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Abstract 

Streptococcus suis (S. suis) is a major pig pathogen worldwide with zoonotic potential. Though different research 
groups have contributed to a better understanding of the pathogenesis of S. suis infections in recent years, there 
are still numerous neglected research topics requiring animal infection trials. Of note, animal experiments are crucial 
to develop a cross-protective vaccine which is highly needed in the field. Due to the severe clinical signs associated 
with S. suis pathologies such as meningitis and arthritis, implementation of refinement is very important to reduce 
pain and distress of experimentally infected pigs. This review highlights the great diversity of clinical signs and courses 
of disease after experimental S. suis pig infections. We review clinical read out parameters and refinement strate-
gies in experimental S. suis pig infections published between 2000 and 2021. Currently, substantial differences exist 
in describing clinical monitoring and humane endpoints. Most of the reviewed studies set the body temperature 
threshold of fever as high as 40.5°C. Monitoring intervals vary mainly between daily, twice a day and three times a day. 
Only a few studies apply scoring systems. Published scoring systems are inconsistent in their inclusion of parameters 
such as body temperature, feeding behavior, and respiratory signs. Locomotion and central nervous system signs 
are more common clinical scoring parameters in different studies by various research groups. As the heterogenicity 
in clinical monitoring limits the comparability between studies we hope to initiate a discussion with this review lead-
ing to an agreement on clinical read out parameters and monitoring intervals among S. suis research groups.
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Background
In 1959 the 3R principles (replacement, reduction, refine-
ment) were initially proposed by Russel and Burch [1]. 
They wanted to achieve better treatment of laboratory 
animals and to improve scientific quality [2]. In recent 
years it has become increasingly important to reduce 
the number of animals used in research and to alleviate 

their harm and pain by applying the 3R principles [3, 4]. 
However, some pathogenesis and immunogenicity stud-
ies require the use of animal experiments due to the 
complexity of host–pathogen interactions and the host 
immune system [5]. Examples in S. suis research are 
loss-of-function studies [6] designed to read out the role 
of a putative virulence factor in causing meningitis and 
vaccination studies reading out adaptive immunity [7]. 
Researchers have to follow international rules and guide-
lines for animal experiments including 3R principles [3] 
to reduce pain and distress of animals where possible 
without jeopardizing the scientific validity [8]. Detailed 
reporting on animal research following e.g. the ARRIVE 
Guidelines ensures reproducibility and maximal research 
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output which helps to reduce animal experiments in the 
future [9].

S. suis is a major porcine pathogen in the pig industry 
worldwide. It is a very diverse pathogen with 29 known 
serotypes [10–12]. There are important differences 
between countries regarding the prevalence of major 
serotypes with serotype 2 as the most prevalent causing 
disease in pigs worldwide [13]. S.  suis can colonize the 
upper respiratory tract of pigs without causing disease 
[14]. However, invasive strains induce severe clinical signs 
of disease due to meningitis, arthritis, septicemia and 
endocarditis and may also lead to acute death. As such, 
infections with S. suis can cause high economic losses in 
pig husbandry due to mortality, lower weight gain and 
costs for treatment and prevention [11, 15]. S. suis is also 
a relevant human pathogen causing mainly meningitis, 
the streptococcal toxic shock-like syndrome and septice-
mia, especially in Asian countries [16, 17]. Consumption 
of raw pork or blood of pigs suffering from S. suis disease 
is a known risk factor for this zoonosis [17]. Moreover, 
humans may also be infected through wounds [17, 18]. 
Although knowledge on S. suis has improved in the past 
years [19], there are still important research questions 
regarding pathogenesis as well as development of a cross-
protective vaccine that require experimental work with 
animals. So far there is no effective cross-protective com-
mercial vaccine available [20] and autogenous vaccines as 
well as antibiotics are used to control S. suis diseases [15, 
19].

The 3R´s include reduction of animal experiments [2]. 
This can be achieved through different measures which 
also play an important role in experimental S.  suis pig 
infections. On the one hand, careful biometrical plan-
ning and selection of an appropriate study design might 
be used to reduce the number of animals [4, 8]. Further-
more, different S.  suis research groups have conducted 
in vitro tests to read out host–pathogen interactions and 
immune responses which goes along with replacement 
of experimental infections in accordance with the 3R´s. 
Examples are serum or blood survival assays [21–24], 
opsonophagocytosis assays [7, 25–27] and cell culture 
models [28, 29]. Specifically, comparison of survival of 
wild type and isogenic mutants in blood ex vivo generates 
data on putative virulence factors involved in immune 
evasion mechanisms crucial for bacteremia [25, 30].

Arthritis, meningitis and other pathologies induced 
through experimental S. suis infection are associated with 
pain-related distress [31]. Therefore, adequate refinement 
is crucial to reduce distress in infected pigs. This review 
on 68 experimental S. suis infection studies in pigs, pub-
lished between 2000—2021, focuses on refinement strat-
egies, e.g. housing and handling, clinical monitoring and 
scoring and humane endpoints applied to minimize the 

burden of experimentally infected pigs. It highlights dif-
ferences in clinical monitoring, read out parameters as 
well as humane endpoints applied by different S.  suis 
researchers.

Methods
The review includes 68 articles dealing with experimen-
tal S. suis infection in pigs published between January 1, 
2000 and December 31, 2021. The following keywords 
were used in different combinations for article search 
using NCBI and Google scholar database: Streptococ-
cus  suis, experimental infection, challenge, vaccination, 
pig and swine. A few articles were found through refer-
ences in other publications on NCBI or Google scholar 
database. Only articles were included in which clinical 
monitoring after experimental infection of pigs was per-
formed due to potential development of signs typical for 
S. suis disease. We excluded studies written in a different 
language but English, studies dealing only with experi-
mental infection of mice or natural S.  suis infection, 
studies with permanent anesthesia after experimental 
infection, case reports and co-infection studies with the 
primary aim to read out clinical signs of another patho-
gen than S. suis. Furthermore, two studies were not con-
sidered if data suggested that experimental infection was 
not successful, e.g. the study by Warneboldt et al. (2016) 
describing oral application of S. suis [32].

Results
Status of piglets and experimental design of S. suis 
infection
Sixty-eight studies published between 2000 and 2021 
including experimental S.  suis infections in pigs were 
reviewed. We cannot exclude that the restriction to this 
period and the parameters used to identify publications 
are associated with a bias, as there are numerous older 
studies describing experimental infection of pigs with 
S.  suis. However, information on refinement measures 
such as defined humane endpoints are generally scarce in 
older publications. Furthermore, clinical scores were only 
published more recently. Of the reviewed articles, most 
studies focused on pathogenesis (n = 41/68) or develop-
ment of vaccines (n = 27/68) against S.  suis disease in 
pigs. Throughout the period under review there were 
only a few publications dealing with S.  suis coinfections 
(n = 9/68). These publications included infection models 
with piglets experimentally infected with porcine respira-
tory and reproductive syndrome virus (PRRSV) [33–37] 
(n = 5/9), Bordetella bronchiseptica [38, 39] (n = 2/9), 
porcine circovirus type  2 [40] or swine influenza virus 
[41] (each n = 1/9), followed by S.  suis infection. Coin-
fection was used as a predisposing factor to promote the 
clinical manifestation of S. suis infection. In the reviewed 
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studies mainly four- to six- (n = 24/68) and seven- to ten- 
(n = 31/68) week-old piglets were used for experimental 
infection with S.  suis (Fig.  1A). This covers the period 
of time with the highest risk for pigs to get affected by 
S. suis disease in the field [11]. In particular most piglets 
develop signs of S. suis disease after weaning in associa-
tion with different stressors [42]. For this, some studies 
have targeted weaners for experimental S.  suis infection 
[43–47]. Unfortunately, many studies did not specify the 
duration between weaning and experimental infection. 
Even zero- to three-week-old piglets were used in a few 
studies (n = 13/68), whereas piglets older than ten weeks 

were rarely included (n = 3/68) (Fig. 1A). Of note, only a 
minority of experiments were conducted with piglets that 
lack maternal immunity, e.g. cesarean-derived and colos-
trum-deprived (CDCD) or just colostrum-deprived (CD) 
piglets (n = 9/68). More often conventional pigs regarded 
to be free from specific S.  suis serotypes or strains 
(n = 29/68) were used (Fig.  1B). If described, the S.  suis 
negative status for specific serotypes of the pigs was 
either determined by measurement of serum antibodies 
[6, 34, 41, 48, 49] or microbial screening of tonsil tissue 
or tonsil and nasal swabs e.g. through PCR [24, 26, 43, 
47, 50–56]. The investigations on the S. suis status refer 

Fig. 1  Age (A), infection status (B), S. suis serotype (C) and application route (D) in the reviewed publications on experimental pig infections (n = 68). 
In case of pigs of various ages (A), different serotypes (cps) (C) or infection routes (D) were used within one published study, it is listed under all 
respective categories. All mutants used in the reviewed studies were generated from serotype 2 wildtype strains. C. The pathogen status refers 
to the S. suis status of pigs (B). Pigs with a different immunity status e.g. caesarean-derived and colostrum-deprived (CDCD) pigs, that lack maternal 
immunity, as well as conventional pigs with potential background immunity were used. In some publications the S. suis pathogen status (n = 2/68) 
or serotypes (n = 2/68) of the challenge strain was not mentioned (n.m.)
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either exclusively to the animals used in the experiment 
[26, 34, 41, 43, 50, 52, 53, 57] or to the screening of the 
original herd over several years [24, 37, 51, 54]. However, 
defining piglets to be free from specific serotypes or anti-
bodies does not exclude a substantial level of background 
immunity. Since nearly all pigs within a herd are colo-
nized with S. suis in the upper respiratory tract, specific 
or unspecific cross-reactive antibodies are detectable in 
serum of these pigs [14, 58]. Some publications describe 
the usage of specific-pathogen-free (SPF) pigs (n = 12/68) 
(Fig.  1B). However, this does not mean that pigs were 
generally free from S. suis [59]. The term SPF-pigs is used 
in the sense that the animals are free from specific S. suis 
serotypes not S. suis in general [23, 47, 54, 56, 60]. Nev-
ertheless, other studies use the term SPF without further 
clarification [46, 61–68]

Worldwide, the most prevalent serotype leading to 
disease in pigs and humans is S. suis serotype 2 [12, 13]. 
Accordingly, this was also by far the most commonly 
administered serotype in experimental S.  suis pig infec-
tions (n = 59/68) (Fig. 1C), followed by S. suis serotype 9 
(n = 7/68) (Fig. 1C). Serotypes rarely used in experimen-
tal S.  suis infections in pigs were serotype  7 (n = 2/68), 
serotype 1 (n = 2/68) and serotype 14 (n = 1/68). Conse-
quently, there is currently little data on experimental pig 
infections with other serotypes than serotype 2 as well as 
infection in pigs younger or older than four—ten weeks.

Pallarés et  al. (2003)  [47] conducted an experimen-
tal study comparing different routes of application. The 
authors recommended an intranasal model including a 
predisposition after local application of acidic acid as this 
model mimics the natural route of exposure and is effec-
tive in induction of typical pathologies. In the reviewed 
studies, intranasal (i.n.) (n = 28/68) or aerosolic (n = 5/68) 
applications were less frequently used than the intrave-
nous (i.v.) route (n = 32/68). One limitation of intrave-
nous models is the lack of host–pathogen interactions on 
mucosal surfaces though they are considered the initial 
steps in the pathogenesis of S. suis disease [14]. Notewor-
thy, intranasal application of a serotype 9 strain did not 
result in clinical signs of disease in contrast to i.v. appli-
cation [69]. This suggests that induction of disease after 
intranasal application only works with a limited number 
of strains, at least in conventional piglets. The intraperi-
toneal (i.p.) route of infection is used infrequently in pigs 
(n = 5/68), in contrast to murine S. suis models [59]. Spo-
radically, subcutaneous (s.c.) (n = 2/68), oral (n = 1/68) or 
intramuscular (i.m.) (n = 1/68) infections were conducted 
(Fig.  1D). Among the reviewed experimental infec-
tions of pigs with S. suis there is substantial variation in 
i) the source and infection status of the animals, ii) the 
age group, iii) the challenge strain and iv) the application 
route.

Housing and handling of piglets
Adequate housing and handling are fundamental require-
ments in animal experiments which otherwise may 
strongly contribute to distress of animals. As claimed by 
the Directive 2010/63 EU the facilities have to provide 
an environment covering the physiological and ethologi-
cal needs of the species [70]. The EU-Directive requires 
social housing of animals and species specific environ-
mental enrichment to reduce stress-induced behavior 
[70]. Regarding pigs, species specific environmental 
enrichment includes chewable and deformable materials, 
most suitable straw, which can be explored and moved 
[71]. As the pigs usually lose interest in materials within 
a few days, they have to be exchanged regularly [71]. To 
the best of our knowledge, it has not been investigated if 
environmental enrichments make a difference for trans-
mission of S. suis. In studies designed to read out trans-
mission [72, 73], such a link should be considered, even 
more as S. suis is commonly present in porcine saliva 
[74]. As mentioned in the ARRIVE Guidelines housing 
and husbandry conditions as well as acclimatization peri-
ods have an impact on well-being of animals and research 
outcome [9]. Therefore, it is relevant to report conditions 
which might influence study outcomes. Nevertheless, 
housing conditions (e.g. housing system, climate condi-
tions, food and water supply, biosecurity level, group 
composition, environmental enrichment) are rarely 
described in research articles on S.  suis pig infections. 
Usually, only water supply and feeding are specified [33, 
34, 43, 45, 47, 53, 56, 60, 72, 75–79]. Nevertheless, almost 
all articles mention approval of their animal experiments 
by an ethical/local committee and/or ethical guidelines or 
laws in force for the use of laboratory animals (n = 58/68). 
This suggest that animals were housed under adequate 
conditions even if housing is not described in detail.

After the piglets have been moved to the experimental 
facilities, an acclimatization may further reduce stress of 
piglets induced through transport and the new environ-
ment [80]. This was described in a few articles (n = 14/86) 
in which the time for acclimatization ranges from two 
to 18 days [34, 36, 40, 44, 50, 53, 54, 65, 75, 78, 81–84]. 
Acclimatization is important to eliminate changes in 
physiological parameters e.g. heart rate, cortisol levels 
and reduced feed intake caused through transport-asso-
ciated stress and the new environment [80, 85]. Moreo-
ver, in the acclimatization period piglets should get used 
to examinations by animal caretakers and veterinarians 
such as measurement of inner body temperature and pal-
pation of joints [85, 86]. Of note, piglets can be trained 
with a clicker and sweets to accept standing on a scale or 
application of drugs [85] to reduce handling stress. Train-
ing of pigs prevents fear related behavior which could 
otherwise distort study results [85]. However, certain 
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stressful procedures like administration of the challenge 
strain or blood sampling from the V.  cava cranialis are 
difficult to train. Nevertheless, positive conditioning by 
sweets after stressful procedures can reduce fear of pig-
lets. The DIRECTIVE 2010/63/EU requests the use of 
anesthesia or analgesia for procedures in animal experi-
ments to reduce distress whenever it is possible and not 
in contrast to the aim of the study [70]. Accordingly, it is 
advisable to conduct stressful procedures like experimen-
tal infection [7, 69, 72, 83, 87] and euthanasia [72, 75, 79, 
87–89] under anesthesia.

Monitoring of pain and distress in pigs
The recognition of pain and distress in pigs is important 
to evaluate refinement strategies and, importantly, to 
introduce further steps to alleviate it. Commonly pain 
in animals is defined as “an aversive sensory experience 
caused by actual or potential injury that elicits protec-
tive and vegetative reactions, results in learned behav-
ior, and may modify species specific behavior” [90]. To 
assess pain and distress in pigs it is crucial to establish 
adequate monitoring strategies. As claimed in guidelines 
of the national research council of the United States and 
the Directive 2010/63 EU personnel involved in use of 
laboratory animals have to be educated and trained in (i) 
performing procedures, (ii) designing projects and proce-
dures, (iii) taking care of animals and (iv) killing of ani-
mals [70, 91]. Moreover, they need profound knowledge 
of the anatomy, physiology and species specific behavior 
of pigs as well as experience in recording specific clinical 
signs of S. suis disease in pigs [91, 92]. As an example, it 
is important to clearly recognize opisthotonos and ataxia 
as leading clinical signs of meningitis [47]. Furthermore, 
isolated lying and reduced frequency of movements are 
putative unspecific signs of disease. It is crucial to prede-
fine clinical recording and humane endpoints before the 
challenge experiment. In some countries like Germany 
it might be obligatory to draft a prospective severity 
assessment covering the whole period in which animals 
are used in the experiment [93]. Different approaches 
have been used to measure pain in pig experiments such 
as grimace scales [94, 95] or scoring systems including 
typical signs of pain, e.g. change in normal behavior or 
movement, pain vocalization and reduced feed intake 
[58, 96, 97]. These methods have to be well validated to 
surely measure pain and not behavior related to anxiety 
or fear [96]. In addition, physiological parameters like 
increased heart and respiratory rate and levels of stress 
hormone e.g. cortisol or glucose are related to stress and 
pain [96, 98, 99]. As recently shown blood cortisol levels 
are significantly elevated in piglets suffering from severe 
S. suis disease [58]. However, there are limitations due to 
the influence of the circadian rhythm and the handling 

of the animals on the cortisol level [100]. Different S. suis 
research teams have been using score sheets to define 
different levels of severity of the various clinical signs of 
S. suis disease (Table 1).

An adequate monitoring interval is crucial to detect 
clinical signs early and to reduce distress by euthanizing 
mortally ill piglets [104, 105]. In the reviewed publica-
tions, monitoring intervals varied substantially between 
different studies. Often piglets were monitored every 
12 h (twice a day, n = 19/68) or on a daily basis (n = 14/68) 
(Fig. 2). Short fever peaks might be missed if the monitor-
ing interval is longer than eight hours [51]. Furthermore, 
early signs of disease might rapidly progress to severe dis-
ease within eight hours [51]. In the case of longer moni-
toring intervals (≥ 12 h) S. suis infection might result in 
agony as piglets might not be euthanized after the onset 
of severe clinical signs. Importantly, this is not in accord-
ance with the Directive 2010/63/EU as death as an end-
point has to be avoided [70]. Only a few publications use 
monitoring intervals below five hours (n = 5/68) (Fig. 2). 
Of note, one publication mentions a six hours interval 
with more frequent controls in the case of serious disease 
[45] as a measure to avoid animal suffering. However, if 
shorter clinical monitoring intervals are not applied to all 
piglets of the study, they might lead to a bias between two 
groups under comparison. If physical examinations are 
applied to all animals they might constitute an additional 
stressor to healthy piglets because the resting period is 
substantially reduced. Accordingly, researchers need to 
carefully weigh up the advantages and disadvantages of 
different monitoring procedures. Differences in chosen 
monitoring intervals of the reviewed publications can 
only partially be explained by different experimental set-
tings which require more or less close monitoring due to 
the onset and severity of expected clinical signs of disease 
e.g. infection experiments with a highly virulent strain.

Clinical scoring
Close clinical monitoring and pain assessment are cru-
cial in animal infection experiments to introduce appro-
priate refinements to reduce distress and discomfort. As 
claimed by the ARRIVE Guidelines clinical monitoring 
should include general and study specific welfare parame-
ters [9]. Thereby scoring systems, applicable by all trained 
persons examining and taking care of the experimental 
pigs, are a useful tool to assess welfare of the animals 
[105]. Additionally, they help to define criteria for eutha-
nasia (humane endpoints) of piglets due to animal wel-
fare reasons [105, 106]. The applied scoring system has 
to be adapted to the expected clinical signs [107] which 
depend on the animal species swine and the manifesta-
tion of S. suis infection. The application of a clinical scor-
ing in experimental S. suis infections was only described 
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in a few publications (n = 15/68). However, 11 S. suis pub-
lications with detailed information on clinical scoring are 
available [7, 24, 26, 36, 37, 43, 51, 56, 75, 101, 102]. They 
generally calculate a cumulative score for each animal 
or group (Table 1). Except for three studies [36, 37, 56], 
the scoring is the basis for predefined humane endpoints 
(Table  1). Signs of central nervous system (CNS) disor-
der and lameness as well as behavior are common param-
eters in applied score sheets. Respiratory signs, inner 
body temperature and feed intake are less often included 
as parameters. Respiratory signs were scored primarily 
in PRRSV and S.  suis coinfection studies [36, 37]. Since 
S.  suis is a porcine pathogen causing inflammatory dis-
ease, increase of inner body temperature is an important 
early indication for the onset of disease. Even though 
most publications include body temperature of pigs in 
their regular clinical monitoring (n = 60/68), only three 
published studies include the inner body temperature as 
read out parameter in their scoring system [24, 43, 51]. 
Reduced feed intake is an unspecific but clear indication 
of pain or distress in pigs [96]. Nevertheless, feed intake 
and appetite are parameters uncommonly recorded in 
experimental S. suis pig infections. Short peaks of ele-
vated body temperature and reduced feed intake might 
be related to other factors but infection. For example, an 
increased inner body temperature is a common clinical 
sign in vaccinated animals [108] which can be accompa-
nied with reduced feed intake. Nevertheless, monitor-
ing of feed intake or appetite is in the authors` opinion 

of additional value in S. suis trials because many piglets 
show only unspecific signs of disease after experimental 
infection. Other parameters of applied clinical scoring 
systems are similar, but they differ considerably in their 
score points and their subdivision of the main parameters 
(Table 1). Furthermore, the gradation within a parameter 
varies substantially. For example, the parameter lame-
ness/locomotion is subdivided into absent and severe in 
one study [56], whereas in another the same is subdivided 
into five grades [43]. More gradations within a parameter 
might help to highlight differences in severity of disease 
between individual piglets or relevant groups. However, 
grades have to be clearly defined so that they can be 
objectively applied by different researchers. Since score 
sheets are planned prior to the animal experiment based 
on the expected clinical signs, a re-evaluation after the 
experiment should be conducted [105]. We have revised 
our scoring system by increasing the score for moderate 
and ceased feed intake [24, 51]. This was done because 
ceased feed intake (> 24 h) is based on our experience a 
sign of severe disease in piglets experimentally infected 
with S. suis. We have observed moderate to severe cases 
of S.  suis infection that are associated with temporar-
ily increased body temperature, reduced feed intake 
(Fig.  3A), depressed and atypical behavior (Fig.  3B) or 
kyphosis (Fig. 3C). Specific clinical signs of S. suis infec-
tion like lameness (Fig. 3D) or ataxia (Video 1) were not 
recorded. Although these pigs did not show specific 
clinical signs of S.  suis disease, they were euthanized if 

Fig. 2  Monitoring intervals in the reviewed experimental S. suis pig infections published between 2000—2021 (n = 68). Several studies included 
clinical monitoring of the piglets but did not mention the interval (n.m.). O2 hours (h) monitoring interval for 72 h. *4–5 h interval during the day, 8 h 
overnight
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the described clinical signs continued longer than 24 
h. This was done to prevent ongoing distress, suffering, 
pain and harm. An example for such a case is piglet #38 
infected intravenously with S.  suis serotype  9 within a 
vaccination trial. This piglet reached a maximum clini-
cal score of 17 at one time point of clinical monitoring 
which was below the defined threshold score for imme-
diate euthanasia of 25 [51]. However, piglet #38 cumu-
lated score points at different clinical controls resulting 
in a cumulative score above 25 and thus euthanasia. 
Other piglets with the aforementioned moderate clini-
cal signs showed convalescence within 24 to 32 h [51, 81]. 
Convalescence was associated with behavioral changes 
such as increased vigilance and movements, prominent 
feed intake and disappearance of fever. Vaccinated pig-
let #44, which was part of the same study as piglet #38, 
reached a maximum score of 15 one day post infection 
[51] but demonstrated convalescence within 24 to 32 h 
as described in the Results section [51] and as reflected 
by the curve of the rectal body temperature [51]. If pig-
lets with moderate signs of disease such as #38 and #44 
were euthanized immediately after the first signs such as 

elevated body temperature and ceased feed intake, such 
studies would lose sensitivity to detect partial protection. 
However, studies designed to read out other parameters 
such as transmission and colonization might implement 
other humane endpoints [72]. In accordance with official 
guidelines such as the Canadian Council on Animal Care 
“the earliest endpoint that is compatible with the scien-
tific objectives of the approved protocol should be used” 
[109].

Inner body temperature as a clinical read out parameter
After experimental infection with S. suis, an elevated 
inner body temperature is an important indicator of an 
early stage of disease [11]. A slight and often only very 
short increase in body temperature after experimental 
infection can be recorded in many infected piglets that do 
not develop other clinical signs of disease. As an example, 
an increase in body temperature up to 40.3°C was shown 
after i.n. experimental infection of pigs with an attenu-
ated mutant of a serotype 2 strain [83]. An elevated body 
temperature up to 40.4°C was detected in a piglet experi-
mentally challenged i.v. with S.  suis serotype 9 suffering 

Fig. 3  Examples of clinical signs of disease and distress in pigs after experimental S. suis infection. Experimental infection with S. suis induces very 
different clinics such as unspecific signs like reduced appetite (ability to stand up needs to be confirmed) (A), depressed and atypical behavior 
such as urination on the resting place (B), suggestive clinical signs such as kyphosis (in addition to a swollen tarsal joint) (C) as well as specific signs 
like a load lameness (D) or ataxia (see Video 1). Of note, many diseased piglets show only unspecific signs
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from endocarditis [81]. Experimental infection with 
S.  suis serotype  9 and 2 might induce clinical signs of 
severe S. suis disease e.g. central nervous disorder accom-
panied with high fever up to 41.3°C [110] and 42.7°C [69]. 
For the definition of fever, the age of the pigs or method 
of measurement must be taken into account, since 
inner body temperature varies between different ages 
and methods [11, 111, 112]. Consequently, Baums et  al. 
(2006) set different fever thresholds for weaners (≥ 41°C) 
and growers (≥ 40.5°C) [83]. In the reviewed articles fever 
thresholds for inner body temperature were mostly set 
above 40.0 or 40.5°C (n = 28/32) except for one study in 
which the temperature was measured in the ear and fever 
was defined as > 38.5°C (Table  2). In three studies, fever 
in pigs was set at > 41.0°C (Table 2). Although inner body 
temperature is commonly monitored in S. suis pig infec-
tions (n = 60/68), only a minority of publications clearly 
define a body temperature threshold of fever in pigs 
(n = 32/68) or include this parameter in the scoring sys-
tem (Table 1). Humane endpoints generally do not refer 
to the inner body temperature (Table 3). In contrast, defi-
nitions of morbidity often include inner body tempera-
ture as an obligatory criterion [24, 25, 30, 51, 54, 87, 113]. 
Most of the reviewed articles do not specify the method 
of measuring inner body temperature (n = 48/60). In the 
other publications mainly recording of the rectal body 
temperature is described (n = 11/60), most likely as it is 
considered to be the “gold standard” for the core tem-
perature [112, 114]. Since it is known that stress can 
increase body temperature it is important that pigs get 
used to rectal measurement through positive condition-
ing and training [85, 115]. This allows rectal body tem-
perature to be recorded without restraining the animals. 
Alternatively, as reviewed by Schmid et  al. (2021), sub-
cutaneously implanted thermo sensors or non-invasive 
contact sensors were used in animals to measure core 
temperature [112]. Contactless infrared thermometry 
is less invasive, but it reflects body surface temperature 
which can be affected by environmental factors. Never-
theless, good correlations between infrared thermometry 
and rectal temperature have been described, especially 
for ear and eye [78, 100, 115]. Comparative evaluation of 
different methods of body temperature measurements 
has however not been conducted for piglets experimen-
tally infected with S. suis, in contrast to PRRSV infected 
pigs [116].

Humane endpoints
The European directive 2010/63 claims that “The meth-
ods selected should avoid, as far as possible, death as an 
end-point due to the severe suffering experienced dur-
ing the period before death. Where possible, it should 
be substituted by more humane endpoints using clinical 

signs that determine the impending death, thereby allow-
ing the animal to be killed without any further suffering 
“ [70]. Accordingly, it is crucial to define humane end-
points in S.  suis infection experiments adapted to the 
specific study [124] and comply a good balance between 
humane termination of the experiment and the scientific 
concern [125]. In the reviewed articles, CNS disorder, 
signs of polyarthritis and recumbency are often defined 
as humane endpoints (Table 3). Only few research groups 
have used their applied scoring system as part of the pre-
defined humane endpoints (n = 11/68) (Table 3). Criteria 
infrequently considered are fever (n = 17/68) and ano-
rexia (n = 15/68) (Table 3). The latter might be associated 
with pain in pigs (Fig. 3A) [96, 97], accordingly including 
this criterion in the predefined humane endpoints helps 
to reduce pain in infected animals. Several studies pro-
vide only very brief information on humane endpoints 
(Table 3), such as the occurrence of typical signs of severe 
S.  suis disease (n = 20/68) or euthanasia of piglets due 
to animal welfare or ethical reasons (n = 5/68). Further 
studies do not include details on applied humane end-
points (n = 3/68) [50, 57, 76] or did not mention them 
at all (n = 16/68) [16, 27, 33, 40, 41, 45, 49, 61, 63, 64, 
66, 77, 84, 89, 126, 127]. S.  suis infections may not only 
result in acute severe disease, but in some cases also in 
a more moderate course often associated with a delayed 
onset, continuous lameness or intermittent fever [81]. 
This may lead to a persistent moderate disturbed general 
condition over a longer period of time and thus an ongo-
ing burden for the pigs. However, the duration of burden 
is included as criterion for humane endpoints only in a 
minority of reviewed articles (n = 10/68). For example, 
Obradovic et al. (2021) [75] euthanized pigs with a score 
of three and an inner body temperature over 40.0°C for 
two consecutive days [75] taking into account ongoing 
fever in the humane endpoints. Furthermore, Feng et al. 
(2001) [35] considers persistent reduced feed intake. Pig-
lets that consumed less than 75% of the diet during four 
feedings or showed fever were humanely killed [35].We 
have conducted numerous studies euthanizing piglets 
showing high fever, apathy and anorexia over time peri-
ods ranging from 24 to 36 h [23–25, 30, 51, 69, 81, 83, 87, 
113] (Table 3). Nevertheless, adequate humane endpoints 
depend on the aim of the study and the desired scientific 
output.

Concluding remarks, outlook 
and recommendations
We reviewed 68 publications describing clinical moni-
toring and refinement measures in studies with experi-
mental infection of pigs with S. suis. As we considered 
only publications after the year 2000, there is most likely 
a bias regarding all S. suis publications as reporting of 
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monitoring and requirements for animal welfare meas-
ures changed over the years. We envision that new meth-
ods will be introduced into clinical surveillance in the 
future to improve scientific outcomes and allow for more 
timely detection of disease onset. As such monitoring of 
behavior using video-recording, measurement of core 

body temperature using infrared thermography (IRT) 
or microchip transponder might be considered [114, 
128–131].

This review documents a high level of heterogenicity 
in the status of the piglets (e.g. age and infection sta-
tus), the experimental infection itself (challenge strain, 

Table 2  Definitions of fever in experimental S. suis pig infections conducted in the years 2000—2021

model study on establishment of an infection model, path. study on pathogenesis, vac. study on vaccination
a  > 41°C
b  ≥ 41°C only for weaners
c  > 40.5°C
d defined as high fever
e  ≥ 40.2°C defined as fever and ≥ 40.5°C as high fever
f  ≥ 40°C
g defined as elevated body temperature
h measured as ear temperature

Study type Experimental infection Body temperature threshold 
of fever

Reference

Age of pigs in weeks Serotype Route

model 6–7 2 i.n.  ≥ 41°C [34]a

7 2 i.v. [117]

path. 4–5 2 i.n. [83]b

path. 4 2 i.n.  ≥ 40.5°C [57]

4–5 2 i.n. [43]c

4–5 2 i.n. [87]d

5 7 i.v. [23]d

8 2 i.n. [25]d

5–6 2 i.n. [41]c

3 2 i.v. [46]c

7–8 2 i.n. [83]

vac. 8 14 i.n. [24]d

8–9 9 i.v. [51]d

8–9 2, 7 i.v. [48]

7–8 2 i.n. [30]e

9 2 i.n. [113]d

9 9 i.v. [81]d

6, 8 2 i.v. [44]d

9 2, 9 i.n., i.v. [82]d

7–8 2, 9 i.v. [54]d

2–3 2 i.n. [36]

model 1–2 2 i.n., i.v.  > 40.0°C [47]

path. 6 2 s.c. [78]f

6 2 aerosolic [55]g

0–1 2 i.n. [35]

1 2 i.n., i.v. [118]

3–4 2 i.n. [37]

vac. 5 1, 2 i.p. [89]f

8 2 i.v. [67]

4 2 s.c. [60]

8 2 i.v. [68]

vac. 8–9 1 i.p.  > 38.5°Ch [77]
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Table 3  Predefined humane endpoints leading to euthanasia of pigs in experimental S.  suis infections published between 2000—
2021

Study type Experimental infection Humane endpoints Reference

Age of pigs 
in weeks

Serotype Route

path. 4–5 2 i.n. score > 2 on attitude or locomotion [43, 102]a

vac. 8 2 aerosol [101]a

vac. 8 2 i.v. severe clinical signs (score > 4) [7]a

vac. 11–12 2 i.p. animals unresponsive for stimuli; CNS dysfunction; lameness score of 3 [26]a

path. 5 2 i.n. “high clinical scoring” [52]a

vac. 7–8 2 aerosol [119]a

vac. 7 2 i.p. score = 3 in either category and a body temperature above 40°C for 2 consecutive days [75]a,b,c

path. 5 7 i.v. fever ≥ 40.5°C, apathy and anorexia (persisting over 24h [24]  /32h [51]); acute polyarthritis; CNS dysfunc-
tion; score ≥ 25 [51, 24] 

[23]a,b,c

vac. 8 14 i.n. [24]a,b,c

8–9 9 i.v. [51] a,b,c

path. 4–5 2 i.n. high fever (≥ 40.5°C), apathy and anorexia persisting over 36h/24h [81] ; CNS dysfunction; acute polyar-
thritis

[87]b,c

8 2 i.n. [25]b,c

9 2 i.n. [30]b,c

vac. 7–8 2 i.n. [113]b,c

9 9 i.v. [81]b,c

path. 0–1 2 i.n. consumption < 75% or more of dispensed diet for four feedings in a row and lameness, fever (> 40°C), 
or CNS disease

[35]b,c,d

vac. 8–9 2, 7 i.v.  ≥ 40.5°C, apathy and anorexia; polyarthritis; CNS disorder [48]b

6, 8 2 i.v. [44]b

9 2 i.n., i.v. [82]b

7–8 9 i.v. [54]b

path. 7–8 2, 9 i.n., i.v. high fever (≥ 41°C weaners; ≥ 40.5°C growers), apathy and anorexia [70]b

4–5/7–8 2 i.n. [84]b

model 7 2 i.v. fever (≥ 41°C) or CNS dysfunction [117]b

model 9 2 oral (severe) clinical signs/disease e.g. arthritis/lameness/swollen joints w/o recumbency; meningitis/central 
nervous signs

[53]

5–6 2 i.n. [34]*

1–2 2 i.v., i.n. [47]

7 2 i.v. [120]

path. 6 2 s.c. [78]

6 2 i.n. [56]

(0)-1 2 i.n. [38, 39]e

3 / i.v. [121]

6-(7) 2 aerosolic [55, 79, 88]

3 2 i.v. [62]

3–4 2 i.n. [37]d

3 2 i.v. [46]

vac. 9 2 i.n. [122]

4 2 s.c. [60]

2–3 2 i.n. [36]d

8 2 i.v. [67, 68]

path. 4–5 2 i.v. not clearly defined (“for animal welfare or ethical reasons”) [6]

8 2 i.v. [65]

1 2 i.v., i.n. [118]

vac. 7 9 i.n. [72]

9 2 i.v. [123]

path. study on pathogenesis, vac. study on vaccination, model study on establishment of an infection model
a scoring system included in humane endpoints (h.e.)
b fever included in h.e
c duration of burden included in h.e
d PRRSV and S. suis coinfection
e Bordetella bronchiseptica pre infection
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route of application) and the clinical monitoring (inter-
val, read out parameters) as well as humane endpoints 
This heterogeneity may make comparison of results of 
experimental S. suis infections much more difficult. 
Only 15 of the reviewed articles included scoring sys-
tems for clinical monitoring. Published score sheets 
exhibit substantial variations in the included param-
eters (e.g. body temperature and feed uptake) and their 
gradation. We recommend to implement clinical score 
sheets in future experimental infections of pigs and to 
conduct systematic physical examinations of piglets 
including scoring of behavior, locomotion and meas-
urement of body temperature every 8h after experi-
mental infection. Ideally also appetite or even better 
feed intake is assessed. Humane endpoints should be 
defined clearly prior to the experimental study as this 
is a very important refinement in many S. suis trials. 
Although the published score sheets already provide a 
suitable basis, coordination between S. suis scientists 
on the read-out parameters used and their gradation 
should be an important goal of future exchange. Ideally, 
guidelines for experimental S. suis infections in pigs 
would be established to ensure a high degree of com-
parability and reproducibility of scientific results and 
refinement measures.
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