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Abstract 

Background:  The mammalian genome encodes millions of proteins. Although many proteins have been discovered 
and identified, a large part of proteins encoded by genes are yet to be discovered or fully characterized. In the present 
study, we successfully identified a host protein C11orf96 that was significantly upregulated after viral infection.

Results:  First, we successfully cloned the coding sequence (CDS) region of the cat, human, and mouse C11orf96 
gene. The CDS region of the C11orf96 gene is 372 bp long, encodes 124 amino acids, and is relatively conserved in 
different mammals. From bioinformatics analysis, we found that C11orf96 is rich in Ser and has multiple predicted 
phosphorylation sites. Moreover, protein interaction prediction analysis revealed that the protein is associated with 
several transmembrane family proteins and zinc finger proteins. Subsequently, we found that C11orf96 is strictly 
distributed in the cytoplasm. According to the tissue distribution characteristics, C11orf96 is distributed in all tissues 
and organs, with the highest expression levels in the kidney. These results indicate that C11orf96 may play a specific 
biological role in the kidney.

Conclusions:  Summarizing, these data lay the foundation for studying the biological functions of C11orf96 and for 
exploring its role in viral replication.

Keywords:  C11orf96, Felis catus, Gene cloning, Expression patterns, Biological function

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Protein is known as the building block of life. Compli-
cated life activities involve millions of proteins, which 
form an orderly life body through strict distribution 
and program control [1]. Currently, the proteins whose 
biological functions have been identified account for 

only a very small portion of the total proteins. Many 
proteins with unknown functions are yet to be discov-
ered. In recent years, new viruses have emerged which 
pose a serious threat to humans as well as to livestock 
and poultry breeding. For example, severe acute respir-
atory syndrome coronavirus 2 (SARS-CoV-2) discov-
ered in 2019 has been infecting hundreds of millions of 
people and has triggered a worldwide pandemic [2–4]. 
The African swine fever virus (ASFV) was introduced 
in China in 2018, and it has caused widespread death 
of pigs across the country; moreover, its high morbid-
ity and mortality rate led to huge economic losses of 
the Chinese breeding industry [5]. Viruses are strictly 
parasitic organisms. They manipulate the translation 
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system of the host and use raw materials in host cells 
to complete their self-replication and reproduction [6]. 
Therefore, exploring the mechanisms of interaction 
between a virus and its host and discovering the host 
proteins that regulate virus replication has always been 
a research hot spot in the field of life sciences.

With the advancement of science and technology, 
an increasing number of host proteins involved in 
regulating virus replication have been identified. Many 
cellular functional receptors of viruses have been dis-
covered. For example, ACE2 is the receptor for human 
coronavirus, LDLR is the receptor for hepatitis C virus 
and rhinovirus, and CD46 is the receptor for classical 
swine fever virus, adenovirus, and human herpesvirus 
6A [7–11]. Moreover, many host proteins involved in 
viral replication and translation have also been iden-
tified, such as eIF4E, eIF3, eIF4F, RPS5, RPS6, PABP, 
PTB, and VAPA/VAPB [12–17]. In addition, many host 
restriction factors with antiviral effects are expressed 
in viral infection, such as ZAP, ISG15, MX1, OAS, 
viperin, and tetherin [18–22]. Previously, we used 
the rabbit haemorrhagic disease virus (RHDV) as a 
model to perform proteomic analysis of viral infec-
tions and found that many host proteins were signifi-
cantly upregulated after viral infection, including some 
uncharacterized proteins (data not shown). Proteom-
ics data has been uploaded to ProteomeXchange data-
base (Project accession: PXD030318). Among these 
unknown proteins, C11orf96 was found to be a host 
factor with the highest upregulation level. C11orf96 
is a protein encoded by the 96th open reading frame 
on chromosome 11, and although its gene has been 
reported, the function of this protein remains to be 
identified [23]. Human chromosome 11 carries 1,524 
protein-coding genes; although this chromosome is 
average in size, it is one of the most gene- and disease-
rich chromosomes in the human genome. For exam-
ple, modifications of nuclear DNA and its regulatory 
proteins (IGF2, SLC22A18, PHLDA2, CDKN1C, and 
KCNQ1) and proteins involved in cancer develop-
ment (MYCN, IGSF4, and CADM1) are known to be 
located on human chromosome 11 [24–27]. However, 
the functions of only a part of the proteins encoded on 
chromosome 11 have been elucidated.

In the present study, we successfully cloned the 
C11orf96 gene and analyzed its potential functions by 
using bioinformatics tools. Quantitative PCR, western 
blotting (WB) assay, immunofluorescence assay (IFA), 
and immunohistochemistry were used to analyze the 
distribution of the C11orf96 gene in cells and tissues. 
The obtained data could provide important clues for 
studying the biological functions of the C11orf96 
protein.

Results
Cloning and expression of the C11orf96 protein
The C11orf96 gene in the bait vector pEASY®-Blunt 
Zero Cloning Kit (abbreviated as pEBCK) was obtained 
by RT-PCR, and 1% agarose gel electrophoresis showed 
that the size of the cDNA fragment amplified by PCR 
was in the expected range. The target fragment size of 
372  bp (Fig.  1A) was confirmed by sequencing analy-
sis. Sequencing analysis also confirmed that the insert 
was the C11orf96 CDS, indicating successful construc-
tion of the bait vector pEBZCK–Felis catus C11orf96, 
pEBZCK-mouse C11orf96, and pEBZCK-homo sapiens 
C11orf96. Blast search and comparison with the NCBI 
nucleotide sequence database revealed that the CDS 
was completely consistent with the F. catus C11orf96 
CDS region sequence (XM_006937308.4), mouse 
C11orf96 (NM_001145034.1), and H. sapiens C11orf96 
(NM_001145033.2) used in the design of the cloning 
primer. Moreover, we successfully constructed eukary-
otic expression plasmids of C11orf96 (pHA-fC11orf96, 
pMYC-fC11orf96, pHA-mC11orf96, pMYC-mC11orf96, 
pFlag-hC11orf96, and phC11orf96-Flag). After these 
eukaryotic plasmids were transfected into 293 T cells, the 
cell lysate was collected for WB assay. The results showed 
that F. catus, mouse, and H. sapiens C11orf96 eukaryotic 
plasmids were effectively expressed (Fig. 1B).

Analysis of biological characteristics of C11orf96
The full length of F. catus C11orf96 is 1201  bp, with 3 
introns and 3 exons. The untranslated regions (UTRs) 
are located at 118–131, 615–760, and 780–1201 bp; the 
CDS region is located at 243–614 bp and is 372 bp long 
(Fig. 2A). The cloned sequence has 8 ORFs, among which 
the full-length open reading frame ORF1 (the com-
plete CDS region) is 372  bp, which encodes 124 amino 
acids, including predicted phosphorylation sites (Tyr: 3, 
Ser: 15). The protein sequence does not contain a sig-
nal peptide and does not have a transmembrane region 
(Fig. 2B). The top five amino acids are Ser (13.82%) > Leu 
(10.57%) > Glu (9.76%) > Arg (8.13%) > Lys (7.32%). The 
detailed amino acid composition ratio is shown in 
Figs.  2C and D. The molecular weight is 13.80  kDa, the 
isoelectric point (pI) is 8.4, and the molecular formula is 
C592H970N174O189S8. The detailed physical and chemical 
properties are shown in Table S1. The protein secondary 
structure prediction revealed that the C11orf96 protein 
consists of four structures: α-helix, β-turn, random coil, 
and extended chain, which account for 61%, 4%, 33%, 
and 2% of the protein structure, respectively (Fig. 2E-F). 
Protein interaction prediction analysis showed that the 
C11orf96 protein may interact with multiple proteins 
in the host, including the TMEM117 transmembrane 
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protein that regulates endoplasmic reticulum (ER) stress, 
several other transmembrane proteins, E3 ubiquitin 
ligase, and zinc finger proteins (Fig.  2G). These results 
indicate that the C11orf96 protein may play a role in cel-
lular processes such as ER stress, protein ubiquitination 
modification, and gene transcription.

Conservation analysis of C11orf96 in different species
The phylogenetic tree was used to analyze the amino 
acid sequence of C11orf96 from 20 species of mam-
mals. It was found that the amino acid sequences of 
C11orf96 of F. catus and Panthera pardus are clustered 
together and are evolutionarily closely related to those of 
Ailuropoda melanoleuca, Ovis aries, Capra hircus, and 
Bubalus bubalis (Fig.  3A), which is consistent with the 
results of amino acid sequence homology comparison. 
These results indicate that the C11orf96 protein is rela-
tively conserved in different species such as rabbits, cats, 
mice, and humans, and the major difference lies in the 
N terminal sequence. Sequence alignment revealed that 
the 124-amino-acid mature peptides of C11orf96 are well 
conserved in different mammals (Fig.  3B). Comparison 
with F. catus amino acids showed that C11orf96 is highly 
conserved between P. pardus and A. melanoleuca (100% 
identity), and the only difference when compared with 
Mus musculus (96.0% identity) was noted in amino acids 
at 4 sites: 27 (Thr), 40 (Pro), 104 (Pro), and 106 (Gly). The 

amino acid sequence also showed homology with those 
of Oryctolagus cuniculus (94.3% identity) and H. sapiens 
(95.9% identity). These results indicate that C11orf96 is 
conserved in mammals.

The C11orf96 protein is localized in the cytoplasm
The IFA experiment with the HA tag antibody was per-
formed to analyze the distribution of exogenous HA-
c11orf96 in CRFK cells. As shown in Fig. 4, HA-C11orf96 
was expressed only in the cytoplasm. We also used the 
C11orf96 polyclonal antibody prepared in our labora-
tory to detect the expression of endogenous C11orf96 in 
CRFK cells. The result was similar to that observed for 
exogenous HA-C11orf96, that is, endogenous C11orf96 
was expressed only in the cytoplasm (Fig. 4). These data 
clarify the distribution of C11orf96 in cells.

C11orf96 is mainly distributed in kidney
Relative quantitative PCR was used to analyze the tran-
scription level of C11orf96 in different tissues. As shown 
in Fig.  5A, C11orf96 showed the highest mRNA tran-
scription levels in the kidney. Subsequently, we analyzed 
the distribution of C11ORF96 in two other cat tissues, 
and found that C11orf96 also showed the highest tran-
scription level in kidney, and the expression trend was 
similar in all cats (Fig.  5B-C). Moreover, we extracted 
samples of total protein from each tissue and performed 

Fig. 1  Gene cloning and protein expression of the C11orf96 gene from different sources. A PCR amplification derived from different cDNAs of 
Felis catus, mouse, and Homo sapiens. M, DL2000 marker. B Western blotting. The antibodies prepared in our own laboratory were used to express 
different gene proteins
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WB assay with the C11orf96 antibody. The results showed 
that the protein was highly expressed in the kidney 
(Fig.  5D). In addition, immunohistochemistry and IFA 

were performed with the C11orf96 antibody. As shown 
in Fig. 6, C11orf96 exhibited the highest expression level 
in kidney. We performed WB and immunohistochemical 
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Fig. 2  Analyses of biological characteristics of C11orf96. A Structural diagram of the Felis catus C11orf96 gene (sequence data are available from 
GenBank: accession No. XM_006937308.4). B The nucleotide and deduced amino acid sequences for the cloned C11orf96 CDS region. ATG and TAA 
are the start and stop codons, respectively. Serine phosphorylation sites are marked with ▽. Threonine phosphorylation sites are marked with ▭. 
C Diagram showing the percentages of the amino acids in F. catus C11orf96. D Classification of amino acids in C11orf96 according to their nature. 
E–F Pie chart shows the C11orf96 secondary structure composition and rertiary structure. G Schematic diagram of the network of tight proteins 
interacting with the C11orf96 protein. Note: EAA, essential amino acid; SAA, semi-essential amino acid; GAA, glycogenic amino acid; GKAA, 
glucogenic and ketogenic amino acid; BAA, basic amino acid; AcAA, acidic amino acid; BCAA, branched chain amino acid; NHAA, nonpolar 
hydrophobic amino acid; ArAA, aromatic amino acid; SCAA, sulfur-containing amino acid
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analysis of tissue from all three cats and obtained results 
similar to those presented above. It is worth noting that 
the transcription level of C11orf96 in the heart is high, 
but the protein level is low, indicating that the C11orf96 
protein may be degraded in the heart, and its mechanism 
needs to be further studied. Summarizing, these results 
indicate that C11orf96 is mainly distributed in the kid-
ney in normal tissues, suggesting that C11orf96 may be 
involved in the biological activities of the kidney.

Discussions
C11orf96 is encoded by the 96th ORF on chromosome 
11, and its biological characteristics and functions are 
unclear. Chromosome 11 is a pair of chromosomes con-
taining the most genes for disease control in the human 
genome, such as IGF2, SLC22A18, CDKN1C, MYCN, 
IGSF4, and CADM1 [28–30]. C11orf96 is a protein that 
is significantly upregulated after virus infection. There-
fore, understanding the biological characteristics of the 
C11orf96 protein is critical to study its biological func-
tions in viral infections.

The protein functional domain prediction analysis 
showed that C11orf96 has no transmembrane structure 
and no signal peptide and consists of some low complex-
ity regions, a functional domain DUF4695 of 109–206 
amino acids with unclear function, and a highly con-
served RFKTQP motif. From the Interpro domain data-
base, we found that DUF4695 is usually associated with 
Alpha-ketoglutarate-dependent dioxygenase AlkB-
like (AlkB-like), Short-chain dehydrogenase/reductase 
SDR (SDR_fam), Pleckstrin homology domain (PH_
domain), and Integrase, core catalytic (Integrase_cat) 
domains appear together. AlkB is a DNA repair enzyme 
that removes methyl adducts and some larger alkyla-
tion lesions from endocyclic positions on purine and 
pyrimidine bases [31]. SDR_fam is a very large family 
of enzymes, most of which are known to be NAD- or 
NADP-dependent oxidoreductases [32]. PH domains can 
bind to phosphatidylinositol in biological membranes 
and proteins such as the beta/gamma subunits of hetero-
trimeric G proteins and protein kinase C [33]. Through 
these interactions, PH domains play a role in recruiting 
proteins to different membranes, thus targeting them to 
appropriate cellular compartments or enabling them to 
interact with other components of the signal transduction 

pathways [34, 35]. The integrase catalytic domain cata-
lyzes a series of reactions to integrate the viral genome 
into a host chromosome [36]. Therefore, it can be specu-
lated that the DUF4695 domain may regulate the activity 
of the above functional domains and that C11orf96 plays 
a regulatory role in these biological activities.

The proportion of serine in the C11orf96 protein is as 
high as 13.82%, and the protein was predicted to contain 
15 potential serine phosphorylation sites. Protein phos-
phorylation is one of the most important post-transla-
tional modifications of proteins, which regulates almost 
all cellular activities [37]. Protein phosphorylation is the 
transfer of ATP phosphate to the amino acid residues 
of the substrate protein under the catalysis of protein 
kinase and the main phosphorylated residues are serine, 
threonine, and tyrosine. Phosphorylation is an impor-
tant post-translational modification in signal transduc-
tion and is related to many protein interaction events [38, 
39]. Studies have shown that the phosphorylation of host 
cell kinase is closely related to virus replication and gene 
expression [40]. Proteins always perform their biologi-
cal functions by interacting with other proteins. By using 
the protein interaction prediction database STRING, 
we found that C11orf96 may interact with proteins such 
as ZNF331, TM4SF19, CDCA7L, MARCH4, TMCO3, 
TMEM106C, and TMEM117. MARCH4 is a E3 ubiqui-
tin-protein ligase that is predicted to mediate ubiquitina-
tion of MHC-I and CD4 and promote their subsequent 
endocytosis and sorting to lysosomes through multive-
sicular bodies [41]. CDCA7L plays a role in transcrip-
tional regulation as a repressor that inhibits monoamine 
oxidase A (MAOA) activity and gene expression by bind-
ing to the promoter and is involved in apoptotic sign-
aling pathways [42, 43]. TMEM117 is involved in ER 
stress-induced cell death pathway [44]. ZNF331 may be 
involved in transcriptional regulation [45]. These results 
indicate that C11orf96 may use phosphorylation to play 
a role in ER stress, protein ubiquitination modification, 
gene transcription, and other cellular processes.

The analysis of the distribution of C11orf96 in each 
tissue showed that the expression levels of C11orf96 
were the highest in the kidney. C11orf96 was mainly 
concentrated in glomerular epithelial cells. Therefore, 
we presumed that C11orf96 plays a role in the forma-
tion of renal tubules during kidney development. In 

Fig. 3  Conservation analysis of C11orf96 in different species. A Phylogenetic tree for amino acid sequences of the C11orf96 protein based on 
the neighbor-joining method. The phylogenetic tree is generated by MEGA7.0 using the neighbor-joining method with 1000 bootstrap replicate. 
GenBank accession numbers for the sequence are shown in Table S2. The bootstrap values and branch lengths are shown above and below each 
branch, respectively. A closer phylogenetic relationship with Felis catus C11orf96 is indicated by the asterisk. B Alignment of the deduced amino 
acid sequences of F. catus with those of other mammals. The same amino acids and conserved amino acids of different species are expressed in the 
same color

(See figure on next page.)
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Fig. 3  (See legend on previous page.)



Page 7 of 12Yang et al. BMC Veterinary Research          (2022) 18:170 	

addition, C11orf96 was also expressed in the spleen, 
suggesting that this gene may be involved in some 
biological activities in the spleen. The spleen is the 
most important immune organ and the main place to 
resist foreign pathogens by providing humoral immu-
nity and natural immune response [46]. C11orf96 is 
widely distributed in the spleen, indicating that this 
protein may be involved in the body’s defense against 
foreign pathogens. As observed earlier, the expression 
level of C11orf96 was significantly upregulated after 
viral infection, indicating that this protein is involved 
in regulating the life cycle of the virus. In the future, 
we plan to investigate the molecular mechanisms 
through which C11orf96 regulates viral replication as 
the research direction to conduct further studies on its 
specific biological functions.

Conclusions
In this study, the uncharacterized C11orf96 gene that 
is conserved in mammals was successfully cloned. We 
found that this protein is expressed only in the cyto-
plasm. We also found that C11orf96 is expressed at 
higher levels in the kidney. These findings lay impor-
tant foundation for studying the specific biological 
functions of C11orf96.

Methods
Tissue collection
Tissues were collected from three healthy stray cats from 
a pet hospital in Shanghai, China. On the day of nec-
ropsy, cats were initially sedated and then euthanized 
by intravenous injection of 85.9  mg/kg pentobarbital 
sodium. The tissues of major organs such as heart, liver, 
spleen, lung, kidney, and intestine were obtained by our-
selves immediately after euthanasia. Samples for gene 
cloning and real-time PCR were immediately placed in 
liquid nitrogen (-196℃), transported to the laboratory, 
and stored at -80℃.The other part of the tissue sample 
was fixed in 4% paraformaldehyde solution for prepar-
ing paraffin sections. All experiments were performed 
according to the guidelines established by Shanghai Vet-
erinary Research Institute, CAAS, China (approval num-
ber: SHVRIAU-18–035). All experiments were designed 
to minimize the number of animals used. All methods 
are reported in accordance with ARRIVE guidelines 
(https://​arriv​eguid​elines.​org) for the reporting of animal 
experiments.

Plasmids, antibodies, and cells
The C11orf96 gene was cloned into the pCMV-HA/
MYC vector and the p3*Flag-10/14 vector (Clontech) 

Fig. 4  Subcellular localization of the C11orf96 protein. Left panels, transient expression of pCMV-HA-tagged C11orf96 and endogenous C11orf96 in 
CRFK cells visualized by epifluorescence microscopy; middle panels, DAPI staining to visualize nuclei; right panels, merged images. Bars = 20 μm

https://arriveguidelines.org
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by using the Clon Express Ultra One Step Cloning Kit 
(Vazyme, China) to obtain the pHA-Felis catus C11orf96 
plasmid, pMYC-Felis catus C11orf96 plasmid, pHA-
mouse C11orf96 plasmid, pMYC-mouse C11orf96 plas-
mid, p3*Flag-10-Homo sapiens C11orf96 plasmid, and 
p3*Flag-14-Homo sapiens C11orf96 plasmid. The specific 
plasmid construction methods are described in Sect. 2.3.

The antibodies used in this study included rabbit 
C11orf96 polyclonal antibody (prepared by our labora-
tory), mouse anti-Flag antibody (Sigma Aldrich), mouse 
anti-GAPDH antibody (Kangwei Century Biotechnology, 
China), goat anti-mouse IgG conjugated with HRP (Jack-
son ImmunoResearch Europe Ltd., USA), goat anti-rabbit 
IgG conjugated with HRP (Jackson ImmunoResearch 
Europe Ltd.), and goat anti-mouse IgG conjugated with 
Alexa Fluor 488 (Thermo Fisher Scientific, USA).

293  T cells and CRFK cells were cultured at 37℃ in a 
humidified incubator with 5% CO2 using Dulbecco’s modi-
fied Eagle’s medium (DMEM) and Eagle’s Minimal Essen-
tial Medium (Life Technologies, USA) containing 10% fetal 
bovine serum (FBS) (Biological Industries, Israel).

Molecular cloning of the C11orf96 cDNA and construction 
of eukaryotic expression plasmids
For cDNA cloning, we used Trizol reagent to extract total 
RNA from frozen cat tissues, feline kidney cells (CRFK) 
cells, 293  T cells, and RAW 264.7 cells. The cDNA was 
then generated using M-MLV reverse transcriptase and 
random primers (Promega, USA). According to the Felis 
catus C11orf96 (XM_006937308.4), mouse C11orf96 
(NM_001145034.1), and Homo sapiens C11orf96 
(NM_001145033.2), we designed amplification prim-
ers for the coding region of the C11orf96 gene (Table 1). 
These primers were synthesized by GENEWIZ (Suzhou, 
China). By using the cDNA obtained by reverse tran-
scription as the template, the CDS region of the C11orf96 
gene of F. catus, mouse, and H. sapiens was amplified 
by RT-PCR. The PCR products were then separated by 
1% agarose gel electrophoresis. The target product was 
purified and recovered by a gel recovery kit (Vazyme, 
China), linked to the pEASY®-Blunt Zero Cloning vector 
(TransGen Biotech, China), and sequenced by Shanghai 
Sonny Biotech Co., Ltd. (China).

C11orf96

GAPDH

25-

15-

45-
35-
kDa

Fig. 5  The mRNA and protein expression levels of Felis catus C11orf96 in different tissues. A-C The dynamic range of qPCR for C11orf96 
quantification in the kidney, liver, spleen, lung, intestine, heart, and trachea. The trachea was used as a reference for data analysis. The β-actin acted 
as an internal reference gene. The trachea served as the analytical reference. All data are obtained from three independent experiments. D The 
protein expression level in different tissues was determined by western blotting assay. GAPDH was used as the housekeeping gene control. Rabbit 
polyclonal antibody for C11orf96 was prepared in our laboratory
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Fig. 6  Immunofluorescence and immunohistochemical staining of the C11orf96 protein in different tissues. Green tissues indicate fluorescence 
coloration due to FITC-conjugated or Alexa Fluor 488-conjugated secondary antibodies. Black area indicates background. Blue tissue indicates 
fluorescence coloration of nuclear labeling by DAPI
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Bioinformatics and phylogenetic analyses
The sequences of the cloned C11orf96 gene were con-
firmed using the BLAST tool available at the National 
Center for Biotechnology Information (NCBI) website. 
The genetic relationship and sequence similarity, and 
the amino acid sequence homology of C11orf96 of dif-
ferent species were compared with DNAMAN 8.0 soft-
ware. The ORF Finder online tool in NCBI was used to 
search and analyze all open reading frames (ORFs) in the 
C11orf96 CDS region. The physical and chemical prop-
erties, functional domain, secondary structure, and ter-
tiary structure of the C11orf96 protein were analyzed by 
the online software ProtParam, InterPro, SOPMA, and 
Phyre 2.0, respectively. The transmembrane region and 
the signal peptide region of this protein were predicted 
by TMHMM 2.0 and the SignalP software, respectively. A 
phylogenetic tree of C11orf96 was constructed by MEGA 
7.0 software. The STRING 11.0 database was used for 
the analysis of potential proteins interacting with the 
C11orf96 protein, and the results were visualized using 
Cytoscape 3.8.0 software.

Subcellular localization
CRFK cells were seeded onto 12-well plates and then 
transfected or not transfected with the plasmid pCMV-
HA-Felis catus C11orf96. The cells were then cultured 
for 24 h. Next, the cells were washed with cold PBS and 
fixed in 4% paraformaldehyde solution for 30  min at 
room temperature. The cells were then permeabilized 
with methanol for 10 min at -20℃and blocked with 5% 
bovine serum albumin (BSA) and 0.3% TritonX-100 

in PBS for 2 h at room temperature. Subsequently, the 
cells were stained with primary antibodies (antibody 
HA, 1:1000; polyclonal antibody C11orf96, 1:100) 
overnight at 4℃ and then with secondary antibod-
ies (Alexa Fluor 488-conjugated goat anti-rabbit IgG 
(H + L), 1:1000) in a blocking buffer of 5% BSA in PBS 
for approximately 1–2 h at room temperature in dark. 
The cells were washed in PBS after each incubation 
with antibodies and then stained with 4ʹ,6-diamidino-
2-phenylindole (DAPI, Thermo Fisher Scientific) for 
approximately 4–5  min and then washed four times 
with PBS. The images were acquired with a Zeiss 
LSM880 confocal microscope and analyzed by Zen 
Blue software (Zeiss, Germany).

Analysis of expression patterns of F. catus C11orf96
The transcription levels of the C11orf96 gene in each 
tissue were determined using the relative quantification 
of gene transcripts and the β-actin gene as an internal 
control. The cDNA samples were subjected to real-time 
PCR with SYBR Green Pro Taq HS Premix (Accurate 
Biology, Hunan, China) using an ABI 7500 Fast Real-
Time PCR system (Applied Biosystems, USA). The prim-
ers are listed in Table  1. The data were calculated with 
the 2−△△CT method and the transcription levels of the 
C11orf96 gene was analyzed by GraphPad Prism 8.0. 
Subsequently, immunohistochemistry and IFA were 
used to analyze the expression of the C11orf96 gene in 
each tissue. The tissue samples fixed in 4% paraformalde-
hyde were embedded in paraffin, and 4-μm-thick paraf-
fin sections were prepared. Rabbit C11orf96 polyclonal 

Table 1  The list of primer information in this study

Primers Sequence (5′-3′) Application

cat-C11orf96-F ACC​CCG​CAG​CAG​ATT​TGG​ATC​ Cat C11orf96 clone

cat-C11orf96-R AGA​GTG​TGT​TGG​CGT​GAG​TGT​

mouse-C11orf96-F AGA​GGC​GGG​CTA​TAT​AAG​CGG​CTA​ Mouse C11orf96 clone

mouse-C11orf96-R GTG​TTC​AGC​GAA​AGT​GTC​GGC​

Homo sapiens-C11orf96-F CCA​CCC​CGC​AGC​AGA​TTT​GGA​ Homo sapiens C11orf96 clone

Homo sapiens-C11orf96-R TCC​CCG​CAC​ACA​CTC​ACA​GCA​

cC11orf96-myc/HA-F ATG​GAG​GCC​CGA​ATT​CGG​ATG​GCG​GCC​GCC​AAG​CCC​GGC​GAG​
CTG​

Cat C11orf96 clone in pCMV-Myc/HA vector

cC11orf96-myc/HA-R GTA​CCT​CGA​GAG​ATC​TTT​ACA​GGG​CCG​AGT​CGG​AGT​CGCT​

mC11orf96-myc/HA-F ATG​GAG​GCC​CGA​ATT​CGG​ATG​GCG​GCC​GCC​AAG​CCC​GGC​GAG​
CTC​

Mouse C11orf96 clone in pCMV-Myc/HA vector

mC11orf96-myc/HA-R GTA​CCT​CGA​GAG​ATC​TTT​ACA​GGG​CCG​AGT​CGG​AGT​CGCT​

hC11orf96-p3*Flag10/14-F ATT​CAT​CGA​TAG​ATC​TGA​TGG​CCG​CCA​AGC​CCG​GCG​AGCTG​ Homo sapiens C11orf96 clone in pCMV-Flag-10/14 vector

hC11orf96-p3*Flag10/14-R AGA​GTC​GAC​TGG​TAC​CGA​TTA​CAG​GGC​CGA​GTC​GGA​GTC​GCT​

cC11orf96-qF GTG​ACC​TTC​GAC​GAG​ATC​CAG​GAG​ Measurement of cat C11orf96

cC11orf96-qR GAG​TCG​GAG​TCG​CTG​GAG​TCC​

cβ-actin-qF CTG​GTA​TTG​TCA​TGG​ACT​CTG​ Measurement of cat β-actin

cβ-actin-qF CTC​CAG​GGA​GGA​CGA​GGA​C
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antibodies (dilution ratio 1:100, prepared by our labora-
tory) were used to perform immunohistochemistry and 
IFA experiments in accordance with routine protocols. 
HRP-labeled goat anti-rabbit IgG secondary antibod-
ies and goat anti-rabbit FITC secondary antibodies were 
used in these assays. The images were acquired with a 
Zeiss LSM880 confocal microscope and analyzed by Zen 
Blue software (Zeiss, Germany).

WB assay
Protein samples were separated on 12% gels and then 
transferred to nitrocellulose membranes (Hybond-
C; Amersham Life Sciences, UK) by using a semi-dry 
transfer apparatus (Bio-Rad Laboratories, USA). The 
membranes were blocked with 5% (w/v) nonfat milk 
in TBST buffer (150 mM NaCl, 20 mM Tris, and 0.1% 
Tween-20; pH 7.6) for 3 h at 4 °C and then stained over-
night at 4 °C with rabbit polyclonal C11orf96 antibodies 
(1:350) or GAPDH antibodies. After washing the mem-
brane three times with TBST (10 min/time), goat anti-
rabbit IgG secondary antibodies (1:10,000) were added 
for 1 h at room temperature. The membrane was then 
cleaned three times with TBST (10 min/time) at room 
temperature. The bands were detected by the enhanced 
chemiluminescence kit (Thermo Fisher Scientific, USA) 
by using the ECL luminescence solution for chemilumi-
nescence, exposure, and development.

Statistical analyses
Data were analyzed by the statistical analysis software 
GraphPad Prism 8.0. Student’s t-test and analysis of 
variance were used for statistical analyses. *p < 0.05, 
**p < 0.01, ***p < 0.001 and ****p < 0.0001 were consid-
ered to be statistically significant.
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