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Abstract 

Background:  Few studies have molecularly characterized the potential zoonotic protozoa, Cryptosporidium spp., 
Giardia duodenalis and Enterocytozoon bieneusi in sheep and goats in China, therefore total 472 fecal samples were 
collected from eight provinces and infection rates of three protozoa were determined by PCR analysis of correspond-
ing loci. All PCR positive samples were sequenced to identify the genotype.

Results:  The overall infection rates for Cryptosporidium, G. duodenalis, and E. bieneusi were 1.9% (9/472), 20.6% 
(97/472), and 44.5% (210/472), respectively. C. xiaoi (n = 5), C. ubiquitum (n = 3), and C. anderson (n = 1) were identi-
fied in goats. 97 G. duodenalis strains were successfully detected, and assembly E (n = 96) and assembly A (n = 1) were 
identified. Two novel G. duodenalis multilocus genotype (MLGs) were identified, with one belonging to subgroup AI 
and the other to subgroup E5. Nine known genotype (BEB6, CD6, CHC8, CHG3, CHG5, Peru6, CHG1, CHG2, and COS-I) 
and four new genotype (CHG26, CHG27, CHG28, and CHS18) were identified in E. bieneusi, with CHG3 dominant in 
this group.

Conclusions:  The present results highlight the role of sheep and goats as reservoir hosts for this three gastrointesti-
nal pathogens. In summary, we provided a platform for more detailed research on genotyping or subtyping intestinal 
pathogens to better understand their risks and modes of transmission.
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Background
Cryptosporidium, Giardia duodenalis, and Enterocyto-
zoon bieneusi are three opportunistic pathogens infect 
humans and animals. Susceptible individuals infected by 
these pathogens may become asymptomatic; however, 
other patients can experience self-limiting diarrhea or 
severe wasting disease, especially those immunocom-
promised with human immunodeficiency virus [1–3]. 

To date 47 Cryptosporidium species and approximately 
70 genotypes have been identified in fish, amphib-
ians, reptiles, birds and mammals [4]. Most Crypto-
sporidium species and genotypes are host-specific; 
thus far, Cryptosporidium andersoni, Cryptosporidium 
bovis, Cryptosporidium ryanae, Cryptosporidium fay-
eri, Cryptosporidium hominis, Cryptosporidium ubiqui-
tum, Cryptosporidium parvum, Cryptosporidium canis, 
Cryptosporidium scrofarum, Cryptosporidium suis, and 
Cryptosporidium xiaoi have been identified in sheep and 
goats [5].

Giardia duodenalis is composed of eight assemblages: 
A - H, of which A and B are more common in humans, 
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but can infect a variety of animals [1]. Assemblages C- H 
mainly infect non-human species. Epidemiological data 
on G. duodenalis showed that the infections with A、E 
assemblages were more commonly identified in sheep in 
China, with assemblage E being the dominant one [6].

More than 500 different E. bieneusi genotypes, clus-
tering into 11 groups, have been identified based on 
sequence analysis of the ribosomal internal transcrip-
tional spacer gene (ITS) [7–9]. Group 1 comprises the 
zoonotic evolution group containing approximately 314 
genotypes, of which, genotypes A, D, EbpC and IV are the 
most common [10]. Group 2 genotypes were previously 
considered host-specific and mainly infected ruminants, 
but several reports indicated that group 2 genotypes such 
as BEB4, BEB6, I and J infected humans and other ani-
mals [8]. Thus, group 2 genotypes pose potential risks to 
public health whereas genotypes in groups 3–11 appear 
to be more host-specific.

In recent years, Cryptosporidium, G. duodenalis and E. 
bieneusi infection studies have been conducted in sheep 
and goats in China [6, 11–13]. However, most of these 
studies were limited to one region or one pathogen, thus 
the data were not fully comprehensive. Thereby, in order 
to estimate their zoonotic potential, we aimed to evalu-
ate the molecular prevalence of Cryptosporidium spp., 
Giardia duodenalis and Enterocytozoon bieneusi infec-
tions among sheep and goats in China.

Results
The occurrence of cryptosporidium, G. duodenalis and E. 
bieneusi
The overall infection rates of Cryptosporidium, E. 
bieneusi, and G. duodenalis were 1.9% (9/472), 44.5% 
(210/472), and 20.6% (97/472), respectively. The prev-
alence of of Cryptosporidium, G. duodenalis and E. 
bieneusi were 2.3% (8/352), 19.3% (68/352), and 47.7% 

(168/352), respectively in goats. In contrast, 24.2% 
(29/120), and 35.0% (42/120) of sheep samples were 
positive for G. duodenalis and E. bieneusi, respectively 
(Tables 1 and 2). In addition, co-infections were detected 
in some samples, with the highest rate of 10.4% (49/472) 
observed between E. bieneusi and G. duodenalis.

Correlation analysis
As shown (Table  3), significant differences of infec-
tion rates between E. bieneusi and G. duodenalis was 
observed in different regions (p = 0.000 < 0.01), however, 
there are no statistically significant in the infection rates 
of Cryptosporidium were in different regions.

Cryptosporidium infection rates were 0.8 and 5.5% 
in female and male animals (sheep and goats), respec-
tively, indicating a significant difference (p = 0.016 < 0.05). 
Likewise, significant differences were also observed 
between E. bieneusi and G. duodenalis prevalence in dif-
ferent gender groups (p = 0.036 < 0.05, p = 0.000 < 0.01), 
respectively.

Also, E. bieneusi infection rates were 35.0 and 47.7% 
in sheep and goats, respectively, indicating a signifi-
cant difference (p = 0.015 < 0.05). In contrast, no signifi-
cant difference was observed in infection rates between 
Cryptosporidium and G. duodenalis in terms of sheep/
goat breeds.

Cryptosporidium species
Three Cryptosporidium species, C. xiaoi (n = 5), C. ubiq-
uitum (n = 3) and C. andersoni (n = 1), were identified 
in goats in this study(Table  2). The C. ubiquitum was 
identified in Jiangsu(n = 1) and Hainan(n = 2), and 100% 
similarity with to KT922236 in lambs in Ethiopia, and 
KT027437 in the eastern gray squirrel in the USA. C. 
xiaoi was identified in Henan (n = 1) and Jiangsu(n = 4), 
which was identical to the isolate derived from goats 

Table 1  Infection rates and mixed infections of Cryptosporidium, G. duodenalis, and E. bieneusi in different regions

“-“: negative; N Number of positive, T Total of analyzed samples

Region N/T (%) of positive specimens

Cryptosporidium E. bieneusi G. duodenalis E. bieneusi+
G. duodenalis

Cryptosporidium+
E. bieneusi

Cryptosporidium+
G. duodenalis

Henan 0.64 (1/156) 67.31 (105/156) 21.79 (34/156) 17.95 (28/156) 0.64 (1/156) –

Llaoning – 12.50 (2/16) 31.25 (5/16) 6.25 (1/16) – –

Qinghai – 11.11 (1/9) 33.33 (3/9) – – –

Gansu – 7.70 (1/13) 46.15 (6/13) 7.69 (1/13) – –

Jilin – 11.11 (2/18) 33.33 (6/18) 5.56 (1/18) – –

Jiangsu 4.17 (5/120) 47.50 (57/120) 30.00 (36/120) 14.17 (17/120) – 2.50 (3/120)

Guizhou – 26.42 (14/53) 9.43 (5/53) 1.89 (1/53) – –

Hainan 3.45 (3/87) 32.18 (28/87) 2.30 (2/87) – – –

Total 1.91 (9/472) 44.49 (210/472) 20.55 (97/472) 10.38 (49/472) 0.64 (3/472) –
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in China (KM199748 and KM199756). In contrast, C. 
andersoni was only observed in Hainan(n = 1), and 100% 
similarity with HQ007049 from cattle in Brazil.

G. Duodenalis assemblages and MLGs
There are 97 PCR positive samples amplified success-
fully at least one gene locus (SSU rRNA, bg, gdh, and tpi) 
of G. duodenalis, 60, 22, 37, and 50 sequences of above 
four genes were obtained, respectively. Two G. duodena-
lis assemblages, E and A were identified in these samples 
(Table 2). Of the SSU rRNA sequences, all E assemblages 
belonged to the subtype E1, with their sequences show-
ing 100% similarity to the isolate derived from cattle in 
China (MN593002). Of these PCR positive specimens, 
11 were successfully amplified at the other three loci, and 

formed five assemblage E MLGs and one assemblage A 
MLG (Figs. 1 and 2).

E.bieneusi genotypes
Based on ITS sequence analysis, a total of 13 genotypes 
were detected in the 210 positive samples from sheep and 
goats, including 9 known genotype: BEB6 (n = 45), CD6 
(n = 24), CHC8 (n = 1), CHG3 (n = 96), CHG5 (n = 20), 
Peru6 (n = 1), CHG1 (n = 8), CHG2 (n = 8) and COS-I 
(n = 1), and 4 new genotype: CHG26, CHG27, CHG28, 
and CHS18 were detected in this study (Table 2).

The most prevalent E. bieneusi genotype was CHG3 
(90/352, 25.6%) in goats, while BEB6 (24/120, 20.0%) in 
sheep. 10 out of 11 genotypes in goats detected in this 
study were clustered into group 2 based on phyloge-
netic analysis of ITS sequences and reference sequences 

Table 2  Prevalence and genotype distribution of Cryptosporidium, G. duodenalis, and E. bieneusi in goats and sheep in different 
provinces

Species Geographic 
source

No. of farms No. (%) of positive specimens(n) Species/assemblages/genotypes

Cryptosporidium E. bieneusi G. duodenalis Cryptosporidium E. bieneusi G. duodenalis

Goats Henan 156 0.64 (1) 66.67 (104) 21.79 (34) C. xiaoi (1) BEB6(6)CD6(24)
CHC8(1)CHG3(60)
CHG5(3)peru6(1)
CHG1(2)CHG2(4)
CHG27(1)CHG26(1)
CHG28(1)

E(34)

Qinghai 3 – – – – – –

Gansu 10 – 10.00 (1) 30.00 (3) – CHG3(1) E(3)

Jiangsu 51 9.80 (5) 45.10 (23) 49.02 (25) C. xiaoi (4)
C. ubiquitm(1)

BEB6(6)CHG1(2)
CHG2(2)CHG3(11)
CHG5(1)CHG28(1)

E(25)

Hainan 87 3.45 (3) 32.18 (28) 2.30 (2) C. andersoni(1)
C. ubiquitm(2)

CHG3(16)BEB6(4)
CHG5(7)
CHG28(1)

E(2)

Guizhou 45 – 26.67 (12) 8.89 (4) – BEB6(5)CHG1(4)
CHG3(3)

E(4)

Total 352 1.91 (9) 47.73 (168) 19.32 (68) C. xiaoi(5)
C. andersoni(1)
C. ubiquitm(3)

BEB6(21)CD6(24)
CHC8(1)CHG3(90)
CHG5(11)peru6(1)
CHG1(8)CHG2(6)
CHG26(1)CHG27(1)
CHG28(3)

E(68)

Sheep Liaoning 16 – 12.50 (2) 31.25 (5) – BEB6(2) E(5)

Qinghai 6 – 16.67 (1) 50.00 (3) – COS-I(1) E(3)

Gansu 3 – – 100.00 (3) – – E(3)

Jilin 18 – 11.11 (2) 33.33 (6) – BEB6(2) E(5)
A(1)

Jiangsu 69 – 50.72 (35) 15.94 (11) – BEB6(20)CHG2(2)
CHG3(4)CHG5(8)
CHS18(1)

E(10)
A(1)

Guizhou 8 – 25.00 (2) 13.50 (1) – CHG3(1)CHG5(1) E(1)

Total 120 – 35.00 (42) 24.17 (29) – BEB6(24)COS-I(1)
CHG2(2)CHG3(5)
CHG5(9)CHS18(1)

E(28)
A(1)
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Table 3  Correlation analysis of different factors on the infection of three intestinal pathogens

p < 0.05, the difference is significant; P > 0.05: no difference

Variables No. tested (n)No. (%) of positive specimens and 95% Cl

Cryptosporidium E. bieneusi G. duodenalis

Breed

  Sheep 120 0 (0.0) - 42 (35.0) [28.7-46.] 29 (24.2) [16.4-31.9]

  Goat 352 9 (2.6) [0.7-3.8] 168 (47.7) [42.5-53.0] 68 (19.3) [15.2-23.5]

  Total 472 9 (1.9) [0.7-3.1] 210 (44.5) [40.0-49.0] 97 (20.6) [16.9-24.2]

P value p = 0.319 p = 0.015 p = 0.256

Gender

  Female 265 2 (0.8) [0.0-1.8] 115 (43.4) [37.4-49.4] 34 (12.8) [8.8-16.9]

  Male 60 3 (5.5) [0.0-10.7] 35 (58.3) [45.5-71.2] 22 (36.7) [24.1-49.2]

  Total 325 5 (1.5) [0.2-2.9] 150 (46.2) [40.7-51.6] 56 (17.2) [13.1-21.4]

P value p = 0.016 p = 0.036 p = 0.000

Region

  Henan 156 1 (0.6) [0.0-1.9] 105 (67.3) [59.9-74.8] 34 (21.8) [15.2-28.3]

  Liaoning 16 – 2 (12.5) [0.0-30.7] 5 (31.3) [5.7-56.8]

  Qinghai 9 – 1 (11.1) [0.0-36.7] 3 (33.3) [0.0-71.8]

  Gansu 13 – 1 (7.7) [0.0-24.5] 6 (46.2) [14.8-77.5]

  Jilin 18 – 2 (11.1) [0.0-27.2] 6 (33.3) [9.2-57.5]

  Jiangsu 120 6 (5.0) [1.0-9.0] 57 (47.5) [38.4-56.6] 36 (30.0) [21.7-38.3]

  Guizhou 53 – 14 (26.4) [14.1-38.7] 5 (9.4) [1.3-17.6]

  Hainan 87 2 (2.3) [0.0-5.5] 28 (32.2) [22.2-42.2] 2 (2.3) [0.0-5.5]

  Total 472 9 (1.9) [0.7-3.1] 210 (44.5) [40.0-49.0] 97 (20.6) [16.9-24.2]

P value p = 0.098 p = 0.000 p = 0.000

Fig. 1  Phylogenetic relationship between G. duodenalis assemblage E multilocus genotype (MLG). The phylogenetic tree was constructed using a 
mosaic dataset of bg, gdh and tpi gene sequences, and the topology obtained by the adjacency analysis was the same. ▲: The known genotypes 
identified in this study. △:Reference sequences are from the studies of Jin [14]. HN: Hainan, JS: Jiangsu, GS:Gansu. qh:Qinghai
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downloaded from GenBank, while only genotype Peru 6 
was belonged to 1 (Table 2, Fig. 3). In contrast, six geno-
types in sheep were located in group 2.

Discussion
In this study, Cryptosporidium was only detected in 
goats, and its prevalence (1.9%) was lower than that in 
Henan (34.0%) [17], Qinghai (12.3%) [18], Inner Mon-
golia (13.1%) [19], and Sichuan (14.6%) [20]. This low 
prevalence may have been due to the fact that most stool 
samples were collected from asymptomatic flocks. It is 
accepted that Cryptosporidium is a major opportunistic 
pathogen, with humans and animals with low immunity 
more prone to infection [21]. Additionally, the true prev-
alence may be underestimated, as oocyst shedding was 
previously reported as intermittent or below PCR detec-
tion limits [22].

C. xiaoi, C. parvum, C. ubiquitum, C. andersoni, C. 
hominis were previously documented in goats [23–27]. 
In this study, we detected C. xiaoi, C. ubiquitum and C. 
andersoni in goats, of which C. xiaoi was the dominant 
species. This finding agreed with other studies [17, 28]. 
However, goat studies conducted in Henan and Chong-
qing, reported that C. andersoni and C. ubiquitum were 

dominant species, respectively [26]. To date, many 
human infections caused by C. xiaoi and C. ubiquitum 
have been reported [29–31]. In our study, C. andersoni 
was considered a cattle-adapted species, only detected 
in Hainan. C. andersoni was first described in 2000 in 
the USA [32], but since then, several studies reports the 
parasite infects different animals [33]. Previous reports 
also showed that humans infected with C. andersoni 
were detected in several countries including the UK [34], 
Malawi [35], Australia [36], Iran [37], India and China 
[38]. Thus, C. xiaoi, C. ubiquitum, and C. andersoni are 
human infections and require further studies to clarify 
their potential zoonotic transmission in China.

When compared with G. duodenalis epidemiological 
data in other regions, the overall G. duodenalis infec-
tion rate in goats (19.3%) across the eight provinces was 
higher than that reported in Sichuan (14.9%) [11], Hei-
longjiang (2.9%) [39] and Anhui (6.3%) [40]. The overall 
G. duodenalis infection rate in sheep (24.2%) was higher 
than that reported in Henan (6.7%) [6] and Qinghai 
(13.1%) [14], but lower than two studies from Australia 
(44.0%) and Brazil (34.0%) [41–43]. The G. duodena-
lis infection rate in sheep varied greatly from region to 
region, however this finding agreed with previous reports 

Fig. 2  Phylogenetic relationship between G. duodenalis assemblage A multilocus genotype (MLG). The phylogenetic tree was constructed using a 
mosaic dataset of bg, gdh and tpi gene sequences, and the topology obtained by the adjacency analysis was the same. Novel 1 represent isolates 
from this study. Reference sequences are from the studies of Cacciò [15] and Lebbad M [16]
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Fig. 3  Phylogenetic analysis of E.bieneusi based on the ribosomal internal transcribed spacer (ITS) nucleotide sequence. Genotypes were based on 
the genetic distance calculated by the Kimura two-parameter model (Saitou and Nei, 1987), and contiguous trees were constructed using the ITS 
locus. The self-test value is 1000 repetitions. ▲: new genotype identified in this study. △: Known genotype identified in this study



Page 7 of 11Wang et al. BMC Veterinary Research          (2022) 18:361 	

showing that global G. duodenalis infection rates in sheep 
had changed dramatically from 1.5 to 55.6% [1]. The rea-
sons for this may be due to several factors: first, samples 
came from different regions across China, with differ-
ent climatic conditions; second, animal age information 
was unclear; more young animals may have been farmed 
in some regions; third, poor sampling technology was to 
blame; and fourth, insufficient management systems were 
in place in some farms [43].

G. duodenalis assemblage E was dominantly detected 
in goats and sheep, in agreement with several reports. 
Assemblage E is accompanied by strong host specific-
ity, and mainly occurs in cloven-hoofed livestock (cattle, 
sheep, goats, and pigs), but also spreads between other 
livestock and non-human primates [13, 44]. Assemblage 
E was also identified in humans in Egypt, Brazil and Aus-
tralia [45–47]. These observations suggested that assem-
blage E may lead to zoonotic infection, therefore animals 
infected with this assemblage could be primary hosts for 
animal-to-human transmission.

In this study, the only MLG belonging to assemblage A 
was distributed in the same branch as the MLG AI-2 iso-
late [15]. No human case infected with MLG AI-2 have 
been reported, however, further studies should be carried 
out to determine if it is zoonotic or not. Five assemblage 
E MLGs were identified in this study, and were located 
in different branches of the same cluster. Moreover, 
they were located in different clusters from assemblage 
E MLGs sequences from Qinghai Tibetan sheep [14] 
(Fig.  1). These findings suggested different geographical 
distributions among isolates, in agreement with previous 
observations in Sichuan and Xinjiang [11, 48].

The overall E. bieneusi infection rate was 44.5%, which 
was the highest infection rate among the three intestinal 
pathogens. The infection rate across different regions 
varied significantly from 0.0 to 66.7% (p < 0.01), and was 
consistent with a goat and sheep study in another parts 
of China [49]. The E. bieneusi infection rate was 35.0% in 
sheep, similar to that in Gansu (34.5%) [13], but higher 
than that in Qinghai (23.4%) [50] and Liaoning (9.4%) 
[49]. The E. bieneusi infection rate was 47.7% in goats, 
similar to that in Shaanxi (47.8%); lower than that in 
Chongqing (62.5%) [49], but higher than in Anhui (7.5%) 
and Yunnan (8.9%) [20].

Based on ITS sequence analysis, 13 genotypes were 
identified, of which the BEB6 genotype was dominant 
in sheep in agreement with previous reports [12, 13, 49, 
51]. Other studies also reported this infection genotype 
was identified in cattle, cats, and geese [33]. Additionally, 
BEB6 was shown to infect children without diarrhea in 
China [8], suggesting this genotype may pose particular 
health threats to children. The CHG3 genotype was iden-
tified in all regions and suggested a wide geographical 

distribution. However, in group 2, such as genotype J, 
BEB4, and BEB6, were reported in human cases [52]. 
These data [8, 52] confirmed that genotypes in group 2 
displayed zoonotic potential.

Interestingly, when analyzing parasite infection rates by 
sex, the rate in males were significantly higher than that 
in females (p < 0.01). To the best of our knowledge, no 
other study have reported these observations, therefore 
the infection rates of these intestinal pathogens in goats 
and sheep may be gender-related. To verify the accuracy 
of this hypothesis, the molecular epidemiology of these 
gastrointestinal pathogens in goats and sheep of different 
genders must be investigated.

Conclusion
Cryptosporidium, G. duodenalis and E. bieneusi infec-
tion rates varied across different provinces, with preva-
lence possibly related to sex. C. xiaoi, G. duodenalis 
assemblage E, and E. bieneusi BEB6 and CHG3 were the 
predominant zoonotic species/assemblages/genotypes 
identified in this study, with important roles in pathogen 
transmission from animals to humans. Based on MLG 
analysis, G. duodenalis may be geographically isolated 
in different regions. In summary, we provided a platform 
for more detailed research on genotyping or subtyping 
intestinal pathogens to better understand their risks and 
modes of transmission.

Methods
Sample collection
From April to August 2019, 472 fecal samples were col-
lected from 352 randomly selected goats and 120 ran-
domly selected sheep in eight provinces across China 
(Fig. 4). In these areas, the majority of farms used the cap-
tive feeding model (e.g. Henan, Hainan, Guizhou, Gansu, 
Jilin, and Jiangsu), one used the grazing (Liaoning), and 
one used semi-grazing/semi-stable feeding (Qinghai). 
These farms produced sheep of all ages in good sani-
tary conditions. (age analysis was not conducted in this 
study).. For each specimen, approximately 20 g freshly 
voided feces was opportunistically collected using sterile 
latex gloves and placed into clean plastic containers on 
ice in a cold box. Samples were transported to the Inter-
national Joint Research Laboratory for Zoonotic Diseases 
of Henan, China, and stored in 2.5% potassium dichro-
mate solution at 4 °C for later use. At the time of feces 
collection, no diarrhea was observed in animals.

DNA extraction and PCR amplification
Approximately 200 mg fecal samples were used to extract 
DNA using the E.Z.N.A®. Stool DNA Kit (Omega Biotek, 
Norcross, GA，USA) according to manufacturer’s 
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instructions. Extracted DNA samples were stored at 
− 20 °C until required.

The small subunit (SSU) rRNA gene was used to screen 
Cryptosporidium samples by nested PCR amplification 
[53]. The SSU rRNA, β-giardin (bg), triose phosphate 
isomerase (tpi), and glutamate dehydrogenase (gdh) 
genes were used to identify G. duodenalis samples [15, 
54–56]. E. bieneusi samples were determined using ITS 
[57]. The amplification was performed in 25 μL reaction 
mixtures. Positive and negative controls were included 
(positive samples of three protozoa, and double distilled 
water was used as the negative control). All PCR prod-
ucts were analyzed using 1% (w/v) agarose gels stained 
with DNA Green (Tiandz, Inc., Beijing, China) and vis-
ualized with a fluorescence gel documentation system 
(ZOMANBIO, Beijing, China).

Sequence analysis
All positive amplification products were bidirectionally 
sequenced on an ABI PRISM™ 3730xl DNA Analyzer 
using the BigDye Terminator v3.1 Cycle Sequencing 
Kit (Applied Biosystems, Foster City, CA, USA), and 
all PCR positive samples were sequenced in both direc-
tions. To determine Cryptosporidium, G. duodenalis 

and E. bieneusi, genotypes, sequences were identified 
using reference sequences downloaded from GenBank 
(http://​blast.​ncbi.​nlm.​nih.​gov) using Clustal X 2.1 
(http://​www.​clust​al.​org/). To evaluate multilocus geno-
types (MLGs) of G. duodenalis, we only included speci-
mens that were successfully subtyped at all three loci, 
whereas ambiguous sequences (double peaks) were not 
included for phylogenetic analyses. Sequences were 
concatenated for each positive isolate to form a multi-
locus sequence (bg + tpi + gdh). Phylogenetic analyses 
were performed using the neighbor-joining method in 
MEGA 7.0 (http://​www.​megas​oftwa​re.​net) using dis-
tance matrices calculated in the Kimura 2 parameter 
model. Tree reliability was evaluated using a bootstrap 
analysis with 1000 repetitions.

Statistical analysis
All statistical analyses were performed using IBM SPSS 
Statistics Software (http://​www.​ibm.​com/​produ​cts/​
spsss​tatis​tics). The prevalence with the 95% confidence 
intervals (CI), was also calculated. Differences in cor-
responding infection rates among locations, breed, and 
gender were examined by Fisher’s exact test, and differ-
ences were considered significant at P ≤ 0.05.

Fig. 4  Distribution of sampling locations in China. The figure was designed by Arcgis 10.2, and the original vector diagram imported in Arcgis was 
adapted from Natural Earth (http://​www.​natur​alear​thdata.​com)

http://blast.ncbi.nlm.nih.gov
http://www.clustal.org/
http://www.megasoftware.net
http://www.ibm.com/products/spssstatistics
http://www.ibm.com/products/spssstatistics
http://www.naturalearthdata.com
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Nucleotide sequence accession number
Representative nucleic acid sequences reported in this 
paper have been submitted to NCBI’s GenBank database 
under the accession numbers MN845610-MN845626 
and MN833262-MN833285.
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