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Abstract

Background: The extraordinary success of imatinib in the treatment of BCR-ABL1 associated cancers underscores
the need to identify novel functional gene fusions in cancer. RNA sequencing offers a genome-wide view of
expressed transcripts, uncovering biologically functional gene fusions. Although several bioinformatics tools are
already available for the detection of putative fusion transcripts, candidate event lists are plagued with non-functional
read-through events, reverse transcriptase template switching events, incorrect mapping, and other systematic errors.
Such lists lack any indication of oncogenic relevance, and they are too large for exhaustive experimental validation.

Results: We have designed and implemented a pipeline, Pegasus, for the annotation and prediction of biologically
functional gene fusion candidates. Pegasus provides a common interface for various gene fusion detection tools,
reconstruction of novel fusion proteins, reading-frame-aware annotation of preserved/lost functional domains, and
data-driven classification of oncogenic potential. Pegasus dramatically streamlines the search for oncogenic gene
fusions, bridging the gap between raw RNA-Seq data and a final, tractable list of candidates for experimental
validation.

Conclusion: We show the effectiveness of Pegasus in predicting new driver fusions in 176 RNA-Seq samples of
glioblastoma multiforme (GBM) and 23 cases of anaplastic large cell lymphoma (ALCL). Contact: fa2306@columbia.edu.
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Background
Gene fusions are the result of genetic aberrations (trans-
locations, deletions, amplifications and inversions) in-
volving the juxtaposition of two genes that can generate
a single hybrid transcript. Since 1960, gene fusions have
been known to play a major role in tumorgenesis. The
BCR-ABL1 gene fusion, arising from the Philadelphia
chromosome (t(9;22)(q34;q11)), was the first case of a
translocation-induced gene fusion associated with the
development of a cancer, namely chronic myelogenous
leukemia [1]. In this fusion, the N-terminus oligomerization
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domain of BCR and the tyrosine kinase domain in ABL1
are essential in promoting oncogenic activity [2]. Among
the gene fusions associated with tumor development, it is
worth mentioning TMPRSS2-ERG, a gene fusion occurring
in 40-80% of cases of prostate cancer [3, 4] and fusions in-
volving the ALK gene with different partners in various ma-
lignancies [5], such as NPM1-ALK in anaplastic large cell
lymphoma (ALCL) [6] and ELM4-ALK in non-small-cell
lung cancer [7].
Discovering the relationship between gene fusions and

cancer is gaining significant momentum thanks to ad-
vances in next generation sequencing (NGS) technology,
particularly RNA paired-end sequencing [8]. Recently,
the application of this technology allowed the discovery
of new chromosomal rearrangements of the CIITA gene
with various promiscuous partners in the lymphomagen-
esis of primary mediastinal B cell lymphomas [9]. In
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Singh et al. [10], the analysis of RNA-Seq data led to the
discovery of the highly oncogenic fusion protein FGFR3-
TACC3 in 3% of patients diagnosed with glioblastoma
multiforme (GBM). Even though FGFR3-TACC3 occurs
at low frequency, the efficacy of FGFR inhibitors in the
treatment of these tumors opens the door to personal-
ized therapies for this deadly disease. Moreover, the
FGFR3-TACC3 fusion has been found in other cancers
such as bladder [11] and lung [12]. These recent discov-
eries underscore the power of high throughput genomics
for the identification of targetable gene fusions, opening
the door to personalized cancer therapies.
Several bioinformatics tools are now established for

the detection of candidate fusion events from paired-end
RNA-Seq data. Generally, the detection of read pairs that
discordantly map to two distinct genes generates a first
set of gene fusion candidates. Subsequently, the exact
fusion junction is determined for each candidate by
searching for reads spanning the breakpoint, i.e. reads
that partially map to both genes. FusionSeq [13] and de-
Fuse [14] were the earliest examples of software based
on this strategy. Detection tools differ in the type and
number of cascading filters they apply to reduce the
large number of false positive fusions. ChimeraScan [15]
implements an algorithm based on trimming reads to in-
crease fusion detection sensitivity. Bellerophontes [16] uses
TopHat [17] and Cufflinks [18] to identify gene fusions in-
volving truly expressed genes, and applies a set of modular
cascading filters based on an accurate gene fusion model
[19]. A comprehensive comparison of fusion detection tools
has recently been published [20].
The methods adopted by fusion detection tools to shrink

the list of candidates lead to increased specificity but re-
duced sensitivity. As reported in the comparative analysis
performed by Abate et al. [16] , the heterogeneity of
filtering strategies often yields poorly overlapping sets of
candidate transcripts between algorithms. The union of all
candidate fusions reported by different detection tools
should be considered for further experimental validation, in
order to maximize sensitivity. A problem arises however,
since the number of putative gene fusions might be on the
order of hundreds of candidates per RNA-Seq sample. This
is largely due to the presence of read-through events, re-
verse transcriptase template switching artifacts, and differ-
ent systematic errors in the analysis of the reads [21]. The
naïve approach of considering all candidates from all detec-
tion tools quickly overwhelms the capacity of experimental
validation procedures, and highlights the need to focus on
a reduced number of select biologically relevant fusions
driving the oncogenic progression of disease.
The classification of gene fusions into driver and

passenger events is a complex problem that has not
been fully explored yet. To address this issue, several
databases have collected hundreds of chromosomal
translocations involved in cancer cases and reported in
the biomedical literature. For instance, Mitelman [22],
TICdb [23] and ChimerDB2.0 [24] are manually curated
repositories of known gene fusions along with detailed
information such as chromosomal breakpoints, reported
tissue types, and fusion sequences. New computational ap-
proaches to nominate biologically relevant fusions from
high-throughput data have been proposed. ConSig assesses
driver gene fusions by combining copy number variations
(CNV), ontologies and interactomes based on the assump-
tion that fusion events are more likely to arise from genes
with similar biological functions [25]. Wu et al. have
proposed a network based approach relying on relative co-
occurrence of protein domains and domain-domain inter-
actions, and location of the gene fusion in a gene network
[26]. Recently, Oncofuse has improved the computational
analysis with a machine learning approach based on a
Naïve Bayes classifier applied to preserved domains after
chromosomal rearrangement [27]. Compared to earlier
methods, Oncofuse introduces a new level of detail by
considering only the domains that are maintained on the
resulting fusion transcripts. The domain analysis should be
extended, however, by taking into account all possible tran-
script isoforms as well as the reading frame, which plays a
crucial role since frame-shifted fusions imply a loss of
the 3’-gene domains. Moreover, Oncofuse relies on a Naïve
Bayes classifier that makes a restrictive assumption on the
class conditional independence of all features. Taking the
FGFR3-TACC3 gene fusion as an example, however, the ac-
quired coiled-coil domain of the TACC3 gene cooperates
with tyrosine kinase functionality of FGFR3 to produce the
dramatic oncogenic effect [10]. This example illustrates the
limitations of a model assumption that ignores interactions
between functional protein domains.
In this paper we aim to discern oncogenic driver fu-

sions from the background of passenger events and
artifacts by combining 1) functional domain annotation
based on accurate fusion sequence analysis and 2) a bin-
ary classification algorithm using gradient tree boosting.
The implementation of this methodology is Pegasus, a
new framework for the functional characterization of
RNA-Seq gene fusion candidates and quantification of
their oncogenic potential. Pegasus runs on top of mul-
tiple state of the art fusion detection tools in order to
maximize detection sensitivity and consider the largest
possible set of fusion candidates.
The main innovative steps introduced by Pegasus are

as follows:

� Common interface between several fusion
detection tools.

� Chimeric transcript sequence reconstruction: a
key feature since fusion detection tools do not
report whole transcript sequences.
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� Reading frame identification and accurate domain
annotation, including both preserved and lost protein
domains within the assembled chimeric transcript.

� Prediction of fusion oncogenic potential: high
performance ensemble learning technique trained
on a feature space of protein domain annotations.

� Automated workflow that would otherwise require
massive effort if manually executed by the scientist.

We assess the trained Pegasus model’s prediction accur-
acy by applying it to a set of recently discovered gene fu-
sions where it compares quite favorably with the current
state of the art, Oncofuse. Beyond curated datasets, we re-
port the results of Pegasus on real RNA-Seq data from
three distinct patient cohorts: public GBM samples from
TCGA, non-public GBM samples, and non-public ALCL
samples. We successfully identify driver gene fusions in
both cancer types and demonstrate the utility of coupling
our algorithm with experimental analysis.

Implementation
In order to first motivate our feature engineering, we briefly
review the main mechanisms hitherto identified in onco-
genic gene fusions (see Figure 1). Fusion transcripts can
Figure 1 Common gene fusions in cancer biology. Different mechanism
mechanisms of oncogenic transcription factor activation by means of an e
gene fusion where the 5’ gene leads to the deregulation of the 3’ tumor su
NPM1-ALK and FGFR3-TACC3 chimeras where a completely new protein is
broadly lead to three scenarios: i) enhanced overexpression
of an oncogene ii) deregulation of a tumor suppressor gene
iii) formation of a new, aberrant protein.
Enhanced overexpression of an oncogene is exempli-

fied by the famous IgH-MYC fusion (Figure 1a), and is
the main reason for our explicit annotation of oncogene
status and interactions with known oncogenes in our
feature space representation of fusion transcripts. In
other cases, deregulating properties can be associated
with the fused transcript, such as insertion of one or two
nucleotides across the junction breakpoint introducing a
shift of the reading frame. This scenario is illustrated in
the PPP2RA-CHEK2 fusion [28] (Figure 1b) where the
introduced frame-shifted sequence prevents the forma-
tion of the CHEK2 protein that is a known tumor sup-
pressor gene. Here we see the motivation for our explicit
annotation of tumor suppressor status and interactions
with known tumor suppressors in the feature space, as
well as the need for computing reading frame of each
candidate fusion. Finally, fusion transcripts can also yield
a completely new chimeric protein. BCR-ABL1 [1] and
NPM1-ALK [6] are well studied examples of such in-
frame fusions. The new protein is generally larger than
the kinase involved and causes an increase of the
s of gene fusions in cancer are shown. Figure 1(a) Shows the
ndogenous enhancer. Figure 1(b) Shows an example of disrupting
ppressor gene. Finally, Figure 1(c) and 1(d) depicts the BCR-ABL1,
produced.
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tyrosine kinase activity (Figure 1c). Moreover, in the re-
cently discovered FGFR3-TACC3 gene fusion, the ac-
quired coiled-coil domain of TACC3 gene drives the
localization of the fusion protein to the mitotic spindle
through a mechanism that is dependent on tyrosine kinase
functionality [10] (Figure 1d). It seems that a reasonable
feature space representation for predicting the onco-
genic properties of such novel chimeric proteins
should maintain knowledge of both preserved and lost
functional domains in the partner genes.
The methodology of Pegasus is composed of three

phases (see Figure 2): a) integration of candidates from
fusion detection tools b) chimeric transcript sequence
reconstruction and domain annotation c) classifier training
and driver prediction. The first phase, Fusion Detection
Tools Integration, involves pooling the entire set of unique
gene fusion candidates detected by any of the fusion detec-
tion tools. The second phase, Chimeric Transcript Sequence
Figure 2 Pegasus fusion annotation flow. For each phase, the figure sho
In Fusion Detection Tools Candidates Integration step, report files from sev
Chimeric Transcript Sequence Reconstruction and Functional Analysis phas
coordinates, the reading frame is checked and the protein domain annotat
Fusion Prediction applies machine learning techniques to determine predic
Reconstruction and Domain Annotation, includes two steps:
i) reconstruction of the chimeric transcript using the gen-
omic breakpoint coordinates and the partner gene annota-
tions ii) annotation of the assembled sequence to provide
information on the fusion frame and to generate a report of
all the protein domains conserved or lost in the gene fu-
sion. The final phase frames Driver Fusion Prediction as a
binary classification task and fits an ensemble of decision
tress via the gradient boosting algorithm.

Fusion detection tools integration
The Fusion Detection Tools Integration is the repository
of the entire set of fusion candidates detected by any of
the fusion detection tools. Several fusion detection algo-
rithms are supported in Pegasus: Bellerophontes, deFuse,
and ChimeraScan. Each tool adopts a private formalism
for reporting fusion information with different levels
of detail. However, some chimeric fusion features are
ws how the feature vector is constructed on the left side of the panel.
eral fusion detection tools are loaded in a unique fusion database. In
e, the fusion transcript is assembled according to the fusion breakpoint
ion is performed on the resulting fused sequence. Finally, the Driver
tion scores.
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common to all the fusion detection tool reports (e.g.
genes involved in the fusion, genomic breakpoint coordi-
nates, number of reads encompassing and spanning the
fusion breakpoint, etc.). Thus, the internal database
structure of Pegasus provides a unique point of access
for all the information needed to fully describe a gene
fusion candidate. Furthermore, experimental analysis
might involve the comparison of several RNA-Seq
samples per case study. To this end, the common re-
pository embedded in Pegasus provides an organized
overview of all the fusions occurring in the entire sam-
ple set. This feature allows comparison and the recur-
rence analysis of the fusion candidates within both the
same experimental dataset (samples of the same dis-
ease) and within different experimental datasets (sam-
ples across different diseases).

Chimeric transcript sequence reconstruction and domain
annotation
For each gene fusion candidate, the entire chimeric tran-
script sequence is first assembled according to publicly
available gene annotations and the fused gene breakpoint
coordinates. This is the most computationally intensive step
Figure 3 Chimeric transcript sequence reconstruction. Both for the 5’ and
possible combinations between the isoforms of the 5’ and 3’ genes are consi
in the methodology. For each gene fusion candidate, Pega-
sus assembles the chimeric sequence based on the possible
isoforms and splicing junctions of each gene, as well as the
genomic breakpoint coordinates (Figure 3). It is worth spe-
cifying that Pegasus reconstructs the fusion sequence exclu-
sively on the basis of gene annotation and fusion
breakpoint, and it does not exploit the sequenced reads be-
cause they are not an input to the program. Therefore the
reconstructed sequence may not reflect the actual se-
quences especially in case of alternative splicing events.
We adopt the annotation file from ENSEMBL database

[29]. Since several distinct isoforms might be available
for a specific gene, Pegasus considers the combinations
of all possible isoforms reported in the annotations of
those genes involved in the fusion (Figure 3). The
chimeric transcript sequence is therefore reconstructed
combining the 5’ gene isoform sequence (from the iso-
form start codon to the genomic breakpoint) and the 3’
gene isoform sequence (from the genomic breakpoint to
the isoform stop codon). Different gene isoforms allow
for different protein domains to be retained or disrupted
during the fusion. If this scenario occurs, Pegasus con-
siders the union of all possible domains that are retained
the 3’ gene the annotated isoform sequences are retrieved. All the
dered as putative fusion transcripts.
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and lost and as input features for downstream classifica-
tion. Furthermore, the fusion breakpoint can fall in ei-
ther the coding region (exon-exon junction boundaries),
or in non-coding regions (exon-intron or intron-intron
junction boundaries). Pegasus takes the latter scenario
into account and if the fusion breakpoint falls in an in-
tron, the intronic sequence is retained.
After sequence reconstruction we assess the preserva-

tion of the reading frame in the chimeric transcript,
which enables a great deal of our downstream feature
engineering (see Figure 4a). If the gene fusion introduces
or deletes a nucleotide in one of the codons, the entire
reading frame is shifted and the corresponding amino
acid sequence changes. Consequently, the resulting pro-
tein sequence is different from the one encoded by the
gene involved in the fusion. The gene fusion encodes a
protein sequence that either corresponds to a completely
unknown protein or contains a premature stop codon
(the presence of a premature stop codon in the chimeric
sequence interrupts the protein translation resulting in
the truncation of the protein encoded by the 5’ fused
gene). This class of mutations is functionally similar to
nonsense point mutations that play a role in many can-
cers and might imply the loss of functionality of the 5’
fused gene. The sequence is labeled as in-frame if the
number of nucleotides composing the fusion sequenced
is a multiple of three and no premature stop codons are
introduced in the chimeric sequence.
The annotation of the preserved and lost protein do-

mains is essential in order to capture the oncogenic poten-
tial of a translated chimeric transcript. The nucleotide
fusion sequence assembled in the previous step is translated
into an amino acid sequence. Subsequently, the UniProt
web service [30] is queried for all available annotations of
the putative protein encoded by the two genes involved in
the fusion (Figure 4b). Leveraging the reading frame infor-
mation and fusion breakpoint, Pegasus determines the con-
served and lost domains associated with both 5’ and 3’
genes. It is worth emphasizing that both conserved and the
lost domains are valuable features of a fusion transcript,
with the former more likely to discriminate oncogene re-
lated fusions and the latter more likely to discriminate
tumor suppressor related fusions.
The domain annotation permits the creation of a de-

tailed feature space for the fusion transcripts, a pre-
requisite step for posing the ensuing machine learning
task. In Pegasus the feature space is composed of:

� Binary information about reading frame and
breakpoint region (if the breakpoint falls in coding
regions, introns and UTRs);

� Presence or absence of ~1000 protein domains from
UniProt. Our selection was based on the domains
occurring in the training set from ChimerDB2.0.
� Number of oncogenic or tumor suppressor domains,
as defined by association with the keywords “tumor
suppressor” or “oncogene” in the UniProt database.

� Number of protein-protein oncogenic interacting
domains. We check if one or more domains of the
fusion interact with both oncogenic and tumor sup-
pressor domains.
Driver fusion prediction as a binary classification task
We aim to fit a model that can identify oncogenic fu-
sions from the background of passenger events and arti-
facts. More precisely, we aim to learn a mapping f : X→
y from the fusion transcript feature space X to a label
y ∈ {0, 1} representing oncogenic driver status. Since we
desire a biologically interpretable model that is also cap-
able of capturing interactions between features, the deci-
sion tree is a natural choice. On the other hand, high
dimensional feature spaces predispose to overfitting, and
previous driver fusion prediction studies [27] focused a
great deal on upfront dimensionality reduction for this
reason. A single, large decision tree classifier is not likely
to generalize beyond some training depth. An ensemble
of shallower decision trees, if learned in a boosting
framework, can guard against overfitting because of the
iterative nature of the learning and the additive structure
of the model [31]. Therefore the balance we strike be-
tween the expressive power of decision trees and robust-
ness to overfitting comes in the form of stagewise
additive modeling. In Pegasus we employ an additive

model f xð Þ ¼
X
m

αmhm xð Þ composed of weighted deci-

sion trees, an instance of which is shown in Figure 5,
and fit via gradient boosting [32]. There is no manual re-
duction of features or feature space dimension in this
strategy, unlike the manual selection of 6 enriched func-
tional categories in the Oncofuse framework [27].
Thus we require neither upfront dimensionality reduc-

tion schemes nor the restrictive assumption of class con-
ditional feature independence in the Naïve Bayes model.
Gradient tree boosting is an ensemble learning tech-
nique, wherein decision trees are used as base learners
and the final model is expressed as an expansion in
these basis functions. Figure 5 depicts a sample regres-
sion tree that would be added to the ensemble in a sin-
gle round of boosting. Although the base learners are
performing regression, appropriate choice of loss func-
tion for gradient boosting yields a classification task.
Here we use the binomial deviance loss, and enforce a
maximum depth of 5 nodes in the individual decision
trees. The gradient tree boosting algorithm, originally
published in 2000, is outlined below [33] and the imple-
mentation we use can be found in the scikit-learn py-
thon library [34]. We denote the number of training



Figure 4 (See legend on next page.)
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Figure 4 Frame check and domain annotation. Figure 4(a) The length of the fusion transcript, from the start to the stop codon, must be
multiple of three (three nucleotides per single encoded codon). If the length of the sequence module three is non-zero, the fusion sequence if
frame-shifted. A premature stop codon can be introduced in the protein sequence. Figure 4(b) The nucleotide sequence resulting from the fusion
of the 5’ and 3’ gene is translated into amino acid sequence. Similarly, the genomic breakpoint coordinates are translated into protein amino
acid coordinates. UniProt Web Service is queried and the list of the available domains for both the gene is retrieved. On the basis of the protein
domain sequence and protein breakpoint, the list of both conserved and lost domains is reported.
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examples by N, the number of boosting rounds by M,
and the loss function by ℒ.

að Þ For i ¼ 1; 2;…;N compute
Let yi ≡ class label of transcript i

Let f m xð Þ ≡ classification function at boosting round m
Initialize f 0 xð Þ ¼ argminγ

X
i¼1:N

ℒ yi; γð Þ
For m ¼ 1 to M :

að Þ For i ¼ 1; 2;…;N compute

rim ¼ − ∂ℒ
yi; f xið Þ
∂f xið Þ

� �
f¼f m−1

"

(b) Fit a regression tree to rim producing regions Rjm, j =
1, 2,…, Jm

(c)

For j ¼ 1; 2;…; Jmcompute

γ jm ¼ argminγ
X
xi∈Rjm

ℒ yi; f m−1 xið Þ þ γð Þ

(d)

For j ¼ 1; 2;…; Jmcompute

γ jm ¼ argminγ
X
xi∈Rjm

ℒ yi; f m−1 xið Þ þ γð Þ

An alternative ensemble classification strategy, the
random forest algorithm, demonstrated comparable per-
formance to gradient tree boosting in our experiments.
There is recent precedent in the machine learning
Figure 5 Decision tree base learner. The base learner in the boosted classific
the feature space into disjoint regions each modeled by a constant. Decision no
nodes, the samples have been partitioned into disjoint sets with a higher degre
literature for initializing gradient tree boosting models
with rankings learned via random forests for achieving
superior performance to either algorithm alone [35].
Interestingly, those authors found that posing web-
search rankings as a classification task rather than a re-
gression task increased the performance of a gradient
boosted regression tree model, confirming our hypoth-
esis in constructing the current Pegasus classifier.

Results and Discussion
This section highlights the performance of Pegasus in
detecting driver gene fusions. First, we examine the per-
formance of the classifier on the training data and
compare its effectiveness to a recently published tool,
Oncofuse, on a separately curated validation dataset.
Next, we run Pegasus on two experimental datasets and
demonstrate its role in reducing the search space of po-
tential oncogenic drivers by accurately ranking fusion
transcripts from a vast set of putative candidates. The
first is the publicly available RNA-Seq data of GBM from
TCGA. The second is a non-public set of 23 RNA-Seq
samples from a cohort of patients with ALCL, with 2
out of the 23 samples reporting the NPM1-ALK fusion.
We analyze these datasets with ChimeraScan or

deFuse and apply Pegasus to the entire set of detected
fusions. It is worth specifying that in the reported
ation model is the decision tree, which defines a recursive partitioning of
des are colored brown while leaf nodes are colored green. At the leaf
e of label homogeneity than at the root.



Let I 2k ≡ squared importance of feature k
LetM ≡ number of boosting rounds:
Let T be a decision tree with J−1 pairs t; iˆt 2ð Þ of
ðinternal decision node; estimated improvement in

squared error riskÞ:
I 2k Tð Þ ¼

X
t¼1:J−1

iˆt 2I t ¼ kð Þ:

⇒I 2k ¼
1

M

X
m¼1:M

I 2k Tmð Þ:
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results about chimeric transcript annotations, if two or
more fusions share the same junction breakpoint coor-
dinates, they are counted as a single fusion. The ration-
ale is that according to the Pegasus fusion domain
analysis, if two genes fuse in different samples with the
same breakpoint they also share exactly the same do-
main. Conversely, if two genes occur in different sam-
ples with different junction breakpoint coordinates,
the domain analysis accordingly changes.

Classifier performance on training corpus and independent
validation set
The corpus of labeled data used to train the classifier
comes from two sources. Positive examples, meaning
true oncogenic driver fusions, are drawn from Chi-
merDB2.0, which contains 501 curated driver fusions.
1500 negative examples are then drawn from an internal
collection of reactive lymph node tissue in patients with
no clinical history of malignancy. The negative examples
contain passenger fusions as well as read-through tran-
scripts. We also supplement the negative training data
with 416 deliberately frame-shifted transcripts from
ChimerDB2.0 such that the necessary driver domains
are lost. In total there are 501 positive examples and
1916 negative examples in the training corpus. The ra-
tionale for augmenting the negative set with 416 frame-
shifted fusions from ChimerDB2.0 is to include the sce-
nario of chimeric transcripts containing an oncogene at
the 3’ position that is frame-shifted. Since such events
occur at low frequency in normal lymph node tissue,
this design choice improves the performance of the clas-
sifier (for a detailed discussion please refer to Additional
file 1). In summary, the 501 fusions from ChimerDB2.0
Figure 6 Classifier training under stratified 10-fold cross validation. Becau
the label and ensure that each 10% of data held out as a test set contains equa
averaged over the 10 CV folds. Figure 6(b) Binomial deviance loss function plot
form the positive training set and provide mostly in-frame
fusions involving oncogenes. The 1500 fusions from normal
tissue contribute to the negative set and provide both
in-frame and frame-shifted fusions. The 416 deliberately
frame-shifted fusions from ChimerDB2.0 complete the
negative set and provide frame-shifted gene fusions mostly
with an oncogene at the 3’ position.
The classifier is trained for 100 rounds of boosting

under 10-fold stratified cross validation (CV) and
achieves a mean test split AUROC of 0.96. As ex-
pected, in Figure 6b the loss on the train split mono-
tonically decreases with increasing model complexity,
while we see no sign of overfitting in the form of rising
loss on the test split. Since each decision tree base
learner implies a hierarchy of informative features, we
can average over the boosting rounds to produce an
aggregate view of the most important features in the
classification task. Specifically, the relative feature im-
portances in Figure 6a are computed via an ensemble
average of the single decision tree feature importances
as defined in Breiman et al. [36]:
se of the imbalance in positive/negative training examples we stratify on
l proportions of both labels. Figure 6(a) Relative feature importances
ted against model complexity for both the train and test splits of the data.
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We observe that the computationally expensive step of
computing the fusion transcript reading frame is justi-
fied in the eyes of the classifier, as it is the single most
informative feature. Looking a little further down the list
we learn other transcript features that are highly inform-
ative of driver events, such as having breakpoints in the
CDS and conserving domains shared with or interacting
with known oncogenes.
Despite strong performance of the model under 10-

fold CV on the training corpus, we are interested to see
whether the classifier can generalize to new fusion tran-
scripts that were unseen during the training phase. A list
of 39 driver fusions, the majority of which are more
recent than ChimerDB2.0, and corresponding to the
validation set used in [27], is adopted as the positive val-
idation set examples. To balance the label frequencies,
we also select 39 transcripts from benign, reactive lymph
node tissue as the negative validation set examples.
None of the 78 validation examples are included in the
training data. The negative examples are selected to con-
tain at least one oncogene or tumor suppressor domain
with the rationale that such transcripts more closely re-
semble driver fusions and would be most challenging for
a classification function. In Figure 7a we demonstrate
the favorable performance of the trained Pegasus classi-
fier versus Oncofuse, the current state of the art in data-
driven prediction of driver fusions. Since the ROC curve
does not necessarily reveal how well separated the Pegasus
scores are for the two class labels, we include Figure 7b to
Figure 7 Classification performance of trained model. A curated set of 39
training corpus are now used as an independent validation set. Figure 7(a) Su
the validation dataset. Figure 7(b) Boxplot demonstrating the high resolution
examples are consistently scored near 1 and negative examples consistently n
illustrate the remarkable resolution the classifier achieves
between positive and negative examples. We also verify that
Pegasus outperforms Oncofuse on randomly drawn sets of
39 non-oncogenic transcripts, though by a smaller margin
(ROC curve in Additional file 2: Figure S1). This is to be ex-
pected because the majority of non-oncogenic fusions are
very easily classified, whereas our curated subset represents
a more challenging task. Such robust performance on
manually curated data sets naturally leads to the next prov-
ing ground, applying Pegasus to the enormous candidate
lists generated from real RNA-Seq samples.

Pegasus driver fusion predictions in non-public GBM data
In order to demonstrate the effectiveness of Pegasus in
predicting driver fusions, we analyze 15 samples of
short-term glioblastoma stem cells freshly isolated from
individuals with GBM. RNA-Seq samples were first ana-
lyzed with ChimeraScan and deFuse [14,15] for fusion
detection. Next, we apply Pegasus to the set of gene fu-
sion candidates and consider as driver events all those
fusions having a number of supporting reads greater
than 10 and a Pegasus Driver Score (PDS) greater than
0.8. As shown in Figure 7(b), a threshold of PDS > 0.8
promises a good trade-off between specificity and sensi-
tivity. Table 1 reports the 4 detected driver fusions. All
fusions have been validated with RT-PCR (see Additional
file 3: Figure S2) yielding a 100% rate of transcript
validation. And while recurrence is often the surrogate
measure of functional importance, the four unique
recently reported fusions that were not present in the ChimerDB2.0
perior classification performance of Pegasus compared to Oncofuse on
of the Pegasus driver score in discerning the class boundary. Positive
ear 0.



Table 1 Pegasus predictions on 15 private GBM RNA-Seq
data

5’ Gene
partner

3’ Gene
partner

Spanning
reads

Split
reads

Pegasus
driver score

Validated

CAND1 EGFR 17 14 0.9437 YES

MAPK1 FAM119B 145 96 0.9426 YES

ADCK4 NUMBL 11 4 0.9426 YES

VOPP1 IL22 48 35 0.8243 YES

Pegasus top driver scores (PDS > 0.8) 4 new driver fusions in GBM data.
Number of supporting reads, Pegasus Driver Score and RT-PCR validation
status are shown.

Table 2 Pegasus predictions on GBM RNA-Seq data

5’ Gene
partner

3’ Gene
partner

Pegasus
driver score

Recurrence

YEATS4 XRCC6BP1 0.9598 1

EIF4H GTF2I 0.9440 1

ASH1L C1orf61 0.9256 1

SEC61G EGFR 0.9234 4

BCAN NTRK1 0.9182 1

EGFR VOPP1 0.9130 2

EGFR SEPT14 0.9042 6

TDRD3 ESD 0.8959 1

TFG GPR128 0.8880 4

PPP2R2B CCT3 0.8699 1

TBC1D14 HTRA3 0.8697 1

FGFR3 TACC3 0.8442 3

LANCL2 SEPT14 0.8428 3

Pegasus top driver scores (PDS > 0.8) predicts 46% of known driver gene
fusions in GBM data from TCGA cohort. Recurrence is assessed on the basis of
gene fusion frequency reported in Frattini et al. and Brennar et al.
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driver candidates from this 15 patient sample still con-
tain features associated with oncogenic gene fusions. In
fact, CAND1-EGFR has been reported in [37] and the
EGFR gene has been demonstrated to have an oncogenic
role in GBM. Moreover, fusions involving MAPK1 and
VOPP1 are reported as frequent in GBM with different
gene partners [37,38]. These results show that Pegasus
can successfully detect relevant driver fusion candidates
from RNA-Seq data and that a threshold of PDS > 0.8
and number of supporting reads greater than 10 provide
a strong transcript validation rate.

Pegasus driver fusion predictions in public TCGA GBM data
As the most common and deadly primary brain cancer,
GBM has recently undergone a deep investigation by the
multi-institutional consortium, the cancer genome atlas
(TCGA). TCGA makes its collected RNA-Seq data
available to the larger scientific community, and we
analyze a set of 161 samples from their GBM cohort.
We first analyze the 161 RNA-Seq samples with
ChimeraScan (default parameters) [15], detecting a
total of 9349 unique fusions across the entire dataset.
Next, we apply Pegasus to the set of candidates and
consider as driver events all fusion transcripts having a
number of supporting reads greater than 10, Pegasus
Driver Score (PDS) greater than 0.8 and recurrence
greater than 1 (for the complete list see Additional file
4: Table S1). As shown in the non-public RNA-Seq
data, these filtering thresholds provide a good valid-
ation rate by RT-PCR. The application of these filters
reduces the original list of 9349 candidates down to 13
high confidence fusions, making further functional
analysis and validation tractable. Pegasus computes a
score greater than 0.8 for both FGFR3-TACC3 and
EGFR-SEPT14 gene fusions, which are already re-
ported as driver translocation events in GBM [10,37].
However, since TCGA biological material is not available,
we are unable to perform further functional analysis of all
predicted driver fusions with experimental procedures.
Nonetheless, in order to validate Pegasus performance we
compare PDS values with the frequencies reported in both
Frattini et al. and Brennar et al. (see Table 2). Of the 13
high confidence Pegasus predictions, 6 are recurrent in
TCGA data suggesting a potential functional driver role in
GBM tumorgenesis [39]. Some of the recurrent fusions in-
volve the EGFR gene that is usually amplified in GBM,
where it is known to activate STAT3 signaling and is thus a
drug target. Particularly interesting is also the BCAN-
NTRK1 gene fusion. In fact, NTRK1 is often translocated
with different partners in cancers beyond just GBM [37].

Functional validation of new recurrent driver fusion in
anaplastic large cell lymphoma
Anaplastic large cell lymphoma (ALCL) is a form of per-
ipheral T-cell lymphoma that is often associated with
translocations of the ALK gene. In 23 non-public ALCL
samples (~450 million properly mapped reads) we detect
a total of 5201 candidate fusion transcripts by means of
deFuse [14] and ChimeraScan [15]. Beyond the two
NPM1-ALK fusion transcripts (PDS = 0.98) that are
already reported, Pegasus properly annotates and reveals
16 new biologically relevant fusions in these 23 samples.
All 16 candidate driver fusions have been validated with
RT-PCR, and 4 gene fusions have successfully undergone
functional assays and in vivo validation. An example of
Pegasus’ effectiveness in functional domain analysis lies
in the oncogenic role of TRAF1-ALK [40], a novel fu-
sion in ALCL that Pegasus reports as driver.
The TRAF1-ALK fusion has been reported in three

cases of ALCL (one in [40] and two in Abate et al.,
manuscript under review) suggesting a driver role. Pega-
sus accurately assembles and annotates the in-frame
fusion sequence and correctly detects that the ALK pro-
tein kinase domain is completely conserved. Various
fusions involving the ALK gene have been reported in
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literature and the oncogenic effect is generally promoted
by ALK signaling. Interestingly, TRAF1 is also known to
be involved in both the canonical and non-canonical
NFkB pathway. Pegasus correctly annotates that the
meprin and TRAF-C homology (MATH) domain is con-
served, a domain that ubiquinates the IKK complex,
activating NFkB transcription factors. As depicted in
Figure 8, Pegasus properly identifies both the presence
of an oncogenic protein domain (ALK) and an interact-
ing oncogenic domain (TRAF1 to NFKB activation). Ex-
perimental work demonstrates and validates this Pegasus
prediction showing the oncogenic effect of TRAF1-ALK
in vivo, with activation of both ALK and NFkB signaling
(Abate et al., manuscript under review).

Conclusion
Since the first application of whole transcriptome se-
quencing to gene fusion discovery in 2009 [8], many
new aberrant events have been reported, opening an ex-
citing frontier for molecular understanding of cancer
biology and targeted therapies. The unprecedented sen-
sitivity of NGS technology, however, often yields num-
bers of fusion candidates too large to be experimentally
validated. The frontier is made ever more exciting (and
challenging) by large consortia such as TCGA and ICGC
(International Cancer Genome Consortium) who are
making available large sets of RNA-Seq samples span-
ning the spectrum of human malignancies. The ana-
lysis of this data has been revealing the limits of the
theory that associates driver events with recurrent
events. In fact, out of 161 RNA-seq GBM samples, the
most frequent fusion (EGFR-SEPT14) occurs in only 6
samples, and the highly expressed FGFR3-TACC3 fu-
sion is recurrent in only the 3% of GBM cases. Thus,
Figure 8 Novel driver TRAF1-ALK gene fusion in ALCL. A graphical rep
ALCL. Conserved domains are reported according to the junction breakpoi
this data suggest that in order to select relevant driver
fusion candidates for biological validation, a functional
analysis of the putative gene fusion candidate is
necessary.
Here we present Pegasus, an accurate prediction tool

for the discovery of new driver gene fusions in cancer
studies. The proposed methodology is based on a com-
putational model of the features that make chimeric
transcript a driver oncogenic event. The framework pro-
vides a common interface for several fusion detection
tools and it predicts driver events by properly analyzing
the detected gene fusion candidates according to the as-
sembled fused sequence.
The application of ensemble learning techniques re-

veals the most informative features in discriminating
oncogenic gene fusions. The data confirm our intuition
that an accurate analysis of fusion transcript sequence is
necessary. The reading frame in particular is a dominant
features in the discrimination of passenger and driver fu-
sions. Similarly, the molecular characterization of the
main reported oncogenic domains accurately increase
the sensitivity and the PDS computation.
The problem of computationally assessing the bio-

logical and clinical relevance of a gene fusion is still
very much an open question. However, some driver
prediction tools have been recently proposed. To bet-
ter determine Pegasus performance and accuracy, we
compare our predicted results with Oncofuse. The data
confirm that an approximate analysis of the fusion tran-
script sequence negatively impacts the performance of the
algorithm. Using a set of known driver fusions as positive
examples and a set of passenger fusions from normal tissue
as negative examples, we observe the superior performance
of Pegasus in ROC space where its AUC is 0.97.
resentation of the Pegasus annotation on the TRAF1-ALK fusion in
nt.
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Moreover, we demonstrate the practical role of the
Pegasus framework in computing PDS scores that allow
for triaging lists of gene fusion candidates for experi-
mental validation in two actual case studies. In the first,
we apply Pegasus to public GBM TCGA data and almost
50% of the detected driver fusions turn out to have been
reported as a biologically relevant in independent studies
[37,38]. In the second, we compute Pegasus scores for
internal ALCL data and we successfully detect novel
oncogenic and targetable driver fusions that have under-
gone complete functional and experimental validation.
In this work, we extensively report the driver fusion
TRAF1-ALK that has been correctly detected and highly
ranked by Pegasus.
Finally, the accuracy of Pegasus in detecting driver fu-

sions in both the curated validation dataset and the real
biological cases demonstrates the efficacy of the frame-
work in supporting biological analysis and cancer re-
search. We believe that the Pegasus prediction score, as
well as the accurate annotations provided via our feature
engineering, will be of great use to other investigators
searching for biologically relevant gene fusions in NGS
data.
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