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Abstract

Background: Although keeping small poultry flocks is increasingly popular in Ontario, information on the
antimicrobial susceptibility of enteric bacteria of such flocks is lacking. The current study was conducted on small
poultry flocks in Ontario between October 2015 and September 2017, and samples were submitted on a voluntary
basis to Ontario’s Animal Health Laboratory. From each submission, a pooled cecal sample was obtained from all
the birds of the same species from the same flock and tested for the presence of two common enteric pathogens,
E. coli and Salmonella. Three different isolates from each E. coli-positive sample and one isolate from each Salmonella-
positive sample were selected and tested for susceptibility to 14 antimicrobials using a broth microdilution technique.

Results: A total of 433 fecal E. coli isolates (358 chicken, 27 turkey, 24 duck, and 24 game bird) and 5 Salmonella
isolates (3 chicken, 1 turkey, and 1 duck) were recovered. One hundred and sixty-seven chicken, 5 turkey, 14 duck, and
15 game bird E. coli isolates were pan-susceptible. For E. coli, a moderate to high proportion of isolates were resistant
to tetracycline (43% chicken, 81% turkey, 42% duck, and 38% game bird isolates), streptomycin (29% chicken, 37%
turkey, and 33% game bird isolates), sulfonamides (17% chicken, 37% turkey, and 21% duck isolates), and ampicillin
(16% chicken and 41% turkey isolates). Multidrug resistance was found in 37% of turkey, 20% of chicken, 13% of duck,
and 8% of game bird E. coli isolates. Salmonella isolates were most frequently resistant to streptomycin, tetracycline,
and sulfonamides. Resistance to cephalosporins, carbapenems, macrolides, and quinolones was infrequent in
both E. coli and Salmonella isolates. Cluster and correlation analyses identified streptomycin-tetracycline-
sulfisoxazole-trimethoprim-sulfamethoxazole as the most common resistance pattern in chicken E. coli isolates.
Turkey E. coli isolates compared to all the other poultry species had higher odds of resistance to tetracycline
and ampicillin, and a higher multidrug resistance rate.

Conclusions: Escherichia coli isolates were frequently resistant to antimicrobials commonly used to treat poultry
bacterial infections, which highlights the necessity of judicious antimicrobial use to limit the emergence of
multidrug resistant bacteria.
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Background
Non-commercial poultry flocks (denoted as “small
flocks”) are increasingly popular in urban, suburban, and
rural areas in North America [1-3]. Small flocks can
pose a health risk to their owners by exposing them to
zoonotic pathogens [4-7] through consumption of
contaminated meat or eggs [8, 9], or direct contact
with infected birds [10] or their environment [11].
Antimicrobial resistance (AMR) in zoonotic pathogens
adds to this risk [12—15] because infections with anti-
microbial resistant bacteria are more difficult to treat,
and result in higher morbidity and mortality [16, 17].
Inappropriate antimicrobial use has been shown to be
one of the main causes for the development of AMR
in commensal and pathogenic bacteria of poultry [17, 18].
Exposure to an individual antimicrobial may cause the bac-
teria to develop resistance to multiple antimicrobials if re-
sistance genes are located on mobile genetic elements [19].
Furthermore, these acquired resistance determinants can
persist even after the antibiotic selection pressure ends [12].
Health Canada categorizes antimicrobials based on
their importance in human medicine: I - very high im-
portance; II - high importance; III - medium importance;
and IV - low importance [20]. The classification system
considers the antimicrobial’s indication (e.g., preferred
choice for treatment of serious human infections) and
availability of replacements (e.g., limited substitutes
available) [20]. Under an amended Canadian regulation
that came into effect on December 1, 2018, all medically
important antimicrobials (Categories I, II, and III) used
in food animals require a veterinary prescription in order
to help limit the development and spread of AMR [21].
In Canada, AMR of Escherichia coli and Salmonella
isolates obtained from commercial broiler chicken and
turkey flocks is monitored by the Canadian Integrated
Program for Antimicrobial Resistance Surveillance [22].
Emergence of resistance to antimicrobials commonly
used to treat bacterial infections in commercial poultry
flocks in Ontario is well documented [22-24]. In con-
trast, only one study [25], which was conducted in pro-
vincially inspected slaughter plants, has documented
resistance to antimicrobials in small flocks in Ontario.
Thus, the objectives of this study were to evaluate AMR
patterns of fecal E. coli and Salmonella enterica isolates
of chickens, turkeys, waterfowl, and game birds from
Ontario small flocks submitted for laboratory diagnostic
testing because of morbidity or mortality, and to deter-
mine differences in AMR patterns among different
poultry species.

Results

Description of submissions

Over the 2-year period, the Animal Health Laboratory
received 160 small flock submissions, with a median of 1
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bird per submission (range = 1-5), from flocks ranging
in size from 1 to 299 birds (median 25) and birds ran-
ging in age from 6days to 7years (median 7 months).
The majority of submissions were chickens (84%, 134
submissions), although a few turkey (10), duck (8), and
game bird (8) submissions were also received [26].

Antimicrobial resistance of Salmonella isolates

Of 159 submissions tested for Salmonella spp. (a sample
from one chicken submission was not available), a total
of 5 isolates were recovered (5 pooled samples, 1 isolate
recovered from each pooled sample). Serotypes included
S. Anatum, S. Indiana, and S. Ouakam (3 chicken pooled
samples), S. Uganda (1 turkey pooled sample), and S.
Montevideo (1 duck pooled sample) [26]. Three
Salmonella isolates were pan-susceptible (1 S. Indiana, 1
S. Montevideo, and 1S. Uganda). The S. Anatum isolate
was resistant to streptomycin, and the S. Ouakam isolate
was multidrug resistant (streptomycin-sulfisoxazole-tri-
methoprim-sulfamethoxazole-tetracycline).

Antimicrobial resistance of E. coli isolates

Of 159 submissions tested for fecal E. coli, a total of 433
isolates were recovered: 358 from chicken submissions
(120 pooled samples; 3 isolates recovered from 119
pooled samples and 1 isolate recovered from 1 pooled
sample); 27 from turkey submissions (9 pooled samples,
3 isolates recovered from each pooled sample); 24 from
duck submissions (8 pooled samples, 3 isolates recovered
from each pooled sample); and 24 from game bird sub-
missions (8 pooled samples, 3 isolates recovered from
each pooled sample). Of these, 46.65% of the chicken
(167/358), 18.52% of the turkey (5/27), 58.33% of the
duck (14/24), and 62.50% of the game bird (15/24) iso-
lates were pan-susceptible.

In the chicken E. coli isolates, there was a high fre-
quency of resistance (>40% of isolates) to tetracycline, a
moderate frequency of resistance (15-39% of isolates) to
streptomycin, sulfisoxazole, and ampicillin, and a low
frequency of resistance (5—14% of isolates) to trimethoprim-
sulfamethoxazole and gentamicin (Table 1). All of the other
antimicrobials tested had a very low frequency of resistance
(<5%). In the turkey E. coli isolates, there was a high
frequency of resistance to tetracycline and ampicillin, and a
moderate frequency of resistance to streptomycin and sulfi-
soxazole. In the duck E. coli isolates, there was a high
frequency of resistance to tetracycline, and a moderate fre-
quency of resistance to sulfisoxazole and trimethoprim-
sulfamethoxazole. In the game bird E. coli isolates, there was
a moderate frequency of resistance to tetracycline and
streptomycin.

In the chicken E. coli isolates, the most common AMR
patterns were ampicillin-streptomycin-tetracycline (22 iso-
lates, 6.15%) and streptomycin-tetracycline (19 isolates,
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Table 1 Percentage of fecal Escherichia coli isolates from Ontario small poultry flocks that were resistant to 14 selected

antimicrobials, as determined by a broth microdilution technique, by poultry species

Antimicrobial Antimicrobial® Chicken (N =358) Turkey (N=27) Duck (N =24) Game birds (N=24)
class n (%)° [CN° n (%) [C1] n (%) [Cl] n (%) [C1]
Aminoglycosides GEN 23 (6:42) [4.12-948] 1 (3.70) [0.09-18.97] 0 0

10 (37.04) [19.40-57.63]

11 (40.74) [22.39-61.20]
2 (741) [091-24.29]

2 (741) [0.91-24.29]

1 (3.70) [0.09-18.97]

10 (37.04) [19.40-57.63]
3 (11.11) [2.35-29.16]

3 (11.11) [2.35-29.16]
3 (11.11) [2.35-29.16]
3 (11.11) [2.35-29.16]

2 (8.33) [1.03-27.00]
1(4.17)[0.11-21.12]

0
0
0
0
5(20.83) [7.13-42.15]
4 (16.67) [4.74-37.38]
2 (8.33) [1.03-27.00]
7) [0.11-21.12]
7) [0.11-21.12]

[ 12]

(
(
(
1
1
1(4.17) [0.11-21.

4.1
4.1
4.1

8 (33.33) [15.63-55.32]
1(4.17)[0.11-21.12]

(8.33) [1.03-27.00]

o O O O N O O O O

0

STR 105 (29.33) [24.66-34.34]
B-Lactams AMP 57 (15.92) [12.29-20.13]

AMC 8 (2.23) [0.97-4.36]

CRO 4(1.12) [0.31-2.84]

FOX 5 (1.40) [0.46-3.23]

MER 0 0
Folate inhibitors SSS 61 (17.04) [13.29-21.34]

STX 30 (8.38) [5.73-11.75]
Macrolides AZM 5(1.40) [0.46-3.23] 0
Phenicols CHL 17 (4.75) [2.79-7.49]
Quinolones CIP 1 (0.28) [0.007-1.55]

NAL 8 (2.23) [0.97-4.36]
Tetracyclines TET 155 (43.30) [38.10-48.61]

22 (81.48) [61.92-93.70]

10 (41.67) [22.11-63.36] 9 (37.50) [18.80-5941]

AGEN gentamicin, STR streptomycin, AMP ampicillin, AMC amoxicillin-clavulanic acid, CRO ceftriaxone, FOX cefoxitin, MER meropenem, SSS sulfisoxazole, STX
trimethoprim-sulfamethoxazole, AZM azithromycin, CHL chloramphenicol, CIP ciprofloxacin, NAL nalidixic acid, TET tetracycline

BNumber and percentage of isolates resistant to the antimicrobial

€CI = Exact binomial 95% confidence interval for the percentage of isolates resistant to the antimicrobial

5.31%) (Table 2). The latter was also common in the game
bird E. coli isolates.

Multidrug resistance was detected in 19.55% (95% CI =
15.57-24.05) of the chicken, 37.04% (95% CI =19.40—
57.63) of the turkey, 12.50% (95% CI =2.66—32.36) of
the duck, and 8.33% (95% CI =1.03-27.00) of the game
bird E. coli isolates.

A high (240%) proportion of E. coli-positive samples
were resistant to tetracycline (62.50% of the chicken,
100% of the turkey, 50% of the duck, and 57.14% of the
game bird samples), streptomycin (42.50% of the
chicken, 55.56% of the turkey, and 42.86% of the game
bird samples), ampicillin (55.56% of the turkey samples),
and sulfisoxazole (55.56% of the turkey samples) (Fig. 1).

Single-linkage clustering dendrograms with Jaccard
distances for E. coli resistance are presented in Fig. 2. A
relatively high proportion (i.e., a cluster) of the chicken
E. coli isolates were resistant to streptomycin, tetracycline,
sulfisoxazole, and trimethoprim-sulfamethoxazole; a sec-
ond cluster of chicken E. coli isolates was resistant to
cefoxitin and ceftriaxone. Other notable clusters included
resistance to streptomycin, sulfisoxazole, ampicillin, and
tetracycline (turkey E. coli isolates), amoxicillin-clavulanic
acid, cefoxitin, and ceftriaxone (turkey E. coli isolates), sul-
fisoxazole and trimethoprim-sulfamethoxazole (duck E
coli isolates), and streptomycin and tetracycline (game
bird E. coli isolates). The turkey, duck, and game bird E.
coli isolates were pan-susceptible to several antimicrobials.

The strongest, statistically significant pairwise correla-
tions with respect to resistance of E. coli at the isolate-
level (chicken isolates only) were between cefoxitin and
ceftriaxone (p =0.67), sulfisoxazole and trimethoprim-
sulfamethoxazole (p = 0.67), streptomycin and sulfisoxa-
zole (p=0.51), streptomycin and tetracycline (p = 0.49),
gentamicin and sulfisoxazole (p=0.49), and ampicillin
and streptomycin (p = 0.46) (Table 3). All pairwise rela-
tionships were positive.

Differences in AMR of fecal E. coli isolates between
poultry species

The odds of resistance to tetracycline (odds ratio = 5.89,
95% CI=1.71-20.29, P=0.005) and ampicillin (odds ra-
tio =4.06, 95% CI=1.24-13.25, P=0.020) were signifi-
cantly higher in turkey E. coli isolates compared to isolates
from all the other poultry species. The rate of MDR was
significantly higher (incidence rate ratio =1.99, 95% CI =
1.16-3.40, P = 0.012) in turkey E. coli isolates compared to
isolates from all the other poultry species.

Discussion

Our study evaluated AMR in fecal E. coli and Salmonella
enterica isolates from birds from small flocks experien-
cing morbidity, mortality, or production issues, and
found a relatively high frequency of resistance to antimi-
crobials commonly used to treat bacterial infections in
poultry. Differences in flock characteristics, including
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Table 2 Most common antimicrobial resistance patterns of fecal Escherichia coli isolates from Ontario small poultry flocks, by poultry

species

Poultry species Antimicrobial resistance patternA Number of antimicrobial classes in pattern (multidrug resistant)® n (©)°

Chicken (N =358) STR-TET 2 (no) 19 (5.31)
AMP-STR-TET 3 (yes) 22 (6.15)
SSS-STR-TET 3 (yes) 6 (1.68)
GEN-SSS-STR 2 (no) 6 (1.68)
GEN-SSS-STR-TET 3 (yes) 5 (1.40)
AMP-SSS-STR-STX-TET 4 (yes) 5(1.40)

Turkey (N=27) AMP-TET 2 (no) 3(11.11)
STR-TET 2 (no) 2(741)
SSS-STR-TET 3 (yes) 2 (741)
AMP-SSS-STR-STX-TET 4 (yes) 2(741)
AMP-CHL-CIP-NAL-SSS-STR-TET 6 (yes) 2(741)

Duck (N = 24) SSS-STX-TET 2 (no) 2(833)

Game bird (N=24) STR-TET 2 (no) 6 (25.00)
SSS-STR-TET 3 (yes) 2(833)

AResistance to 14 selected antimicrobials (including amoxicillin-clavulanic acid, ceftriaxone, cefoxitin, meropenem, azithromycin), as determined by a broth
microdilution technique. GEN gentamicin, STR streptomycin, AMP ampicillin, SSS sulfisoxazole, STX trimethoprim-sulfamethoxazole, CHL chloramphenicol, CIP

ciprofloxacin, NAL nalidixic acid, TET tetracycline

BAn isolate was defined as multidrug resistant if it was non-susceptible to at least one antimicrobial in >3 antimicrobial classes (Aminoglycosides: GEN, STR; -
Lactams: AMP; Folate biosysnthesis pathway inhibitors: SSS, STX; Phenicols: CHL; Quinolones: CIP, NAL; Tetracyclines: TET)
“Number and percentage of isolates with each antimicrobial resistance pattern. For chicken, only patterns with >5 isolates are shown, and for other poultry

species, only patterns with >2 isolates are shown

poultry species, health status (diseased or healthy), or
husbandry (commercial or non-commercial), or dissimi-
larities in study design, analytical methods (isolate-level
or flock-level analysis), sampling protocols (on-farm, at
slaughter plants, or at diagnostic laboratories), or anti-
microbial susceptibility testing (disk diffusion or broth
microdilution) can make comparisons to other studies
difficult. Our comparisons are limited to results from
studies that evaluated AMR in fecal E. coli and Salmon-
ella spp. in small flocks using samples collected on-farm,
at diagnostic laboratories, or at slaughter.

Outbreaks of human salmonellosis linked to contact with
small flocks have been reported in the United States [4, 28],
Bangladesh [29], and Chile [30]. The Salmonella serotypes
identified in our study (Anatum, Indiana, Ouakam, Uganda,
and Montevideo) are not among the most prevalent com-
mercial poultry-associated serotypes (Kentucky, Enteritidis,
Heidelberg, and Typhimurium) in Canada [31] or the
United States [32], and they are less frequently associated
with human salmonellosis cases in Canada [33]. Nonethe-
less, the presence of AMR in Salmonella in small flocks is
concerning because of the risk that resistant salmonellae
pose in human cases with bacteremia or a compromised
immune system. Although the frequency of Salmonella
enterica was very low in our study [26], and many of the
Salmonella isolates were pan-susceptible, some were resist-
ant to streptomycin alone, or to streptomycin, sulfisoxazole,
trimethoprim-sulfamethoxazole, and tetracycline. Our

findings agree with a recent study that evaluated AMR in
Salmonella isolated from small flock cases at the California
Animal Health and Food Safety Laboratory System, and
found resistance to streptomycin, sulfonamides, and tetra-
cycline [34].

In the fecal E. coli isolates in our study, there was a
very low frequency of resistance to cephalosporins,
carbapenems, macrolides, and quinolones, which are an-
timicrobials classified in Canada as being of very high or
high importance in human medicine [20]. This is an
encouraging finding from a human health viewpoint be-
cause flock owners can be exposed to antimicrobial re-
sistant zoonotic pathogens [6, 13, 15] through direct
contact with their birds [10] or their environment [11],
or consumption of contaminated meat or eggs [8, 9].
However, there was a moderate to high frequency of re-
sistance to tetracycline, streptomycin, sulfonamides,
and ampicillin; antimicrobials frequently used to treat bac-
terial infections in poultry [35]. These findings were in ac-
cordance with other small flock studies in Canada
(tetracycline resistance 37%, streptomycin 21%, sulfisoxa-
zole 16%, ampicillin 15%) [25] and Ecuador (tetracycline
69%, streptomycin 42%, sulfisoxazole 65%, ampicillin 45%)
[36], and one study of commercial broiler chicken flocks in
Canada (tetracycline 53%, streptomycin 33%, sulfisoxazole
18%, ampicillin 38%) [23].

Our cluster and correlation analyses of the chicken E. coli
isolates showed that there was concurrent resistance to
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that were resistant to antimicrobials, by poultry species®P. ~Sample-level resistance to 14 selected antimicrobials (including meropenem), as
determined by a broth microdilution technique. GEN = gentamicin; STR = streptomycin; AMP = ampicillin; AMC = amoxicillin-clavulanic acid; CRO =
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streptomycin, tetracycline, sulfisoxazole, and trimethoprim-  cluster analyses also showed that there was concurrent re-
sulfamethoxazole; clusters of turkey, duck, and game bird  sistance to cefoxitin and ceftriaxone in the chicken E. coli
isolates included many of the same antimicrobials. Our isolates and to amoxicillin-clavulanic acid, cefoxitin, and
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ceftriaxone in the turkey E. coli isolates. The moderate fre-
quency of MDR in the turkey and chicken E. coli isolates
(and to a lesser extent in the duck and game bird E. coli iso-
lates), and the strong correlations in resistance of the
chicken E. coli isolates to antimicrobials commonly used to
treat bacterial infections of poultry, highlight the import-
ance of judicious antimicrobial use to limit the develop-
ment and dissemination of multidrug resistant bacteria in
small flocks [12, 13].

Our regression models showed that there were higher
probabilities of resistance to tetracycline and ampicillin
in the E. coli isolates of turkeys when compared to
isolates obtained from all the other poultry species.
Moreover, the rate of MDR was significantly higher in
the turkey isolates compared to all the other species.

Differences in AMR between poultry species might be
explained by variation in antimicrobial use or husbandry
practices. However, these findings should be interpreted
cautiously because chicken isolates were over-represented
in our study. Therefore, further studies are needed to
assess factors that might have a role in the development of
AMR in commensal and pathogenic enteric bacteria of
small flocks.

Limitations of this study include a sampling bias, as
most submissions came from southwestern and eastern
Ontario, which might have been the consequence of the
geographic proximity to the diagnostic laboratories in
Guelph and Kemptville, respectively [26]. Also, small
flocks were not randomly selected, and our study in-
cluded only owners who had a flock veterinarian, as
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Table 3 Pairwise correlations between antimicrobials (with respect to resistance) of fecal Escherichia coli isolates of chickens from

Ontario small poultry flocks (n = 358)"8
AMC AMP AZM FOX CRO CHL cp GEN NAL SSS STR STX TET
AMC 1.000
AMP 0.347 1.000
AZM - - 1.000
FOX 0.304 - 0.189 1.000
CRO 0.344 0.244 0214 0.667 1.000
CHL 0.322 0.262 0.197 0.197 1.000
cp - - - - - 0237 1.000
GEN 0.192 - - - 0.189 - - 1.000
NAL - - - - - - 0.350 1.000
SSS 0.283 0310 - - - 0.283 - 0487 0.183 1.000
STR 0.193 0.458 - - - - - 0332 0235 0.508 1.000
STX 0.295 0.364 0.223 - - 0.264 - - 0.295 0.667 0.315 1.000
TET - 0.329 - - - - - - - 0.294 0490 0.204 1.000

AGEN gentamicin, STR streptomycin, AMP ampicillin, AMC amoxicillin-clavulanic acid, CRO ceftriaxone, FOX cefoxitin, MER meropenem, SSS sulfisoxazole, STX
trimethoprim-sulfamethoxazole, AZM azithromycin, CHL chloramphenicol, CIP ciprofloxacin, NAL nalidixic acid, TET tetracycline

BSpearman rank correlation, with a Bonferroni correction (a/14) to adjust for multiple comparisons, was used to measure the strength and direction of the
relationships between individual antimicrobials with respect to resistance of E. coli at the isolate-level (chicken isolates only). Only statistically significant (P <

0.0036) correlations are shown

this is a laboratory submission requirement. We also
used fecal samples from diagnostic submissions and
not from healthy birds. Our study might therefore
overestimate the frequency of AMR because samples
came from birds that might have already been treated
with antimicrobials.

Conclusions

Our study enhances the knowledge on AMR of small
flocks by evaluating the AMR patterns of E. coli and
Salmonella isolates from chickens, turkeys, ducks, and
game birds. These results can be used as a benchmark
for ongoing monitoring of AMR in enteric bacteria of
small flocks in Ontario, in light of the recently amended
antimicrobial use regulation in Canada. Ultimately, the
findings derived from this study can be used to educate
veterinarians and small flock owners about issues sur-
rounding AMR, with a goal of reducing the presence of
multidrug resistant bacteria in small flocks and mitigat-
ing the risk they might pose to public health.

Methods

Study design

Samples were obtained through a prospective surveil-
lance study of small flocks conducted in Ontario be-
tween October 2015 and September 2017, which is
described in detail elsewhere [26]. In brief, a small flock
was defined as a non-commercial poultry flock com-
posed of not more than 299 broiler chickens, 99 layer
chickens, 49 turkeys, 300 waterfowl, or 300 game birds.
Small flock owners who had issues with production,

clinical illness, or mortality in their flock were provided
the opportunity to submit birds for diagnostic testing for
a discounted fee. Submissions (7 =160) were made to
the Animal Health Laboratory, University of Guelph
through the owner’s veterinarian. A maximum of 5 sick
and/or dead birds of one species from the same flock
constituted a submission. Live birds submitted to the lab
were euthanized using carbon dioxide.

Sample collection and bacterial isolation

All bacterial isolation and antimicrobial susceptibility
testing were conducted at the Animal Health Laboratory,
Guelph, Ontario. From each submission, one pooled
cecal sample was collected (from all of the birds of the
same species from the same flock in the submission) and
tested for fecal E. coli and Salmonella spp. Cecal material
was directly plated on MacConkey and Hektoen enteric
agars (Oxoid Ltd., Nepean, ON) for E. coli isolation, and
inoculated into buffered peptone water (Bio-Media Un-
limited Ltd.,, Toronto, ON) for Salmonella spp. pre-
enrichment. Aliquots of buffered peptone water were then
transferred to Hajna tetrathionate (Animal Health Labora-
tory, Guelph, ON) and Rappaport Vasiliadis broths (Bio-
Media Unlimited Ltd.) for Salmonella spp. enrichment,
followed by plating on brilliant green (Bio-Media Unlim-
ited Ltd.) and XLT-4 agars (Oxoid Ltd.). Presumptive E.
coli and Salmonella spp. colonies were identified using
matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (Bruker Ltd., Billerica, MA) [37]. Sal-
monella-positive isolates were submitted to the OIE
(World Organisation for Animal Health) Salmonella
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reference laboratory at the National Microbiology
Laboratory in Guelph for serotyping according to
published methods [38].

Antimicrobial susceptibility testing and classification
Three different isolates from each E. coli-positive sample
and one isolate from each Salmonella-positive sample
were purposively selected. Susceptibility testing of E. coli
and Salmonella isolates to 14 antimicrobials was con-
ducted using automated broth microdilution (Sensititre®;
Trek Diagnostic Systems Inc., Westlake, OH) with the
National Antimicrobial Monitoring System CMV4AGNF
panel [22]. Based on the interpretive standards of the
Canadian Integrated Program for Antimicrobial Resist-
ance Surveillance [22], E. coli and Salmonella isolates
with a minimum inhibitory concentration lower than or
equal to the Susceptible breakpoint were classified as
susceptible, whereas those with a minimum inhibitory
concentration higher than the Susceptible breakpoint
were considered to be resistant. The Susceptible break-
points are: amoxicillin-clavulanic acid (< 8/4 pg/mL);
ampicillin (< 8 pg/mL); azithromycin (< 16 pg/mL); cefoxi-
tin (< 8 pg/mL); ceftriaxone (< 1 pg/mL); chloramphenicol
(< 8 pg/mL); ciprofloxacin (< 0.06 pg/mL); gentamicin (<
4 pg/mL); meropenem (< 1pg/mL); nalidixic acid (<
16 pg/mL); streptomycin (< 16 pg/mL); sulfisoxazole (<
256 pg/mL); tetracycline (< 4 pg/mL); and trimethoprim-
sulfamethoxazole (< 2/38 pg/mL) [22].

An isolate was defined as multidrug resistant if it was
non-susceptible to at least one antimicrobial in >3 differ-
ent antimicrobial classes [39]. In our study, classes
included: Aminoglycosides (gentamicin, streptomycin); -
Lactams (amoxicillin-clavulanic acid, ampicillin, cefoxitin,
ceftriaxone, meropenem); Folate biosynthesis pathway in-
hibitors (sulfisoxazole, trimethoprim-sulfamethoxazole);
Macrolides (azithromycin); Phenicols (chloramphenicol);
Quinolones (ciprofloxacin, nalidixic acid); and Tetracy-
clines (tetracycline).

Data analysis

Antimicrobial susceptibility data were entered into a
spreadsheet (Microsoft Excel 2016, Microsoft Corpor-
ation, Redmond, WA), reviewed for missing values, and
subsequently transferred into a statistical software pro-
gram (STATA Intercooled, version 14.2, Stata Corpor-
ation, College Station, TX) for analysis.

For each poultry species (chicken, turkey, duck, and
game bird), estimates of the proportion of E. coli and
Salmonella isolates that were resistant to each of the 14
tested antimicrobials were computed by dividing the
number of isolates resistant to an antimicrobial by the
total number of isolates tested for the antimicrobial. In
addition, estimates of the proportion of isolates that
showed multidrug resistance (MDR) were computed by
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dividing the number of multidrug resistant isolates by
the total number of isolates tested.

Further, for each poultry species, estimates of the per-
centage of E. coli-positive samples that were resistant to
each of the 14 tested antimicrobials were computed by
dividing the number of samples resistant to an anti-
microbial by the total number of E. coli-positive samples.
A sample was considered to be resistant to a specific
antimicrobial if at least one isolate from a pooled cecal
sample was resistant. For all estimates, exact binomial
95% confidence intervals (CIs) were calculated.

To compare individual antimicrobials with respect to
their similarity in the resistance status of E. coli, a cluster
analysis, using the Jaccard binary similarity coefficient,
was performed for each poultry species. The number of
isolates that are resistant to both antimicrobials and the
number that are resistant to one yet susceptible to the
other are used in the calculation of the coefficient. Den-
drograms were constructed using the single-linkage clus-
tering method with the Jaccard distance. The Jaccard
distance measures dissimilarity between antimicrobials
and is obtained by subtracting the Jaccard binary simi-
larity coefficient from one [27]. Thus, a high dissimilarity
measure indicates that relatively few isolates were resist-
ant to both antimicrobials, whereas a low dissimilarity
measure indicates that a relatively high proportion of
isolates were resistant to both antimicrobials. A dissimi-
larity measure of zero indicates that all isolates were sus-
ceptible to both antimicrobials.

Further, to measure the strength and direction of the
relationships between individual antimicrobials with re-
spect to resistance of E. coli at the isolate-level, Spear-
man’s rank correlation coefficients were calculated; only
chicken isolates were evaluated. A Bonferroni correction
was used to adjust for multiple comparisons among anti-
microbials, with P<0.0036 (a of 0.05/14) indicating a
significant correlation.

To identify differences in E. coli resistance between
poultry species, logistic regression was used; only antimi-
crobials for which >5% of the isolates were resistant
were evaluated. Therefore, 6 of 14 antimicrobials were
analyzed: ampicillin, gentamicin, streptomycin, sulfisoxa-
zole, trimethoprim-sulfamethoxazole, and tetracycline.
Four population-averaged models were built for each
antimicrobial using the generalized estimating equation
method, with a robust variance estimate and exchange-
able correlation structure to account for sample-level
clustering. In these univariable models, the binary (yes/
no) dependent variable represented the frequency of re-
sistance to the antimicrobial, while the independent vari-
able was poultry species (binary variable: chickens
compared to all the other poultry species; turkeys com-
pared to all the other poultry species; ducks compared
to all the other poultry species; and game birds
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compared to all the other poultry species). This method
of grouping species together was preferred over analyz-
ing species as a categorical variable because of the lim-
ited number of isolates from turkeys, ducks, and game
birds. A P-value <0.05 on the Wald x* test indicated a
statistically significant association.

In addition, four Poisson regression models were built
to identify differences in E. coli MDR between poultry
species using the generalized estimating equation
method described above. The dependent variable was
the number of antimicrobial classes to which an isolate
was resistant; as seven antimicrobial classes were stud-
ied, this count potentially ranged from zero to seven.
The independent variable was the poultry species (binary
variable; described above).
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