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Abstract 

Background  North American bat populations have suffered severe declines over the last decade due to the Pseud-
ogymnoascus destructans fungus infection. The skin disease associated with this causative agent, known as white-nose 
syndrome (WNS), is specific to bats hibernating in temperate regions. As cultured fungal isolates are required for 
epidemiological and phylogeographical studies, the purpose of the present work was to compare the efficacy and 
reliability of different culture approaches based on either skin swabs or wing membrane tissue biopsies for obtaining 
viable fungal isolates of P. destructans.

Results  In total, we collected and analysed 69 fungal and 65 bacterial skin swabs and 51 wing membrane tissue 
biopsies from three bat species in the Czech Republic, Poland and the Republic of Armenia. From these, we obtained 
12 viable P. destructans culture isolates.

Conclusions  Our results indicated that the efficacy of cultures based on wing membrane biopsies were significantly 
higher. Cultivable samples tended to be based on collections from bats with lower body surface temperature and 
higher counts of UV-visualised lesions. While cultures based on both skin swabs and wing membrane tissue biopsies 
can be utilised for monitoring and surveillance of P. destructans in bat populations, wing membrane biopsies guided 
by UV light for skin lesions proved higher efficacy. Interactions between bacteria on the host’s skin also appear to play 
an important role.
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Background
Underground environments are unique as, on the one 
hand they are generally considered to be relatively nutri-
ent-poor ecosystems [1], while on the other the high 
microbial diversity of caves indicates that each has its 
own characteristics [2, 3]. The limited resources of sub-
terranean spaces have led microorganisms to specific 
adaptations, resulting in either cooperation or competi-
tion for inadequate energy and nutrient resources [4]. 
Fungi in particular show high ecological plasticity, adopt-
ing a range of different lifestyles such as saprophytism, 
parasitism or symbiosis [5, 6].

Pseudogymnoascus destructans is a slow growing, 
psychrophilic fungus that utilises saprophytic growth 
underground [7–9] or pathogenic growth on hibernat-
ing bats [10]. As the causative agent of white-nose syn-
drome (WNS), P. destructans has been responsible for 
the most devastating infectious outbreak in wild mam-
mals yet recorded over an extensive area of the Nearctic 
region [11–13]. Fungal growths of P. destructans are pre-
dominantly found on the auricular, nasal and facial skin 
of hibernating bats; however, the most clinically severe 
lesions affect the patagial membranes [10]. In the past, 
WNS diagnosis required euthanasia and/or disease-asso-
ciated death of bats for histopathology analysis to iden-
tify pathognomonic cupping erosions in the skin samples 
[14]. More recently, UV light detection of lesions in bat 
wings has been validated as a non-invasive method com-
parable in sensitivity with histopathology [15]. This non-
lethal and field-applicable method is not only useful for 
screening hibernating bats for the WNS disease, but also 
for targeting wing biopsies over yellow-to-orange fluo-
rescing skin lesions.

Epidemiological and phylogeographic studies of WNS 
require cultured fungal isolates [16–20]. Likewise, 
investigations of growth characteristics of the agent, its 
metabolic activity, production and toxicity of second-
ary metabolites, sensitivity to antimycotics and other 
in  vitro experiments would not be possible without 
obtaining such isolates [21–27]. There are essentially two 
approaches for collecting samples for fungal culture from 
the bats in the field, i.e. a skin surface swab targeting vis-
ible fungal growths or a wing membrane tissue biopsy 
targeting skin lesions produced by the fungus. These two 
approaches can also be combined to maximise likelihood 
of obtaining a viable fungus suitable for culture in the 
laboratory.

To date, however, there have been no studies compar-
ing the efficiency of skin swabs against wing biopsies for 
the establishment of viable P. destructans cultures. Here 
we describe an experimental study of WNS-affected 
bats, comparing fungal isolate yields from UV-guided 
wing biopsies and skin swabs. We predicted that tissue 

biopsies containing densely packed fungal hyphae will 
provide higher numbers of cultivable fungal units (both 
hyphae and conidia) compared with the skin surface 
swab. Tissue biopsies may also provide some protection 
and supply nutrients, allowing survival of the fungus 
during sample transport to the laboratory. Some micro-
organisms are known to inhibit growth of P. destructans 
[28, 29], hence bacterial contamination of samples may 
also influence the yield of fungal cultures. As such, we 
also examined the degree of interference between culti-
vable microbiota present on the skin and the yield of a 
viable fungal culture. Finally, we tested the suitability of 
different culture media for growing P. destructans.

Material and methods
Sample collection
For this experiment, we screened the complexity of skin 
bacterial and fungal microbiota of three bat species: 
the greater mouse-eared bat (Myotis myotis), the lesser 
mouse-eared bat (Myotis blythii) and the greater  horse-
shoe bat (Rhinolophus ferrumequinum), in P. destructans 
contaminated caves and artificial underground shelters in 
the Czech Republic, Poland and the Republic of Armenia 
over two hibernation periods (each locality was visited 
just one time) covering January to April 2018 and 2019 
(Table  1). In all cases, the bats were handled in such a 
way as to minimise stress and the duration of sampling 
procedures and all were released at the site after sampling 
was completed. Prior to handling, the animal’s surface 
body temperature was measured using a Raynger MX2 
non-contact IR thermometer (Raytek Corporation, Santa 
Cruz, USA). A total of 82 bats were sampled in the study, 
with two or three sample types being collected from each 
bat. First, skin surface swabs were collected separetely for 
bacterial (right wing) and fungal cultivation (left wing). 
Second, a 4 mm skin biopsy from skin lesions found on 
wing membranes were obtained from each tested ani-
mal. Biopsy sites were chosen by trans-illuminating wing 
membranes with a 368 nm wavelength UV lamp, allow-
ing identification of presumptive WNS lesions by yellow 
to orange fluorescence [15]. At the same time, a photo-
graph was taken of the trans-illuminated wing, allowing  
the fluorescent areas to be manually enumerated in the 
laboratory, using the counting tool in the ImageJ software 
package [30].

Laboratory isolation & culture of samples collected 
in the field
Bacterial swabs
Each bat from Armenia (n = 40) was individually sam-
pled over the wing membrane surface using a sterile 
cotton, plastic-shafted swab and the sample in Amies 
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medium (Copan Italia S.p.A, Brescia, Italy). The tubes 
were stored at 5–8 °C and processed within 5–10 days, 
depending on the geographic region where sample col-
lection was performed and the time taken to travel back 
to the laboratory. Agar plates (Columbia Agar Base, 
Oxoid, Basingstoke, Hampshire, UK) and MacConkey 
agar (MCA; Oxoid, Basingstoke, Hamshire, UK) were 
used for routine isolation of bacteria. Two replicates 
of each sample were inoculated onto the agar plates, 
which were then incubated under aerobic conditions 
at 20 °C for three days for maximal growth of psychro-
philic bacteria. After first characterising the bacterial 
isolates using MALDI-TOF mass spectroscopy, bacte-
rial DNA were extracted using the commercial Nucle-
oSpin® Microbial DNA extraction kit (Macherey-101 
Nagel, Germany). For PCR amplification, we used the 
universal bacterial 16S rRNA gene primers 27F (5`-
AGA​GTT​TGA​TCC​TGG​CTC​AG-3`) and 1492R (5`-
GGT​TAC​CTT​GTT​ACG​ACT​T-3`). Each 25 μl reaction 
contained ca. 50  ng of genomic DNA, 12.5  μl Q5® 
High-Fidelity 2X Master Mix (New England BioLabs, 
UK), 2  μl nuclease free water (Bioron, Germany), 2  μl 
each of 10 mM forward and reverse primer, and 2 μl of 
sterile deionised water. The reaction conditions com-
prised an initial denaturation cycle of 95 °C for 15 min; 
followed by 35 cycles of denaturation for 1 min at 95 °C, 
primer annealing for 1 min at 58  °C and extension for 
2 min at 72 °C, followed by a final extension for 10 min 
at 72  °C. PCR products were commercially sequenced 
using Sanger sequencing at SEQme Inc. (Czech Repub-
lic) using the universal primers 800R (5´-TAC​CAG​
GGT​ATC​TAA​TCC​-3´) and 1492R (5´-GGT​TAC​CTT​
GTT​ACG​ACT​T-3´). The sequences were aligned using 
the BioEdit Sequence Alignment Editor v.5.0.9 [31] and 
compared with known sequences in the NCBI database 

using BLAST (GenBank) to identify similar sequence 
alignments.

Fungal swabs
Fungal swabs were taken using sterile 15 cm swabs with 
a plastic applicator stored in transport tubes. The tubes 
were stored at 5–8  °C and processed within 5–10  days, 
depending on the geographic region where sample col-
lection was performed and the time taken to travel back 
to the laboratory. At the laboratory, the swab was mois-
tened in 0.1% sterile peptone water and rubbed onto glu-
cose agar with chloramphenicol (GKCH) and cultivated 
at 10 °C for 14–30 days.

Skin biopsies
Wing punch biopsies of suspect fungal lesions were 
placed into sterile vials with 15  µl of NaCl 0.9% (for 
humidity), stored at 5–8  °C and, within 5–10  days 
(depending on the country of sampling), placed on Malt 
Extract Agar growth medium with ATB (chlorampheni-
col 50 mg/l) and cultivated at 10 °C for 14–30 days.

First, colony diameter and sporulation were com-
pared on eight standardly used complex mycological 
media to find the best medium for routine use and to 
serve as a control. The following media were tested: glu-
cose agar (GK; yeast extract 5  g/l, glucose 20  g/l, agar 
15 g/l; pH = 6.1); yeast extract GK with chloramphenicol 
(GKCH; GK with 0.1  g/l of chloramphenicol; pH = 6.1); 
soil extract agar (SEA; 20 g agar, 1000 ml of soil extract; 
pH = 6.4) [32]; soil extract agar with glucose and rose 
bengal (SEGA; 20  g glucose, 1  g NaNO3, 1  g K2HPO4, 
70 mg rose bengal, 1000 ml of soil extract; pH = 6.4) [33]; 
Sabouraud dextrose agar (SDA; 40  g/l glucose, 10  g/l 
pepton, 20  g/l agar; pH = 5.8) [34]; SDA with cyclohex-
imide (SDAC; SDA with 0.1 g/l cycloheximide; pH = 5.8) 
[34]; potato carrot agar (PCA; 20  g/l potato; 20  g/l 

Table 1  Number of individual bats sampled at each study site

Country Locality Species Year of sampling Biopsy only Swab only Both samples Total UV positive Bacterial 
swabs

Czech Republic Mine Velká Amerika Myotis myotis 2018 - 2 - 2 1 -

Sloupsko-Sosuvske 
Caves

Myotis myotis 2018 7 5 - 12 6 -

Šimon and Juda 
mines

Myotis myotis 2019 3 2 9 14 14 -

Poland Nietoperek bunker Myotis myotis 2019 2 - 15 17 17 -

Armenia Magel cave Rhinolophus 
ferrumequi-
num

2019 - 17 - 17 4 20

Mine Shikahogh Myotis blythii 2019 1 5 14 20 20 20

Total 13 31 38 82 62 40
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carrot, 20 g/l agar; pH = 6.4) [33]; and Czapek-Dox agar 
(CZ; 1  g K2HPO4, 10  ml CZ and 1  ml Cu–Zn concen-
trate, 5  g/l yeast extract, 30  g/l saccharose, 15  g/l agar; 
pH = 5.8) [34]. All test media were sterilised at 121 °C for 
15 min and wrapped in Parafilm (Fisher Scientific, USA) 
after inoculation. The ten-strain set was then cultivated 
at 10  °C in darkness and measured after 7, 14, 21 and 
28 days.

Isolates and culture media; fungal optimal growth test
The ten P. destructans isolates (CCF 3938, 3941, 3943, 
4103, 4124, 4126, 4128, 4129, 4131, 4132) used in this 
study were isolated between 2010 and 2011 from the 
muzzles and wings of M. myotis in the Czech Republic. 
The isolates, which were identified using morphological 
and molecular methods, are representative of both the 
mating types and genetic variability found in Eurasia [35, 
36]. Experiments testing the suitability of culture media 
for growing P. destructans were performed on all isolates 
(ten-strain set) which were cultivated at 10 °C.

Statistical analysis
Body surface temperature, number of UV lesions per 
bat, the number of bacterial species isolated from each 
bat and the P. destructans colony size (measured as a 
diameter in mm after one month of fungal cultivation at 
10 °C) were tested for normality using the Kolmogorov–
Smirnov and Shapiro–Wilk tests. As all parameters with 
exception of the colony size were non-normally distrib-
uted, even after transformation, they were then tested 
using the non-parametric Mann–Whitney U test. Differ-
ence between suitability of various microbiological cul-
ture media to obtain a P. destructans (fungal colony size) 
was tested using One-way ANOVA. The efficacy of each 
sampling method to yield a P. destructans culture isolate 
was assessed using the difference test between propor-
tions. Due to the small sample size available for certain 
species, differences in fungal cultivation success between 
bat species was tested using the chi-squared test with 
Yates correction in Statistica for Windows® 13.2 (Stat-
Soft, Inc., USA).

Results
Six of the eight standard test media (not SEGA or SDAC) 
proved to be suitable for growing P. destructans cultures 
(one-way ANOVA, p > 0.05; Fig.  1). The GK medium 
proved to be the best and cheapest variant and this was 
subsequently used for most of the experiments and for 
isolate storage.

In total, we obtained 12 viable culture isolates of the 
P. destructans  (Pd) fungus (Fig.  2), with the efficacy 
of cultures based on wing membrane tissue biopsies 
(n = 11 biopsies with Pd isolates) being significantly 

higher (difference test between two proportions; 
p = 0.001) than fungal skin swabs (n = 1 swab with Pd 
isolate). The skin swab Pd isolate corresponded to Pd 
isolate obtained from a wing biopsy from the same 
bat. Microbial overgrowth was caused by one fungus, 
six filamentous molds and yeast species (Table 2). The 
fungus Chaetomium spp. was only found in swabs from 
the M. myotis. There was no significant difference in the 
number of cultures positive for P. destructans, obtained 
from M. myotis and M. blythii using the two methods 
of sampling (chi-square for swabs = 0.08; p = 0.778 and 
chi-square for wing biopsies = 0.3; p = 0.583). Like-
wise, there was no significant difference in the num-
ber of swabs, giving the positive results of culturing, 
between Myotis- and Rhinolophus-based samples (chi-
square = 0.35; p = 0.553).

While cultivable samples from biopsies tended to be 
based on collections from bats with lower body surface 
temperature, higher UV-visualised lesion counts and a 
more diverse bacterial community (Fig. 3), all tests were 
non-significant (body surface temperature Z = -1.151; 
p = 0.250; number of UV-visualised skin lesions per bat 
Z = 0.735; p = 0.462; number of bacterial species isolated 
from each bat Z = 0.170; p = 0.865). Specifically, there was 
no difference in successful cultivations of P. destructans 
from wing membrane biopsies in the presence of Serratia 
spp. and/or Pseudomonas spp. bacteria (difference test 
between two proportions; p = 0.304; Fig. 4).

Fig. 1  Relationship between P. destructans (ten strain set) colony size 
and cultivation medium after one month incubation at 10° C: potato 
carrot agar (PCA), Czapek agar (CZ), soil extract agar (SEA), soil extract 
agar with glucose and rose bengal (SEGA), yeast extract glucose 
agar (GK), yeast extract glucose agar with chloramphenicol (GKCH), 
sabouraud dextrose agar (SDA) and sabouraud dextrose agar with 
cycloheximide (SDAC) after one month of cultivation at 10 °C
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Analysis of 16S rRNA identified seven dominant fami-
lies in the skin microbiomes of M. blythii (Fig. 5, A) and 
R. ferrumequinum (Fig.  5, B) during late hibernation, 
with the ratio between gram-negative and gram-positive 
bacteria being 5:2 for M. blythii and 6:1 for R. ferrum-
equinum. Overall, both R. ferrumequinum and M. bly-
thii bats displayed a similar diversity of bacterial species 
with some degree of bacterial species overlap including 
opportunistic and even zoonotic agents (Table 3).

Discussion
The study and control of wildlife diseases is a challeng-
ing task. White-nose syndrome is an emerging infectious 
disease that can have devastating impacts on bat popu-
lations [37, 38]. Reliable sampling techniques are still 
needed to identify, isolate and characterise the fungus 
causing WNS. In this study, we were able to show that 
the ability to more readily obtain a viable P. destructans 

isolate differed depending on the technique used for sam-
ple collection from bats.

P. destructans infects the skin of its bat hosts [14], with 
pathology grades ranging from surface skin and/or hair 
follicle colonisation to epidermal cupping erosions, deep 
dermal and even full-thickness wing membrane invasion 
[39–41]. Understandably, the deeper the fungus invades 
the skin, the more difficult it becomes to detect, espe-
cially when non-invasive sampling techniques are used. 
In order to understand the pathology and progression 
of WNS in bats, samples are collected from bat cadav-
ers or live hibernating bats using both non-invasive 
and invasive methods [42]. Use of non-lethal methods 
is especially important in the case of strictly protected 
European bat species and declining North American bat 
species, and is also advisable for bats being investigated 
for presence or absence of the WNS etiological agent in 
other temperate regions of the world [15, 36, 39].

Fig. 2  Proportion of samples yielding bacterial or fungal growth, including P. destructans. Results are based on wing membrane tissue biopsies of 
Myotis blythii (Armenia) guided by UV light for presumptive white-nose syndrome skin lesions in the plagiopatagium (biopsy) and non-targeted 
fungal skin surface swabs

Table 2  Filamentous molds and yeasts causing microbial overgrowth of cultures. Abbreviations: Mbly – Myotis blythii, Mmyo – Myotis 
myotis, Rfer – Rhinolophus ferrumequinum 

Identified fungi and yeasts Skin biopsy Swab

Mbly Mmyo Rfer Mbly Mmyo Rfer

Hyaline filamentous ascomycete  +   +  not collected  +   +   + 

Dematiaceous filamentous ascomycete  +   +   +  -  + 

Chaetomium spp. - - -  +  -

Yeasts  +   +  - - -

Mucor spp.  +   +  -  +  -

Pseudogymnoascus pannorum sl  +   +   +   +   + 

Penicillium spp. -  +   +   +   + 

Pseudogymnoascus destructans  +   +  -  +  -

Total number 6 7 NC 4 6 4
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Fig. 3  Factors influencing efficacy of wing membrane tissue biopsy sampling method. A—body surface temperature, B—the quantity of UV 
lesions per each bat, C—the number of bacterial species isolated from each bat. Arrows highlight insignificant trends of differences. Explanations: 
Pd – Pseudogymnoascus destructans, square – median, box – 25%-75%, whiskers – non-outlier range, dot – outliers and star – extremes
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The collection of clinical samples from bats with vis-
ible fungal growths using skin surface swabs is relatively 
straightforward, even under field conditions [43, 44]. 
However, infected bats may lose visible fungal growths 
as they clean themselves during arousal bouts. Likewise, 
the fungus may be wiped off a bat cadaver’s surface dur-
ing transport to the laboratory. Skin swabs, therefore, 
may yield unreliable results in terms of obtaining a fungal 
culture isolate. A better alternative for the collection of 
samples for microbiological cultures may be skin biop-
sies, as the quantity of fungal elements within the tissue 
[45] allows the culture to continue growing from hyphae 
within the fungal biomass. While skin surface swabs 
probably contain higher amounts of conidia, it is still 
not known how the types of initial colony-forming units 
(i.e., conidia and/or hyphae) influence the likelihood of 
yielding a fungal isolate [42]. Other factors that may have 
impact on the culture yield include the intensity of infec-
tion, prevalence of WNS in the bat population under 
study, sample transport conditions, and growth charac-
teristics, viability and persistence of the agent [11, 36, 42, 
44, 46–49].

Compared with non-targeted skin swabbing, the diag-
nostic sensitivity of a culture yielding a P. destructans 
isolate is considerably increased when based on a UV-
guided tissue biopsy (Fig. 2). The relatively low diagnos-
tic sensitivity of fungal culture [40] from skin biopsies of 
about 20% necessitates a more sensitive diagnostic tech-
nique be combined to either confirm the presence of the 
fungal agent [50] or pathognomonic lesions it produces 
[14, 15, 39] when conducting surveillance for the patho-
gen or monitoring for WNS disease progression [48, 49, 
51]. Real-time PCR is a highly sensitive and specific test, 

that can detect as few as 3.3 fg of genomic DNA extracted 
from P. destructans [50], while the diagnostic sensitivity 
and specificity of UV fluorescence for detecting WNS 
skin infection intensity can be up to 98.8% and 100%, 
respectively [15]. Standard WNS diagnosis outside the 
known geographic distribution of the infection requires 
finding pathognomonic histopathology [14] and detec-
tion of the P. destuctans agent either by qPCR [50] or by 
fungal culture [43]. However, while PCR- and histopa-
thology-based methods can provide good data on infec-
tion intensity, PCR cannot distinguish between viable 
and non-viable P. destructans fungi at the time of collec-
tion, making it a poor indicator for the cultivable condi-
tion of the sample. On the other hand, histopathologic 
evidence of fungal skin invasion is a reliable indicator 
that the fungus was alive at the time of sample collection 
from a live bat. This does not, however, necessarily mean 
that the fungus will grow in culture.

A further problem is that overgrowth with compet-
ing microorganisms can frequently reduce the chances 
of producing a successful P. destructans culture. To 
address this, it is recommended to incubate the sample 
at temperatures between 7 to 10  °C in order to reduce 
the growth of other cultivable agents co-occurring in 
the sample [42]. Likewise, use of an antibiotic supple-
ment (dosage and type may vary) in the culture media is 
highly recommended. At present, there is still a need for 
selective media that allow isolation of the fungus from 
environmental samples containing either P. destructans 
mycelia or spores (i.e. conidia), or both together [52].

The bat’s body surface is constantly exposed to micro-
organisms present in the environment [53]. As with other 
vertebrates, bats harbour diverse skin microorganisms, 

Fig. 4  Differences between Pseudogymnoascus destructans cultivation yield with regard to the presence of two bacterial species (all samples from 
Armenia, n = 40). Results are based on wing membrane tissue biopsies guided by UV light for presumptive white-nose syndrome skin lesions in the 
patagium (biopsy) and skin surface swabs. Bacterial sample contamination representing the skin microbial community was determined as Serratia 
spp. and Pseudomonas spp
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several of which may be potential pathogens. If the skin 
is healthy, the microbiome contributes to host fitness 
by occupying pathogen adhesion sites to inhibit infec-
tious agents [53, 54]. Indeed, coevolution of vertebrates 
with their commensal skin microbiota can affect numer-
ous physiological functions, including protection against 
infections and immune system reaction patterns [55, 
56]. Moreover, some bacterial properties suggest an alli-
ance with the host to keep other potential pathogens at 
bay [57]. Interactions between commensal bacteria and 
the pathogen on the host’s skin could provide protec-
tion against wing membrane damage and decrease the 

severity of WNS in bats exposed to the fungal agent [58]. 
Hoyt et  al. [29], when studying interactions between 
bacteria and the WNS fungus on bat skin, noted that 
pseudomonads naturally occurring on bats inhibited 
the growth of P. destructans in vitro. Pseudomonads are 
ubiquitous in the environment and are known to have 
antifungal properties. While distribution of Pseudomonas 
fluorescens varies seasonally, recovery tends to be high-
est in spring and lower in winter [59], which is consistent 
with this bacterial species being psychrophilic [60, 61]. 
When testing interactions between fungal and bacterial 
isolates, all Pseudomonas isolates were able to inhibit the 

Fig. 5  Percentage of bacterial taxons reflecting the average bacterial community diversity of Armenia bats, Myotis blythii (A; n = 20) and 
Rhinolophus ferrumequinum (B; n = 20). A Results are based on 16S rRNA sequence analysis. Gram negative: Moraxellaceae, Hafniaceae, Yersiniacea, 
Pseudomonadaceae, Enterobacteriaceae, Carnobacteriaceae; Gram positive: Carnobacteriaceae, Micrococcaceae. B Gram negative: Moraxellaceae, 
Xanthomonadaceae, Sphingobacteriaceae, Hafniaceae, Pseudomonadaceae; Gram positive: Micrococcaceae
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Pseudogymnoascus fungus [62], while Serratia isolates 
mostly did not [29]. Interestingly, Serratia isolates pro-
duce mainly keratinases and collagenases [63, 64], sug-
gesting that Serratia may hypothetically “prepare” the 
skin for the fungus. These bacteria are also known to 
produce prodigiosines [65], which are reported to have 
antibacterial, immunosuppressive and cellular apopto-
sis-inducing properties, which might further deteriorate 
the skin condition. Our results showed no statistical dif-
ference in the success of P. destructans cultivation from 
wing membrane biopsies in the presence of Serratia spp. 
and/or Pseudomonas spp. despite the relatively higher 
percentage of Pd isolates obtained in the presence of Ser-
ratia spp. (Fig.  4). This observation may have been due 
to overall microbial overgrowth in both cases. In addition 
to physical competition for space, growth of microorgan-
isms can also be limited by the temperature and length 
of incubation period, medium composition and aerobic 
conditions [42, 66–68].

It has been shown that the P. destructans fungal path-
ogen is an overproducer of riboflavin [24]. Moreover, it 
is the photochemical quality of riboflavin [69] and its 
hyperaccumulation within the infected skin tissue that 
is responsible for the distinctive orange-yellow fluores-
cence under UV light, which is used to screen bats for 
WNS [15]. Riboflavin, and its derivative lumichrome, 
have been shown to activate the LasR bacterial quo-
rum sensing receptor of Pseudomonas aeruginosa [70]. 
Hypothetically, secretion of these signalling molecules 
into the extracellular environment could interfere with 
quorum sensing regulation, trigger population-level 

density-dependent changes in genes expression of the 
microbial community associated with bat skin infected 
with P. destructans, or help in establishing a biofilm 
on the skin during infection [71]. The viability of P. 
destructans may be reduced by host immune-inflam-
matory responses and, consequently, is thought to be 
lower in samples collected during the early post-hiber-
nation period [72, 73].

In our experience, the yield of a viable P. destructans 
culture isolate can be improved significantly through 
adequate sample transport conditions, including an 
unbroken cold-chain and protection of tissue samples 
against drying out, and the use of glucose yeast-extract 
agar with chloramphenicol as the culture medium.

As novel pathogens can seriously impact wildlife, 
there is a real need to fully understand their biology, 
pathogenesis and epidemiology. To address this, viable 
fungal isolates of P. destructans are required for epide-
miological and phylogeographical studies. If the fungus 
is not visible on a bat at the time of sample collection 
from a suspect individual for WNS, then a UV-guided 
biopsy technique would appear to be the best choice for 
obtaining a viable P. destructans culture. Indeed, UV-
guided biopsy sample collection is essential for Euro-
pean and Asian bat species, which only rarely show 
visible fungal growths, when inspected in their hiber-
nacula. While fungal cultures based on both skin swabs 
and wing membrane tissue biopsies can be utilised for 
monitoring and surveillance of P. destructans in bat 
populations, wing membrane biopsies guided by UV 
light for skin lesions proved higher efficacy.

Table 3  Bacterial diversity in M. blythii (n = 20) and R. ferrumequinum (n = 20) sampled in Armenia

a This bacterial isolate is considered zoonotic

Rhinolophus ferrumequinum Number of bacterial isolates Myotis blythii Number 
of bacteria 
isolates

Acinetobacter calcoaceticus 3 Acinetobacter guillouiae 1

Arthrobacter sp. 2 Arthrobacter sp. 1

Hafnia paralvei 1 Carnobacterium maltaromaticum 1

Pseudomonas azotoformans 11 Enterobacter cloacae 1

Pseudomonas fluorescens 3 Hafnia alvei 2

Pseudomonas gessardii 1 Hafnia paralvei 1

Pseudomonas sp. 1 Pseudomonas azotoformans 4

Serratia liquefaciens 3 Pseudomonas fluorescens 3

Serratia marcescens 1 Pseudomonas gessardii 3

Serratia proteamaculans 2 Pseudomonas spp. 1

Sphingobacterium sp. 1 Serratia liquefaciens 10

Stenotrophomonas maltophilia 2 Serratia proteamaculans 3

Yersinia enterocoliticaa 1

Total bacterial species 12 Total bacterial species 13
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