 Architecture of SBMLsqueezer 2. An important design principle of the program is to be compatible with various frameworks. To this end, the
program is modularized in three layers. The first layer is the user interface. This layer allows users to utilize the program in multiple ways, including a
stand alone version with an own GUI that can also be launched from Garuda’s dashboard [24], a fully featured command-line interface, as a plugin
of CellDesigner [21], or as an online program in Galaxy [22]. The web version of the program enables users to easily build complex workflows with
other programs in the Galaxy framework. Similar pipelines can be achieved when using SBMLsqueezer as a Garuda gadget. No matter how the
program is launched, each mode has access to the identical algorithms and program infrastructure in the second layer. The only exception is that
the SABIO-RK [10] has been deactivated in the CellDesigner plugin because CellDesigner provides its own module for this purpose [8]. For software
developers, this second layer can be accessed directly through its API. Hence, the algorithms can be embedded in more complex processes and be
used as a module in third-party programs. The third layer contains the data structures. SBMLsqueezer highly relies on the library JSBML [18] for
model representation. When being used as a plugin from CellDesigner or with libSBML [20] as model parsing and writing engine, an additional
synchronization step is required: In both cases all data structures that the program receives from either CellDesigner or libSBML are mapped to a
corresponding JSBML representation. All changes made by the program must then be reported to the original source

CellDesigner-specific annotations of modifiers and fur-
ther elements. b a special observer class synchronizes all
changes from the submodel to the data model of CellDe-
signer.

Preprocessing
The de novo rate law selection algorithm performs several
preprocessing steps, iterating through all reactions within
the submodelM′ (see Algorithm 3 in Additional file 2:

1. If the user defines a list of Kyoto Encyclopedia of
Genes and Genomes (KEGG) [26] Identifiers (IDs)

for species whose contribution to rate laws should be
neglected, species with such terms in their MIRIAM
annotation [27] are removed. Table 1 shows the
predefined list of those entities.

2. The stoichiometry of each reaction participant is
analyzed in order to obtain the accumulated
stoichiometry of reactants and products and to check
if all values are integers. In this step the algorithm
also analyzes the SBO term [25] attribute of each
reaction participant. Further top-level SBO terms
with relevance to the algorithm can be found in
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Table 1 KEGG compound ID of small molecules and ions. This
table gives the default list of all small molecules and ions that
SBMLsqueezer ignores when creating kinetic equations. This list
was created according to [68] and can be changed by the user
through command-line options as well as a preferences dialog

Chemical formula Common name KEGG ID

H2O Water C00001

Zn2+ Zinc ion C00038

Cu2+ Copper ion C00070

Ca2+ Calcium ion C00076

H+ Proton C00080

Co2+ Cobalt ion C00175

K+ Potassium ion C00238

H2 Hydrogen C00282

Ni2+ Nickel ion C00291

Cl− Chloride ion C00698

HCl Hydrochloric acid C01327

H2Se Hydrogen selenide C01528

Fe2+ Iron (II) ion C14818

Fe3+ Iron (III) ion C14819

Table 2. The aim of this step is to get hints if the
reaction represents a transcription or translation:

• If a reactant represents a gene or gene-coding
region, the reaction could be a transcription.

• If the reaction involves a reactant that stands for
a Ribonucleic Acid (RNA) or Messenger RNA
(mRNA) molecule it could be a translation.

• If at least one modifier represents a gene or
RNA molecule, the reaction could represent a
translation.

Figure 2. A depicts these processes in a simple
schematic based on the Systems Biology Graphical
Notation (SBGN) recommendations [28]. The
algorithm recognizes these these reaction patterns
only based on the stoichiometry and SBO term
annotation of all participants.

3. Based on their SBO term [25] attribute all modifiers
of the reaction are grouped into the following sets:
a) enzymes; b ) activators; c) inhibitors; and
d) non-enzyme catalysts.
Since it is not always clear if a catalyst of a reaction is
an enzymatic catalyst, the user can define which
kinds of species may be considered enzymes in the
specific context. 3 presents a list of all kinds of
species that the algorithm can potentially accept as
enzymes of a reaction. The algorithm checks if any
modifier of the reaction corresponds to a species
with one of the SBO terms in this list. If the modifier
is annotated as catalyst (SBO:0000013) and its

Table 2 SBO terms with relevance for the categorization of
reactions. The preprocessing algorithm (see Algorithm 3 in
Additional file 2) uses the SBO terms listed in this table in order to
distinguish between different types of species and modification
in order to categorize a each reaction in the submodel as well as
the role of individual reaction participants. This also includes
further relevant material entities of reaction participants. Note
that the algorithm always checks if the SBO term of an element is
a child of a certain reference term in order to also include all
more specific sub-terms

Definition SBO term

Catalyst SBO:0000013

Empty set SBO:0000291

Enzymatic catalyst SBO:0000460

Gene SBO:0000243

Gene-coding region SBO:0000335

Generic SBO:0000252

Inhibition SBO:0000169

Inhibitor SBO:0000020

MRNA SBO:0000278

Necessary stimulation SBO:0000171

Protein SBO:0000297

RNA SBO:0000250

Stimulation SBO:0000170

Stimulator SBO:0000021

Transcriptional activation SBO:0000459

Transcriptional inhibition SBO:0000020

Translational activation SBO:0000459

Trigger (necessary stimulator) SBO:0000461

Translation SBO:0000184

Transcription SBO:0000183

corresponding species belongs to the list of potential
enzymes, the algorithm assigns the SBO term
enzymatic catalyst (SBO:0000460) to the modifier.
Based on the user’s selection the algorithm hence
solves contradictions between the SBO term of a
modifier and the corresponding species. See Table 3.

4. In order to ensure that the algorithm can process
each reaction within submodelM′, it checks the
following semantic rules:

• If a reaction involves a gene or gene-coding
region as reactant or its set of reactants is empty
and all products are RNA molecules, the
reaction is recognized as transcription.

• If the substrate species of a reaction are RNA
molecules or the reaction does not have any
reactants and all products are forms of protein
or poly-peptide chains, the reaction is
recognized as translation.
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Fig. 2 Examples for general reaction categories. This figure displays example reactions in SBGN for each of the twelve categories that are used to
determine applicable rate equations. a) Reaction with a non-enzyme catalyst. The ion I1 catalyzes this association reaction, which can therefore not
be considered enzyme catalyzed. In addition, this reaction is also modulated in a feedback inhibition loop, has an integer stoichiometry, and two
reactants. b) Gene-regulatory processes. Reaction re2a assembles an mRNA molecule from a source of bases (transcription), enabled by the a
specific gene. This mRNA in turn (re2b) enables the assembly of a protein from a source of amino acids (translation). In a feedback inhibition loop,
the protein interferes with the transcription of its own gene. c) Uni-uni enzyme reaction. This schematic conforms the classical Michaelis-Menten
mechanism. d) Bi-uni enzyme reaction. This association reaction has an integer stoichiometry. e) Bi-bi enzyme reaction. In this example, two
molecules of identical type act as reactants and also as products, respectively. f) Arbitrary enzyme reaction. This reversible reaction involves a
feedback inhibition and a complex stoichiometry, in which an ion and two identical molecules are created from two distinct reactants. g) Integer
stoichiometry. This reversible, enzyme-catalyzed reaction has two identical reactants and one product. h) Irreversible reaction. This reaction has no
explicit catalyst assigned to it. Depending on user-settings, the algorithm can still consider this an enzyme-catalyzed reaction, assuming that the
omission of the catalyst is for the sake of simplicity. i) Modulated reaction. Both, a stimulator and an inhibitor interfere with this reaction. j) Reversible
reaction. This dissociation reaction can also be seen as an association when the equilibrium shifts to the reverse reaction. k) Zeroth reactant order
reaction. The two product molecules lower the velocity of their own creation. l) Zeroth product order reaction. The reactant stimulates its own
degradation

• If the stoichiometry of reactants and products is
unity, the reaction can only be categorized as
transcription if the only reactant is a gene or
gene-coding region and it is only a valid
translation if the only reactant is an RNA
molecule.

More formally, a reaction is recognized as a transcrip-
tion if(

rallGenes ∧ (rStoichiometry = 1) ∧ (pStoichiometry = 1)
)

∨ ((Rr = ∅) ∧ pallRNA)

(1)

and the reaction will be considered a translation if(
rallRNA ∧ (rStoichiometry = 1) ∧ (pStoichiometry = 1)

)
∨ (

(Rr = ∅) ∧ pallPolypeptides
)
.
(2)

Here, the Boolean variables rallGenes and rallRNA are
true if all reactants represent genes or RNA, respectively,
and the values rStoichiometry and pStoichiometry denote the
accumulated stoichiometry of all reactants or products,
respectively, in sets of reactants Rr and products Pr of
reaction r. The Boolean variables pallRNA and pallPolypeptides
are true if the reaction produces RNA or polypeptide
molecules, respectively. A set of reactants or products
is said to be empty if either a) no such set exists in
reaction r; b) no element has been assigned to this
set; c) the stoichiometry of each element within the list
is zero; or d) if each element in the list is annotated
with an SBO term derived from the term for empty set
(SBO:0000291).
Depending on user preferences, the algorithm can set

the boundary condition for each gene as part of this step.
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Table 3 Kinds of species that can potentially act as enzymes and
their top-level SBO terms. In the preprocessing step (see
Algorithm 3 in Additional file 2), the algorithm for the de novo
creation of kinetic equations categorizes reaction modifiers into
four different groups: enzymes E, activators and stimulators A,
inhibitors I, and non-enzyme catalysts C. To this end, it first
analyzes the SBO term assigned to the modifier itself (see
Table 2). It then obtains the actual species that acts as a modifier
in the current reaction and analyzes this species’ SBO terms,
assuming that this annotation defines the material classes of the
species. The SBO terms in this table represent the top-level terms,
i.e., the algorithm also accepts each more specialized term for a
specific category. Note that the user can exclude elements from
this list and therefore influence the algorithm’s choices. If the
material class of a modifier’s species falls into one of the
allowable SBO categories, the algorithm will categorize this
modifier as an enzyme and potential contradictions with the
modifier’s SBO term will be resolved

Material entity SBO term

Antisense RNA (asRNA) SBO:0000317

Complex SBO:0000253

Generic protein SBO:0000252

Macromolecule SBO:0000245

Receptor SBO:0000244

RNA SBO:0000250

Simple molecule SBO:0000247

Truncated protein SBO:0000248

Unknown molecule SBO:0000285

Rate law selection
After having reaction preprocessing and semantic check-
ing completed, the algorithm assigns a list of applica-
ble categories to each reaction within the submodel M′.
Algorithm 4 in Additional file 2 depicts this procedure
in detail. Thereby the algorithm distinguishes between
twelve such categories that are defined in Table 4. Figure 2
displays examples for each category. These categories are
not necessarily exclusive.
All kinetic equations are also assigned to one or mul-

tiple of these categories. The algorithm may now either
collect all appropriate rate laws for the obtained reaction
categories (types) or just the one rate law with highest pri-
ority. While the first method allows users to interactively
select rate laws of choice, the latter option is important for
the automatic selection of the most appropriate equation.
See Table 2. The selection of one or multiple appropri-
ate categories and in turn suitable kinetic equations for a
reaction is based on a set of defined rules, which are here
summarized and simplified for the sake of better com-
prehensiveness. The algorithm distinguishes the following
three basic cases, which are not necessarily exclusive:

1. The list of reactants is empty or the reaction is
reversible and the list of products is empty. If the

reaction does neither involve genes, gene-coding
regions, nor RNA molecules, then the algorithm can
assign it to the zeroth reactant order reactions if also
the list of reactants is empty, and to the zeroth
product order reactions if it is reversible with an
empty list of products. If it does involve genetic
components, it can be assigned to the gene-
regulatory reactions depending on its directionality.
More formally, this category is selected if

¬ (rallGenes ∧ rallRNA ∧ pallRNA) (∧Rr = ∅)

∨ (isReversible(r) ∧ (Pr = ∅))
(3)

and the category for zeroth reactant order rate laws
will be assigned if Rr = ∅, otherwise with Pr = ∅ the
category for zeroth product order rate laws will be
assigned.

2. The reaction has at least one reactant and if it is
reversible also at least one product. If the reaction
does neither have any enzymatic catalyst nor any
non-enzymatic catalyst, it is assigned to the category
of non-enzyme reactions with respect to its
directionality. In case of unity stoichiometry on both
sides of the reaction, and if the reaction follows the
pattern of transcription or translation reactions, it is
added to the category of gene-regulatory reactions.
The pattern is satisfied if the reactant is a genetic
element or an empty set and the product is an RNA
molecule or protein. More formally, the algorithm
first evaluates the condition

(rStoichiometry ≥ 1) ∧ (¬isReversible(r)
∨ (

isReversible(r) ∧ (pStoichiometry ≥ 1)
))

.
(4)

If then (E = ∅) ∧ (C = ∅) ∧ ¬e the reaction can be
assigned to the non-enzyme reaction, where e is the
user preference that decides if reactions without
explicit enzyme can be considered enzyme catalyzed.
Otherwise, if rStoichiometry = 1 ∧ pStoichiometry =
1 ∧ (rallGenes ∨ rallRNA) the reaction will be
considered a gene-regulatory reaction.

3. The preprocessing has revealed that the reaction is
catalyzed by an enzyme. Depending on user
preferences, a reaction can also be recognized as
enzyme-catalyzed process if no catalytic modifier is
assigned to it. If the reaction is reversible with at least
one product, the category of arbitrary enzyme
reactions is assigned. Next, the stoichiometry and
directionality of the reaction are taken into account
in order to determine if the reaction also belongs to
the uni-uni, bi-uni, or bi-bi reactions. Formally, this
condition can be described as

((E �= ∅) ∨ e)∨ isReversible(r)∧pStoichiometry ≥ 1 .
(5)
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Table 4 Reaction categories. This table lists and describes reaction categories with relevance to automatic rate law assignment.
Graphical examples for each category can be seen in Fig. 2. These categories are not mutually exclusive. A reaction can therefore
belong to multiple categories. Similarly, all available rate laws are also assigned to these categories (see Table 5). Since also each rate
law can belong to multiple categories, some of these categories are used to refine the selection of rate laws for a reaction, i.e., some
categories are exclusive. A rate law may belong to the category of reversible (J) and irreversible (H) reactions if it is possible to apply the
rate law to both types of reactions, but a rate law from category G can only be applied to a reaction in which all participants have a
strictly integer stoichiometry. Rate laws that have mechanisms for modulation can also be applied to non-modulated reactions, but
rate laws that do not belong to category I cannot be applied if activators or inhibitors interfere with the reaction

No Category Description

A Non-enzyme reactions Spontaneous reactions and reactions with a catalyst that is no enzyme.

B Gene-regulatory processes Reactions that produce RNA or produce polypeptide molecules from an empty
set of reactants or whose reactants are genes or RNA molecules and that have
genes or RNA molecules as modifiers.

C Uni-uni enzyme reactions Enzyme-catalyzed reactions with one reactant of stoichiometry one and if
reversible also one product of stoichiometry one.

D Bi-uni enzyme reactions Enzyme-catalyzed reactions with two reactants, i.e., an integer stoichiometry two
on the reactant side, and if reversible one product of stoichiometry one.

E Bi-bi enzyme reactions Enzyme-catalyzed reactions with two reactants, i.e., an integer stoichiometry two
on the reactant side, and if reversible two products that also have a stoichiometry
of two.

F Arbitrary enzyme reactions Enzyme-catalyzed reactions with an arbitrary number of reactants and products.

G Integer stoichiometry reactions Reactions whose participants have only integer stoichiometric values.

H Irreversible reactions Reactions whose net flux proceeds only in forward direction.

I Modulated reactions Reactions whose velocity is influenced by modifiers, such as activators
(stimulators), inhibitors, an (enzymatic) catalysts

J Reversible reactions Reactions that can proceed in forward and reverse direction.

K Zeroth reactant order reactions Reactions in which the effects of reactants do not contribute to the velocity.

L Zeroth product order reactions The effects of products do not influence the velocity of these reactions.

Each reaction category is represented with one interface
that can be implemented by rate laws that are applicable
for this category. Since one rate law can be useful for mul-
tiple categories, rate laws can also implement several of
these interfaces. For all categories that can be applied to
a reaction, the algorithm then compiles a list of concrete
kinetic equations.
The list of applicable kinetic equations is hence gen-

erated on the fly and only based on the general reac-
tion categories. In this way, the program can easily be
extended, because additional kinetic equations only need
to declare the categories to which they can be applied
and will automatically be available when the program is
executed.
Additional rules apply when the algorithm compiles the

list of rate laws based on reaction categories, because
some rate laws can only be applied to certain combi-
nations of categories. For instance, the enzymatic rate
law for irreversible non-modulated non-interacting uni-
reactant enzymes (SBO:0000150) can only be applied
to irreversible reactions with integer but arbitrary sto-
ichiometry, but does neither allow any stimulators nor
inhibitors. Thus, some categories exclude certain rate laws
from being assigned to a reaction.

The user can select one default rate law for almost all
categories. No specific default rate law can be selected for
the categories irreversible or reversible reactions, mod-
ulated reactions, or integer stoichiometry, because these
cases mainly refine the other categories. Instead, the
selection of default rate laws is split into three major
groups: a) gene-regulatory reactions (including reactions
with zeroth order reactants or products); b) reversible
reactions; and c) irreversible reactions.
This is necessary because some rate laws can only be

applied to reversible reactions, others only to irreversible
reactions.

Prioritization
The identification of the category with highest priority
works very similarly. For reactions with empty list of reac-
tants a gene-regulatory reaction has higher priority than
the zeroth reactant order (but requires that the reaction
follows the right pattern). Similarly, the algorithm first
tries to assign a reaction to the gene-regulation category
if it is reversible with an empty list of products, before
assigning it to the zeroth product order reactions. Non-
enzymatic reactions have higher priority than any enzy-
matic reaction. If the reaction is enzyme-catalyzed, the
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algorithm tries to first assign the most detailed category
before it chooses an arbitrary enzyme reaction category.
Hence, the algorithm determines one category for each
reaction and applies the default rate law from this cate-
gory to the reaction. In case of conflicts there are two final
fall-back rate laws that can be applied if no other rate law
can be selected: a for non-enzyme reactions, the general-
ized mass-action rate law [29, 30]; and b the convenience
rate law [16] for any kind of enzyme-catalyzed reaction.
Both rate laws can be applied to reversible and irre-

versible reactions with arbitrary stoichiometry and can be
combined with pre-factors for modification (activation or
inhibition) as needed.When creating rate laws for individ-
ual reactions, a complete list of all applicable rate laws for
the reaction of interest is compiled.
When convenience rate laws are used, the algorithm

prefers the simple form and applies the thermodynami-
cally independent form only if the system does not have
full column rank. To this end, the program calculates the
rank of the stoichiometric matrix using the Gaussian algo-
rithm. This rank check is performed only once for the
given model and only executed if at least one reaction
exists, for which a convenience rate law is selected. Note
that the algorithm calculates the rank for the full stoichio-
metric matrix and not just for the current submodel. This
is crucial, because in many cases submodels would only
contain one reaction, and thus the rank would be full.

Rate law creation
Applying a rate law to the reaction means that the algo-
rithm has to construct an abstract syntax tree, which sym-
bolically represents the kinetic equation for the reaction.
To this end, the reaction needs to be analyzed again and
all of its components need to be taken into account as rel-
evant for the selected rate law (irreversible equations, for
instance, tend to ignore effects of products). An example
for such a syntax tree can be seen in Fig. 3, which has been
created for the Phosphoglucomutase (PGM) reaction

D-glucose 1-phosphate
phosphoglucomutase−−−−−−−−−−−−⇀↽−−−−−−−−−−−− D-glucose 6-phosphate ,

(6)

whose schematic corresponds to the diagram displayed in
Fig. 2.C. This tree represents a rate law for non-modulated
enzymes in reactions with only one substrate molecule,
which reads

vPGM
(�x(t), t, S,W, �p) =

vm+
KM1

· [
g1p

] − vm−
KM2

· [
g6p

]

1 +
(
[g1p]
KM1

+ [g6p]
KM2

) .

(7)

In order to ensure unit consistency of the equation, it
can be necessary to multiply or divide reactive species
with/by their surrounding compartment. User prefer-
ences and the units of the species determine if and which

of those operations is required, because in SBML, each
reaction should yield units of extent per time. Two cases
need to be distinguished:

1. If a species has only substance units and the user
decides to bring all species to concentration units,
the species must be divided by its surrounding
compartment.

2. If a species is given in concentration units and the
user wants to bring all species to substance units,
then a multiplication of the species with its
surrounding compartment is required.

Depending on the type of rate law that is being created
and the structural composition of the reaction, a cer-
tain number of parameters needs to be constructed. This
can include forward or backward rate constants, limiting
velocity rates, inhibition or stimulation constants, ther-
modynamic properties, and many more. These parame-
ters can be incorporated as local or global parameters.
To this end, the algorithm first collects all parameters in
a separate list and transfers them to the submodel only
when a rate law is to be applied. Just as for species, param-
eter objects need to be equipped with appropriate units.
The units of many parameters also depend on the struc-
ture of the reaction, for instance, the number and units
of all reactants. Because of this connection, it can be
necessary to also take the units of compartments into
account when deriving the units of parameters in order
to obtain extend by time units for the overall rate law.
The algorithm equips each newly created parameter with
a meaningful name and identifier as well as an appropriate
SBO term.
If during this step additional units or unit definitions

need to be added to the submodel, these are simplified
as much as possible, annotated with a MIRIAM identifier
pointing to the Units Ontology, and equipped with mean-
ingful names and identifiers as appropriate. The algorithm
avoids creating duplicate unit definitions by checking the
model for identical existing unit definitions before adding
a new one. If possible, the newly created kinetic equation
is also annotated with a corresponding SBO term. Due to
the large number of SBO terms that can be created by the
algorithm, a comprehensive list of all cases is omitted in
this document.
Whenever a kinetic equation that involves stoichiom-

etry values is created for models in SBML Level 3 [31],
the algorithm inserts the ID of the corresponding species
reference rather than the actual numerical value of the
stoichiometry into the rate law. This gives the advantage
that model changes can be directly reflected in the rate
law, hence increasing the consistency of models. At the
same time, it avoids the problem that units and meaning
of single numerical values might not always be clear.
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Fig. 3 Reaction context dialog of SBMLsqueezer 2. When using SBMLsqueezer as a stand-alone program, this dialog pops up upon right-clicking on
a reaction in the model data structure. All available kinetic equations that can be potentially applied to the selected reaction are listed and can be
selected via radio buttons. A tool-tip displays detailed information about each rate law and an equation renderer displays a preview of the equation.
Furthermore, this dialog also provides a few particularly important settings: a) it allows users to choose whether newly generated parameters should
be created as local parameters within the kinetic law or global model parameters, b) if the reaction’s directionality should be changed, and c) if the
reaction should be considered an enzyme-catalyzed reaction. In situations where a catalyst is assigned to the reaction that is recognized as an
enzyme (see Table 3) or as a non-enzyme this option will not be accessible. The model used in this example is described in [77]

Model merging
Finally, all relevant changes in the submodel are syn-
chronized to the original model. This includes all newly
created units and unit definitions, local and global param-
eters, annotations, mathematical equations, reversibil-
ity flags, and boundary condition flags. If species have
been deleted from reactions, because their MIRIAM
annotation was on the ignore list, this change is
skipped and not synchronized, so that the structure
of the model will remain identical. In the graphi-
cal user interface, the user can also disregard the
changes.

Details of extraction of rate laws from SABIO-RK
The algorithm first generates a URL that is used to
query the SABIO-RK database. This URL comprises
the search terms and the respective KEGG reaction
ID. The URL begins with the prefix http://sabio.h-its.
org/sabioRestWebServices/searchKineticLaws/sbml?q=.

Each search term and its given value extend this base URL
with keyword:value. If a search term is associated
with a range (e.g., the temperature), the URL is exten-
ded with keyword:[min TO max]. The keywords
for the terms are presented here: http://sabio.h-its.org/
layouts/content/docuRESTfulWeb/SearchKeyVoc.gsp.
The operator AND connects multiple keyword-value
pairs in the query.
The URL for querying points to an Extended Markup

Language (XML) document for download. In the case
of success, the XML document will be an SBML docu-
ment with all kinetic laws found for the query. Otherwise,
SABIO-RK returns an XML document with an error mes-
sage and the algorithm terminates with a user message.
Since this algorithm mainly operates on models

obtained from SABIO-RK it is not necessary to create a
submodel copy of the local model beforehand (as this is
done for the de novo creation of rate laws). Changes are
only applied upon user agreement or in batch mode. This

http://sabio.h-its.org/layouts/content/docuRESTfulWeb/SearchKeyVoc.gsp
http://sabio.h-its.org/layouts/content/docuRESTfulWeb/SearchKeyVoc.gsp
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is done by merging required components from the down-
loaded model into the local model. For this reason, the
local model does not change, before rate laws are applied.

Results and discussion
In this section we will describe: a the rate law selec-
tion algorithm implemented by SBMLsqueezer 2, b the
process implemented for extraction of rate laws from
SABIO-RK [10], and c the new features of the SBML-
squeezer 2 stand-alone software over the previously pub-
lished SBMLsqueezer plugin for CellDesigner.
The approaches described in this article are based on

the model definition in SBML format [32], but similar
approaches would also be possible for other modeling
formats that support kinetic equations.
Both the rate law construction and extraction algo-

rithms assume that the structure of the systems biology
model M is known and encoded in the two matrices S
andW, whose interplay can be described by the following
equation [33, 34]:

d�x
dt

= S · �v (�x(t), t, S,W, �p) , (8)

where t denotes the time, �x the reactive species, S the sto-
ichiometric matrix, and �v the vector of kinetic equations
that are to be generated. The modulation matrix W
[16, 35] and the parameters �p influence the mathemat-
ical structure of the equations in �v. The algorithm also
assumes that the user has defined a set R of reactions
for which rate laws are to be created or extracted from
SABIO-RK. Rmay comprise all reactions inM, or a selec-
tion of particularly interesting reactions. An overview of
these two methods to build kinetic equations for M can
be seen in Algorithm 1 in Additional file 2 for the de novo
construction and in Algorithm 2 in Additional file 2 for
the SABIO-RK extraction. We now take a closer look at
both methods and their algorithmic details.

De novo rate law generation
The main idea of the algorithm for de novo rate law
creation is that the vast majority of biochemical reac-
tions can be grouped into a limited number of categories
(see Table 4 and Fig. 2). The rate law selection algorithm
takes several features of the reaction into account in order
to discriminate these categories. The most important
sources of information in determining these categories
are MIRIAM [27, 36–38] and SBO annotations [25] of
model components, although models can also be evalu-
ated if no such information is given. For each category, the
algorithm either determines all kinds of principally appli-
cable rate laws, or automatically selects the most suitable
rate law. This decision process is performed by a prior-
itization function (Algorithm 1 in Additional file 2. The
prioritization may require user interaction but can also

be done as a fully automatic selection. During automatic
selection, the algorithm ranks the reaction categories and
applies the user-selected default rate law from the set
D for the most significant category. The algorithm then
equips all newly generated parameters with units in order
to ensure consistency.
To go into additional detail (with the full algorithm

described in the methods), the algorithm creates a sub-
modelM′ that only comprises those reactions in the set R
for which rate laws are to be created. All relevant model
components, such as species, compartments, units, etc.
are copied into this submodel. Operating on this trimmed
copy of the full model has the advantage that changes of
the algorithm do not affect the original data structure and
can be easily disregarded. When creating this submodel,
the algorithm also checks if fall-back units are defined for
all components. This is crucial in order to avoid prob-
lems in later steps. Depending on which units are missing,
it generates units for area, reaction extent, length, sub-
stance, time, and volume just as the default units in SBML
Level 2 Version 5 [39] would be defined. All subsequent
steps can hence assume that every model component has
a defined unit.
The algorithm then iterates through all reactions within

the submodel M′ and performs several preprocessing
steps, before an appropriate type of rate law can be
selected and created. The preprocessing steps (Algo-
rithm 3 in Additional file 2 take as input the current
reaction r together with an optional set of KEGG [26]
compound identifiers and returns a set of characteristic
features RFeatures for this reaction. Passing KEGG identi-
fiers, e.g., those listed in Table 1, to this procedure allows
users to reduce the complexity of the generated equations
by neglecting the contribution of the given compounds.
The next step is to select all potentially applicable rate laws
for reaction r based on its features RFeatures and the user’s
choice e that decides whether or not reactions without an
explicit catalyst should be interpreted as being simplified
representations of enzyme-catalyzed reactions. The result
of this rule-based selection procedure is a set K of kinetic
equations (Algorithm 4 in Additional file 2. From this set
K one rate law k needs to be chosen, for which the algo-
rithm then generates the actual equation and parameter
set in submodelM′. This decision can either be done inter-
actively or based on a set of priority rules and default rate
laws D for the most general reaction categories.
When creating the actual rate law, an abstract syn-

tax tree is assembled that takes the specific features of
the reaction into account and also generates additional
units for newly generated parameters as necessary (Fig. 3).
Thereby, the algorithm avoids recreating already existing
units. When the algorithm has processed all reactions, the
modifications in submodel M′ need to be merged back
into the original modelM.
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Extraction of rate laws from SABIO-RK
The extraction of rate laws from the database SABIO-
RK requires a model M (given as an SBML document)
and query terms Q as input. All possible values for the
query terms can be found in Additional file 1. Just like
for the de novo creation of rate laws the algorithm can
either process all reactions within the model or one par-
ticular reaction. To this end, the algorithm creates one
query URL for each reaction, for which a rate law should
be extracted from SABIO-RK. After obtaining a modelM′
in form of an SBML document from SABIO-RK, the algo-
rithm extracts all kinetic laws from M′ and tries to match
all elements contained in a kinetic law to elements in the
input model M. This matching is based on the MIRIAM
annotations of model components and involves the search
for one corresponding

• species in the local model for each species that
participates in the kinetic law.

• compartment in the local model for each
compartment addressed in the kinetic law (this can
be the compartment of a participating species or the
reaction itself can have a compartment assigned to it).

• reaction in the local model for each reaction in the
kinetic law.

• species reference for each species reference in the
kinetic law within each such identified local reaction.
This species reference needs to refer to a species with
an annotation similar to that of the species referenced
by the species reference in the found rate law.

In this context, an annotation of two SBML elements is
considered similar and hence these elements are consid-
ered a match if both have controlled vocabulary terms in
common that are linked through qualifiers has version or
is.
In the batch mode, the algorithm always selects the first

kinetic law in the query results for which all elements can
bematched to respective elements in the model. The algo-
rithm adds this rate law to the reaction in the local model
M. This merging involves

1. substituting all elements in the found kinetic law
with the matched elements in the model; and

2. adding unit definitions, function definitions, global
and local parameters contained in the kinetic law to
the model.

When rate laws are obtained from SABIO-RK for indi-
vidual reactions, the algorithm presents a list of all rate
laws found for the given query to the user, who can then
select the most appropriate equation. In cases when the
selection of the first law with a successful matching does
not lead to a satisfying outcome, the single reaction mode
might yield better results.

New features in SBMLsqueezer 2
The original version of SBMLsqueezer was developed
as a plugin for CellDesigner [40]. Version 1.3 was later
released with additional features [41]. The work pre-
sented here describes the expansion of the plugin to a
full stand-alone software package alongside numerous
algorithmic and technological advances. SBMLsqueezer 2
has been significantly refactored and provides a large
number of new features, which are described in this
section.
The number of supported rate equations has been

greatly extended. For example, the program now includes
all five modular rate laws described in recent work in
kinetic equations for large-scale kinetic modeling [35].
Additionally, ten specific rate laws for gene-regulatory
processes have been added:

• Hill-Hinze equation [42]
• Hill-Radde equation [43, 44]
• Linear additive network models (general form and

NetGenerator form) [45, 46]
• Non-linear additive network models (general form

[46], NetGenerator form [46], Vohradský’s equation
[47, 48], Weaver’s equatio [49])

• S-systems [50]
• H-systems [51]

Table 5 lists all available rate laws.
Furthermore, SBMLsqueezer 2 contains a new module

that automatically derives units for all new parameters.
This feature is among the most complex capabilities of the
program, because numerous aspects of the reaction need
to be taken into account in order to ensure unit consis-
tency. This comprises, for instance, the diverse fallback
units in the model (depending on level/version combina-
tion of the SBML file), if the species involved are declared
in concentration or amount units together with size and
unit of their compartment, if reaction participants reside
in different compartments, etc. The program needs to
set units off against each other in order to cancel out
terms, which is not trivial. Handling these issues manu-
ally can become an immensely time-consuming task, and
thus automatic unit handling is one of the most valuable
features of the package.
The algorithms are now entirely based on SBO- and

MIRIAM annotations [25] rather than on CellDesigner-
specific information. This change was necessary in order
to create a stand-alone version of the program. SBML-
squeezer now not only understands annotations, it also
annotates created objects (parameters, kinetic equations,
units, etc.) with SBO terms and where possible also
with MIRIAM controlled vocabulary terms. This new
feature significantly increases quality and reusability of
models.
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Table 5 Rate laws and their reaction categories. This table gives an overview of all rate laws that are currently implemented in the
software SBMLsqueeezer 2. All rate laws are described in detail in [67, p. 17–38]. The key idea of the algorithm in this paper is to
separate the list of available rate laws from more general reaction categories to which these rate laws can be applied. With this
separation, extending this list and to add more specific rate laws becomes very straightforward to do as long as each such rate law
specifies to which categories it can be assigned. Table 4 provides a detailed overview of all categories. Example reactions for all
categories can be seen in Fig. 2. The rate laws mentioned in this table are again families of equations. The precise structure of the
equation that is generated for a specific reaction can vary, depending on several reaction properties, e.g., how many and which kind of
modifiers participate in this reaction, if it is reversible, etc. The creation of the specific equation including its parameters and required
units is therefore the next step of the algorithm

Rate laws Categories Citation

Additive Model Linear B, H, I, J, K, L [45]

Additive Model Non Linear B, H, I, J, K, L [46]

Common Modular Rate Law (CM) C, D, E, F, I, J [35]

Convenience Kinetics C, D, E, F, H, I, J [16]

Direct Binding Modular Rate Law (DM) C, D, E, F, I, J [35]

Enzymatic Rate Law for Competitive
Inhibition of Irreversible Uni-reactant Enzymes
by Non-Exclusive Non-Cooperative
Inhibitors

C, H, I SBO

Enzymatic Rate Law for Irreversible
Non-modulated Non-interacting Reactant En
zymes

C, D, E, F, G, H SBO

Force Dependent Modular Rate Law (FM) C, D, E, F, I, J [35]

Generalized Mass Action A, H, I, J [29], [30, p. 14–17]

Hill Equation B, C, G, H, I, J [14], [70, p. 314]

Hill-Hinze Equation B, H, I, J, K, L [42]

Hill-Radde Equation B, H, I, J, K, L [43, 44]

H-System B, H, I, J, K, L [51]

Michaelis-Menten C, H, I, J [71]

NetGenerator Linear B, H, I, J, K, L [46]

NetGenerator Non-Linear B, H, I, J, K, L [46]

Ordered Mechanism (compulsory-order
ternary-complex mechanism)

D, E, H, I, J [72, 73], [70, p. 167]

Ping-Pong Mechanism (substituted enzyme
mechanism)

E, H, I, J [72, 73], [70, p. 169]

Power Law Modular Rate Law (PM) C, D, E, F, I, J [35]

RandomOrder Ternary-ComplexMechanism D, E, H, I, J [72, 73], [70, p. 169]

Simultaneous Binding Modular Rate Law
(SM)

C, D, E, F, I, J [35]

S-System B, H, I, J, K, L [50, 51, 74–76]

Vohradský’s equation B, H, I, J, K, L [47, 48]

Weaver’s equation B, H, I, J, K, L [49]

Zeroth Order Forward Generalized
Mass-Action

A, H, I, J, K, L [70, p. 6]

Zeroth Order Reverse Generalized
Mass-Action

A, H, I, J, K, L [70, p. 6]

A connection to the rate law database SABIO-RK [10]
has been added and allows users to directly insert experi-
mentally obtained rate laws from this database in addition
of deriving generic equations. In particular, the access
to SABIO-RK now enables the program to contribute

to bottom-up knowledge-based model development as a
complementary feature to the extended top-down rate law
generation. The dialog for access to SABIO-RK is similar
to the online database service and uses the annotation of
the reaction and its components to identify the best match
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in SABIO-RK. Then, rate laws, parameters, units, and
annotations are transferred from SABIO-RK to the local
model. Rate law generation and extraction from SABIO-
RK can be performed for individual reactions (Fig. 4) or
for the entire model in a single step. Algorithms 1 and
2 in Additional file 2 show how both methods of the
program interact. SBMLsqueezer facilitates the rate law
prioritization by presenting an equation preview, which
assists the user to make this decision.
The CellDesigner plugin mode is now only one of many

ways to use the program. SBMLsqueezer can now be
used as a online program (via a Galaxy webservice as
well as a Java™ Web Start program), b stand-alone tool
via graphical user interface or command-line, c plugin for
CellDesigner, d Garuda gadget, and e through its API in
complex workflows and algorithms.
The comprehensive Users’ Guide (see Additional file 1)

gives code examples and details how to benefit from all
program features in each described environment.
Additionally, SBMLsqueezer can now deal with all levels

and versions of the SBML format, from Level 1 Ver-
sion 1 through Level 3 Version 1, whereas CellDesigner
is restricted from SBML Level 1 Version 2 up to Level 2
Version 4.

Conclusions
SBMLsqueezer 2 is a mature and stable application that
can be applied in diverse ways. SBMLsqueezer can easily
be integrated into versatilemodel construction workflows.
As an example, draft models can be first obtained from the
model database BiGG [52] or be generated with the pro-
gram KEGGtranslator [53, 54]. Second, SBMLsqueezer
can be used to generate kinetic equations for all reactions
in the draft models. Finally, the program SBMLsimulator
[55, 56] can estimate the unknown values of the model
parameters by fitting the models to experimental data.
We note that while the de novo creation method guaran-
tees that a rate law can always be created, the extraction
from SABIO-RK depends on existing biochemical data
and might therefore not always yield results. A combina-
tion of both methods would therefore be recommended
to quickly create an initial kinetic model. The Users’
Guide (Additional file 1 2) explains in detail how to uti-
lize all program functions and provides several sample
use-cases.
While SBMLsqueezer 2 has made substantial progress

in addressing the challenges of automated rate law gen-
eration, there are still many possible extensions. For
example, in order to support mathematical equations

/

- +

/

1 +

g1p

vm+ KM1

/

vm- KM2

g6p / /

g1p KM1 g6p KM2

Fig. 4 Abstract syntax tree for an enzymatic rate law for non-modulated unireactant enzymes (SBO:0000326). This tree has been constructed for
the phosphoglucomutase reaction in model iJO1366 [69], in which D-glucose 1-phosphate (g1p) is reversibly converted to D-glucose 6-phosphate
(g6p). The program internally constructs all equations in form of syntax trees, which can contain references to objects in the SBML document. In this
example, the tree contains the parameters vm+ and vm− for the forward and reverse maximal reaction velocity (both in mol·s−1), KM1 and KM2 for
the Michaelis constants of the reactant and product (both in mol), the plain numerical value 1 (dimensionless in SBML Level 3, unit undefined for
earlier versions of SBML), as well as references to the species g1p and g6p (both in mol). All internal nodes represent mathematical operators

http://identifiers.org/kegg.reaction/R03319
http://identifiers.org/kegg.compound/C01171
http://identifiers.org/kegg.compound/C03735
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for transition functions in logical models, it would
be possible to derive similar methods based on the
SBML extension for qualitative models [57, 58]. Further-
more, as network reconstructions continue to expand
beyond metabolism, more detailed rate laws applicable to
transcription and translation modeling may continue to
be implemented as part of the capabilities of the package.
The advantages of SBMLsqueezer lie in the interfaces to
established systems biology databases and data standards,
features that will remain useful even as the preference in
rate laws shift as the field develops.
The software has already been proven to be useful

in diverse applications. Examples include synthetic biol-
ogy [59], mechanistic modeling of methicillin-resistance
in bacteria [60], explaining dynamic damage response
in human fibroblasts after exposing them to γ radia-
tion [61], drug discovery [62] and drug effect modeling
[63, 64], and modeling complex signaling cascades [65].
Endeavors such as the path2models project [66] have
additionally demonstrated the usefulness of automated
rate law assignment. Furthermore, the internal data struc-
ture of SBMLsqueezer has become a separate large-scale
community effort leading to the development of JSBML
[67], which is now a separate project used by numerous
other research groups. Utilizing SBMLsqueezer 2, rigor-
ous kinetic modeling efforts involving complex try-and-
evaluate cycles, for example where the most suitable rate
law for a certain reaction needs to be identified in repeated
simulation runs [67], become increasingly manageable
tasks.

Availability and requirements
Program, source code, and documentation can be
obtained under the terms of the GPL version 3 from the
website.

Project name: SBMLsqueezer
Project homepage: http://www.cogsys.cs.uni-tuebingen.
de/software/SBMLsqueezer/
Contact: sbmlsqueezer@googlegroups.com
Operating systems: Platform independent, i.e., for all sys-
tems for which a JavaTM is available.
Programming language: Java™
Other requirements Java™ Runtime Environment (JRE)
1.6 or above
License: GNU General Public License (GPL) version 3
Any restrictions to use by non-academics: None

Endnotes
1http://opencobra.github.io/MASS-Toolbox/
2Up-to-date versions of the Users’ Guide can be found

at the project website.

Additional files

Additional file 1: Users’ Guide. This PDF file contains a comprehensive
description of the program SBMLsqueezer. It includes details about all of its
functions of the GUI, command-line options, example use cases, and
source code examples for using SBMLsqueezer as an API library. (4239 Kb)

Additional file 2: Algorithms of SBMLsqueezer. This PDF document
explains all main algorithms of SBMLsqueezer in detail using pseudocode
and additional descriptions. (141 Kb)
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