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Prion protein polymorphisms associated
with reduced CWD susceptibility limit
peripheral PrPCWD deposition in orally
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Abstract

Background: Chronic wasting disease (CWD) is a prion disease affecting members of the Cervidae family. PrPC

primary structures play a key role in CWD susceptibility resulting in extended incubation periods and regulating the
propagation of CWD strains. We analyzed the distribution of abnormal prion protein (PrPCWD) aggregates in brain
and peripheral organs from orally inoculated white-tailed deer expressing four different PRNP genotypes: Q95G96/
Q95G96 (wt/wt), S96/wt, H95/wt and H95/S96 to determine if there are substantial differences in the deposition
pattern of PrPCWD between different PRNP genotypes.

Results: Although we detected differences in certain brain areas, globally, the different genotypes showed similar
PrPCWD deposition patterns in the brain. However, we found that clinically affected deer expressing H95 PrPC,
despite having the longest survival periods, presented less PrPCWD immunoreactivity in particular peripheral organs.
In addition, no PrPCWD was detected in skeletal muscle of any of the deer.

Conclusions: Our data suggest that expression of H95-PrPC limits peripheral accumulation of PrPCWD as detected
by immunohistochemistry. Conversely, infected S96/wt and wt/wt deer presented with similar PrPCWD peripheral
distribution at terminal stage of disease, suggesting that the S96-PrPC allele, although delaying CWD progression,
does not completely limit the peripheral accumulation of the infectious agent.
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Background
Chronic wasting disease (CWD) is a transmissible spongi-
form encephalopathy (TSE) of cervids, the only known
TSE found in both farmed and free-ranging animals [1, 2].
Like other TSEs, CWD is a fatal neurodegenerative dis-
ease caused by the conversion of the host-encoded cellular
prion protein (PrPC) to a misfolded isoform (PrPCWD)
through templated or seeded polymerization mechanisms
[3–5]. CWD affects cervid populations in North America,
South Korea and Northern Europe [6]. Horizontal trans-
mission by direct animal interactions and via persistence

of infectivity in the environment hinders control and
eradication of these diseases [7–10].
It has been widely documented that certain polymor-

phisms of the prion protein gene (PRNP), encoding
PrPC, play a key role in the susceptibility to prion dis-
eases [11–14]. A close relationship between PRNP vari-
ability and CWD infection status in wild cervids has also
been described [15–17]. The prevalence of CWD is
lower in white-tailed deer expressing at least one copy of
the H95 or S96 polymorphisms suggesting reduced sus-
ceptibility to infection [17]. The direct effect of these
polymorphisms on disease progression was evaluated
through experimental oral infection studies where CWD
source, dose and route of infection were controlled. This
experimental infection demonstrated that H95 and S96
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polymorphisms impact CWD progression since deer
homozygous for the wild-type (wt) alleles (Q95/G96)
presented shorter incubation periods and a more rapid
clinical disease phase than deer expressing at least one
copy of H95 or S96 alleles [18]. In addition to greatly in-
creasing the survival period of deer orally challenged
with wt-CWD prions [18], the H95 allele modulated the
emergence of a novel prion strain H95+, which possesses
singular biochemical and biological properties [19, 20].
Together with the infecting strain, the PRNP genotype is

a major factor influencing the neuropathological pheno-
type [21–24]. Although less studied, variability at PRNP
may also affect the pathways of neuroinvasion and the in-
volvement of other tissues [25, 26]. In sheep scrapie, the
expression of arginine at position 171 has profound reper-
cussions on PrPSc replication and distribution [13, 27–29].
R171 heterozygous sheep show lower accumulation of
PrPSc in the lymphoreticular system (LRS) and other tis-
sues as compared to Q171 homozygous sheep [25, 30].
Thus, PrPC polymorphisms might also have an effect on
tissue-specific PrPCWD accumulation. In CWD, it has been
observed that PrPCWD deposition in the brain and other
organs progress at a slower rate in deer expressing poly-
morphisms associated with a lower frequency of CWD
natural cases [17, 26, 31]. However, observations are often
made in free-ranging, naturally infected animals, which
limit the conclusions that can be obtained about the po-
tential effect of the genotype on PrPCWD deposition, due
to the variability in the infecting strains, routes of expos-
ure and incubation periods.
Using immunohistochemistry (IHC), we evaluated

PrPCWD deposition in orally inoculated white-tailed deer
expressing different PRNP genotypes: wt/wt, S96/wt, H95/
wt and H95/S96 [18] including a thorough characterization
of PrPCWD distribution in the nervous system, lymph sys-
tem and peripheral organs. We observed that deer express-
ing H95 PrPC accumulated less PrPCWD in peripheral
organs at terminal stage of the disease.

Results
PrPCWD deposition in lymphoid tissues and nervous
system
PrPCWD deposition was detected by immunohistochem-
istry in lymphoid tissues and the brain from all clinically
affected deer regardless of PRNP genotype. PrPCWD de-
posits appeared as bright-red granular material in Peyer’s
patches, tonsils, spleen and lymph nodes from
CWD-challenged deer. In general, PrPCWD immunola-
beling was more intense in the lymph nodes of the head
and visceral lymph nodes, whereas lymph nodes of the
limbs (prescapular, axillary, prefemoral, popliteal and in-
guinal) showed a lower number of positive follicles and
milder immunostaining in all deer. Consistently with
these observations, one S96/wt animal (D8) showed no

PrPCWD deposition in axillary, prescapular, prefemoral
and inguinal lymph nodes. Lymphoid follicles of third
eyelid and rectal mucosa were strongly PrPCWD positive
when the histological sample contained follicles that
allowed immunohistochemical analysis (Table 1).
Brain samples presented intense PrPCWD immunola-

beling in all deer genotypes. The PrPCWD profile was
characterized by plaques and coarse granular and coales-
cing extracellular deposits mainly located around neu-
rons, glial cells, vacuoles and along myelinated axons of
the white matter (Fig. 1). Although less frequent, intra-
neuronal PrPCWD deposition was also observed, espe-
cially in the dorsal motor nucleus of the vagus nerve, the
hypoglossal nucleus, the spinal trigeminal nucleus and
the inferior olivary nucleus of the obex of all clinical
deer.
Surprisingly, each PRNP genotype presented distin-

guishable PrPCWD pathological phenotypes in the cerebel-
lum. Wt/wt deer showed severe PrPCWD immunostaining
in granular layer with coarse granular and large plaques
invading the Purkinje cell layer and extending to the
molecular layer (Fig. 1a). PrPCWD plaques were also
present in the cerebellum of all S96/wt clinically affected
deer. However, for animals of this genotype, the presence
of plaques was restricted to granular layer and white mat-
ter, whereas the Purkinje cell and the molecular layer
showed milder granular and diffuse PrPCWD deposits
compared to wt/wt deer (Fig. 1b). Conversely, the cerebel-
lar pathological phenotype of the H95/wt deer was charac-
terized by discontinuous and diffuse PrPCWD labeling in
the granular layer, showing predominantly fine punctate
and coarse small granular deposits (Fig. 1c), although a
few plaque-like deposits were also observed. Finally, the
cerebellum of the H95/S96 deer showed fine punctate and
coarse granular PrPCWD deposits homogeneously distrib-
uted through the granular layer. The cerebellar molecular
layer of this deer presented a more intense immunolabel-
ing than deer of other genotypes, showing conspicuous
stellate PrPCWD aggregates (Fig. 1d).
In the frontal cortex, the H95/S96 deer PrPCWD mor-

phological profile differed from that observed in the
other deer genotypes. All wt/wt, S96/wt and the H95/wt
deer presented abundant coalescing deposits and large
PrPCWD plaques in both grey and white matter (Fig. 1e).
H95/S96 deer, however, had milder staining in the
frontal cortex, presenting coarse and diffuse granular,
cell-associated aggregates mostly confined to grey matter
(Fig. 1f ), whereas white matter deposits were sparse, and
predominantly of the perivascular type.
PrPCWD neuroanatomical distribution was similar for

all deer irrespective of their PRNP genotypes. Intense
staining was observed in obex, superior colliculus, hypo-
thalamus, septal nucleus of the basal ganglia and cere-
bellar granular layer in all deer (Fig. 2e). Some
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differences however, were observed between these deer.
Compared to deer of other genotypes, H95/S96 deer
showed reduced PrPCWD immunoreactivity in thalamus,
frontal cortex and olfactory bulb (Fig. 2). The milder
immunolabeling observed in H95/S96 deer may explain
the different PrPCWD morphological features found in
frontal cortex (Fig. 1f ).
Optic nerves presented PrPCWD-specific staining in all

clinically affected deer. In the rest of the peripheral
nerves, PrP deposition was irregular. The vagus nerve
was the most consistent, with chromagen granules
observed in 5 of the 6 evaluated samples. Only a few ag-
gregates were detected in 2 of the 8 sciatic nerves evalu-
ated and the brachial plexus was negative for PrPCWD

accumulation in all deer (Table 2).

PrPCWD deposition in endocrine tissues
Pituitary gland was collected from six clinically affected
deer, two wt/wt, three S96/wt and the H95/S96 deer. This
gland presented abundant PrPCWD deposition in all deer,
especially affecting pars nervosa and pars intermedia, al-
though PrPCWD staining was also present in pars distalis.
In pars distalis, PrPCWD staining was mild and scattered,
and found in the connective tissue framework. In addition,
PrPCWD immunolabeling was observed in the pancreata of
clinically affected wt/wt and S96/wt deer, restricted in the
islets of Langerhans (Table 2 and Fig. 3a, b) which are

scattered clusters of endocrine cells. In these animals, posi-
tive islets of Langerhans were abundant and often adjacent,
as previously described for CWD [32]. Interestingly, no
PrPCWD deposits were observed in pancreatic tissues of ei-
ther the H95/wt or H95/S96 deer (Table 1 and Fig. 3c, d).
Adrenal glands were also positive by IHC in all clinic-

ally affected genotypes. Although the most abundant
immunolabeling was detected in the adrenal medulla,
which presented a pattern of immunoreactivity similar
to that previously described in other prion diseases [33],
positive immunolabeling was also detected in the ad-
renal cortex. In adrenal cortex, granular and scant
immunopositive deposits were found in the innermost
zone (zona reticularis). The presence of immunopositive
material in the adrenal cortex was more abundant in the
group of wt/wt deer.

PrPCWD deposition in muscle
Skeletal muscle samples were collected from tongue as well
as forelimb and hindlimb muscles of the CWD challenged
deer. No PrPCWD immunolabeling was detected within skel-
etal muscle tissues. PrPCWD deposits were neither observed
in muscle-associated nerve fascicles, structures that have
been previously reported to show PrPCWD accumulation in
CWD infected white-tailed deer [34]. Immunoreactivity was
also not detected in neuromuscular spindles; structures in
which prion deposition has previously been reported in

Table 1 Distribution of PrPCWD deposits in lymphoid tissues of clinically affected and non-inoculated white-tailed deer

Non-inoculated

Genotype wt/wt S96/wt H95/wt H95/S96 wt/wt

D1 D2 D3 D4a D5 D6 D7 D8 D9 D10 D11 D12

Retropharyngeal LN ++ +++ +++ / ++ ++ ++ +++ ++ +++ – –

Submandibular LN +++ ++ ++ / +++ ++ ++ ++ / / – –

Axillary LN ++ ++ + / +++ ++ ++ – ++ + – –

Prescapular LN + + + / ++ + – – + ++ – –

Prefemoral LN ++ + ++ / + + + – + ++ – –

Popliteal LN + + ++ / +++ + + + + + – –

Inguinal LN + + ++ / +++ + + – / ++ – –

Tracheobronchial LN ++ + +++ / +++ / / / / / – –

Ileocecal LN / ++ ++ / +++ ++ +++ ++ ++ +++ – –

Hepatic LN / +++ / / / ++ ++ +++ +++ +++ / /

Pancreatic LN +++ / / / / ++ +++ / / / – /

Adrenal LN +++ ++ / / – ++ +++ ++ / ++ / –

Spleen + + + + + – + + + + – –

3rd eyelid + + ++ / -b - b - b + / + – –

Tonsil +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ – –

Peyer’s Patches +++ +++ +++ +++ +++ +++ +++ / +++ +++ – –

Rectal lymphoid follicles +++ +++ +++ +++ ++ +++ + / / +++ – –

PrPCWD deposition was detected by IHC
aNo lymph nodes were collected from D4 bNo lymphoid follicles were present in the histological sample. / Sample not available for evaluation
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sheep scrapie [33, 35]. Heart samples collected from a S96/
wt deer (D6) showed immunolabeling. In this S96/wt deer,
we observed scattered PrPCWD aggregates affecting sepa-
rated groups of cardiac myocytes (Fig. 4a). In addition,
PrPCWD immunolabeling was more visible in longitudinal
cross-sections of the cardiac muscle, an accumulation pat-
tern similar to that previously described in the heart of
white-tailed deer infected with CWD [36]. Surprisingly, all
cardiac muscle samples from H95/wt and H95/S96 deer
lacked detectable PrPCWD immunoreactivity (Fig. 4b, c).

PrPCWD deposition in intestinal tract
Gut-associated lymphoid and nervous tissues accumu-
lated high levels of PrPCWD in all clinically positive

CWD-infected deer. IHC positive material was more
abundant in Peyer’s patches and nerve fibers and gan-
glia of the enteric nervous system (ENS) in all intes-
tinal segments evaluated. However, differences in the
distribution of PrPCWD in the intestinal tract were
evident between genotypes. The H95/wt and H95/S96
deer presented reduced accumulation of PrPCWD in
the villi and crypts of the intestinal mucosa compared
to wt/wt and S96/wt deer. Differences were most no-
ticeable at the ileocecal junction, with all wt/wt and
S96/wt deer showing strong PrPCWD deposition dis-
persed along the lamina propria between villi and
crypts, while H95/wt and H95/S96 deer showed no
immunolabeling (Fig. 5).

Fig. 1 PrPCWD deposition pattern in the cerebellum (a to d) and the frontal cortex (e, f) of clinically affected deer. Inserts contain magnified images of
the corresponding sample to show the morphology and limits of the PrPCWD aggregates. a Cerebellum of a wt/wt deer showing abundant coalescing
PrPCWD deposits and plaques in the granular and Purkinje cell layer. b S96/wt deer showing evident milder deposition. PrPCWD plaques are observed
only in the granular layer. c Cerebellum from the H95/wt deer showing a patch-shaped distribution of coarse granular and fine punctate PrPCWD

aggregates through the granular layer. d Cerebellum from the H95/S96 deer, which presented coarse granular aggregates homogeneously distributed
through the granular layer and stellate aggregates in the molecular layer (arrow). e Frontal cortex from a wt/wt deer showing abundant plaques in
grey and white matter. f Frontal cortex from the H95/S96 deer showing mild deposition of fine punctate cell-associate aggregates
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PrPCWD deposition in kidney
Kidney samples were evaluated from 9 of the 10 CWD clin-
ical deer. Positive immunolabeling was found in all evalu-
ated kidney samples from wt/wt and S96/wt deer. PrPCWD

staining was consistently associated with arterial vessels,
showing a periarterial and periarteriolar deposition. The
most abundant immunolabeling was detected in the wall of
the main renal artery and arcuate arteries, which locate at
the junction of the renal cortex and the renal medulla and
arise from interlobar arteries. Interestingly, no PrPCWD de-
posits were found in any of the evaluated kidney samples
from the H95/wt and the H95/S96 deer (Table 2, Fig. 6). In
addition to the PrPCWD aggregates observed in arterial ves-
sels, one wt/wt deer had strong PrPCWD deposition associ-
ated with foci of inflammatory cells (D1) affecting renal
glomeruli, which was compatible with a moderate intersti-
tial glomerulonephritis (Fig. 7a).

PrPCWD deposition in salivary glands
PrPCWD deposits found in salivary glands were mild and
scattered. Positive immunolabeling was found in the inter-
stitial tissue between acini, whereas no intracellular deposits
were detected in acinar cells or within salivary ducts in any
of the samples evaluated. Parasympathetic ganglia neurons
innervating the salivary gland tissue from a wt/wt deer
(D4), presented strong intraneuronal immunolabeling (Fig.
6c). IHC deposits were observed in parotid and subman-
dibular salivary glands, whereas all the evaluated sublingual
glands samples were negative for PrPCWD immunostaining.
Deposition in the interstitial tissue was especially evident in
the submandibular salivary gland of D7 (Fig. 6d). Positive
immunolabeling was detected in at least one salivary gland
sample from all clinically affected deer with the exception
of H95/wt and H95/S96 deer, which showed no PrPCWD

deposits in any of the salivary glands evaluated.

Fig. 2 PrPCWD deposition in the brain of CWD infected deer. a Representative olfactory bulb sample from a wt/wt deer showing abundant PrPCWD

immunolabeling diffusely distributed in the brain area. b Olfactory bulb sample from a S96/wt and the (c) H95/wt deer showing similar PrPCWD

immunolabeling, more restricted to the grey matter. d Olfactory bulb sample from the H95/S96 deer showing mild PrPCWD immunolabeling. e PrPCWD

deposition profile of the experimentally infected deer of different PRNP genotypes. Evaluated brain areas are: Obex; Cml, cerebellar molecular layer; Cpl,
cerebellar Purkinje cell layer; Cgl, cerebellar granular layer; Cwm, cerebellar white matter; Pons; SC, superior colliculus; TH, thalamus; HT, hypothalamus;
CA, caudate nucleus; SN, septal nucleus; HC, hippocampus; FCgm, frontal cortex grey matter; FCwm, frontal cortex white matter; OB, Olfactory bulb
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Table 2 Distribution of PrPCWD deposits in peripheral nerves, glands and organs of clinically affected and non-inoculated white-
tailed deer

Non-inoculated

wt/wtGenotype wt/wt S96/wt H95/wt H95/S96

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Optic nerve ++ + ++ + + + / + + ++ / –

Vagus nerve ++ + + / / + – + – + – –

Brachial plexus / – – / / – – / / – – –

Sciatic nerve + + – / – – / – – – – –

Pituitary gland / ++ +++ / / +++ +++ +++ / +++ – –

Islets of Langerhans ++ ++ ++ ++ ++ ++ + + – – / –

Adrenal Gl medulla +++ +++ +++ +++ ++ +++ +++ +++ + ++ / –

Ileoc. Valve villi/crypts ++ + + + ++ ++ ++ / – – – –

Kidney ++a + + + + / + + – – – –

Parotid salivary gland + + – / + + – + – / / –

Submandibular sal. Gl / + – / + + + + – – / –

Sublingual sal. Gl / – – / / – – – – – / –

Retina +++ +++ +++ + +++ +++ + +++ ++ ++ / –

Skeletal muscle – – – – – – – – – – – –

Heart / / / / / ++ / / – – / /

Lung + a – – – – – – – – – – –

Liver – – – – – – – – – – – –

PrPCWD deposition was detected by IHC
aDeer showing inflammatory kidney disease and lung interstitial inflammation / Sample not available for evaluation

Fig. 3 Immunohistochemical detection of PrPCWD in the pancreas of CWD affected white-tailed deer. a Pancreas from a wt/wt deer and a
(b) S96/wt deer showing PrPCWD deposition in the islets of Langerhans. c Pancreas from the H95/wt and the (d) H95/S96 deer, which did
not present any positive immunolabeling
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PrPCWD deposition in other organs
PrPCWD immunolabeling was detected in the lungs of
D1. This deer showed mild lung interstitial inflammation
and edema. PrPCWD aggregates were observed to be as-
sociated with inflammatory cell foci and in the cells of
the bronchiolar epithelium (Fig. 7b). This deer also
showed, as mentioned previously, positive immunolabel-
ing related to the accumulation of inflammatory cells in
the kidney (Fig. 7a). Eye samples were collected from all
deer included in this study. In addition to the positive
immunolabeling of the optic nerve, described above, all
deer were also positive for PrPCWD IHC deposition in
the retina. All collected liver samples from the clinically
affected deer were IHC negative (Table 2).
Corresponding negative tissue controls from uninfected

deer were included when available. These tissues did not

present any immunolabeling, confirming the specificity of
the immunohistochemical detection (Tables 1 and 2).

Discussion
We found that the intensity and distribution of PrPCWD de-
posits in brain and peripheral tissues of PRNP polymorphic
(i.e. different PrPC primary structures) white-tailed deer
was distinct from Q95G95 (wt) homozygous deer exposed
to the same prion strain (i.e. Wisc-1). We have previously
shown that H95 and S96 PRNP polymorphisms play a key
role in CWD susceptibility, increasing survival periods and
having dramatic effects on the propagation of CWD strains
[16–20, 37].
Our results show that deer expressing the H95-PrPC

presented a more limited peripheral distribution of
PrPCWD compared to wt/wt and S96/wt deer. Under

Fig. 4 Immunohistochemical detection of PrPCWD in the heart of CWD affected white-tailed deer. a Heart from a S96/wt deer showing positive
immunolabeling in separated groups of cardiac myocytes. b Heart from the H95/wt and the (c) H95/S96 deer in which no positive immunolabeling
was detected

Fig. 5 PrPCWD deposition in the crypts of the ileocecal junction of CWD affected white-tailed deer. a Ileocecal junction mucosa from a wt/wt
deer and a (b) S96/wt deer showing PrPCWD immunolabeling dispersed along the lamina propria between intestinal crypts (arrows). This PrPCWD

immunolabeling pattern was not observed in the ileocecal junction of the (c) H95/wt nor the (d) H95/S96 deer
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identical experimental conditions and disease stage, the
number of organs with positive immunolabeling was re-
duced in deer with H95-PrPC allelotypes [18]. The most
significant differences in PrPCWD deposition between
deer with different PRNP genotypes were found in pan-
creas, heart, kidney and intestine samples. Both deer ex-
pressing the H95-PrPC showed no immunolabeling or

reduced accumulation of PrPCWD aggregates in these
tissues.
The presence of PrPCWD in endocrine tissues has been

previously described in the adrenal medulla, the pituitary
gland and islets of Langerhans in the pancreas of
CWD-affected cervids [31, 32], results that agree with
our observations in CWD-infected wt/wt and S96/wt

Fig. 6 PrPCWD deposition in the kidney and salivary glands of clinically-affected white-tailed deer. a Kidney from a wt/wt deer and a (b) S96/wt
deer showing periarterial PrPCWD deposition in arcuate arteries (arrows). Inserts show the specific location of these arteries in the histopathological
sample. c Salivary gland from a wt/wt deer showing positive PrPCWD immunolabeling in the interstitial tissue between acini (arrows). PrPCWD

immunolabeling was also detected in the ganglion neurons immersed in the salivary gland sample (insert picture). d Salivary gland from a S96/wt
deer. Positive immunolabeling was detected in the same location as for wt/wt deer (arrow). No PrPCWD deposition was observed in the kidneys or
salivary glands of deer expressing the H95-PrPC

Fig. 7 PrPCWD deposition in the kidney (a) and the lung (b) of a deer presenting signs of inflammation (D1). a A strong PrPCWD deposition associated
with foci of inflammatory cells was observed in this deer. Those foci of inflammation were generally found in the proximity of the glomeruli. b A
moderate interstitial inflammation was also detected in this animal. PrPCWD accumulation was observed associated with inflammatory cells (arrows)
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deer. Only deer of these genotypes (Fig. 3a, b) showed
moderate to strong chromagen deposition in islets of
Langerhans, which are innervated by the vagus nerve
[32]. Differences in adrenal glands immunolabeling were
minor between deer expressing different PrPC polymor-
phisms. Consistent with wt-PrPC being the cognate sub-
strate for Wisc-1 homologous prion conversion, wt/wt
deer presented higher and widespread PrPCWD depos-
ition compared to deer of other genotypes.
The distribution of PrPCWD aggregates was also lim-

ited in hearts of animals expressing the H95-PrPC allelo-
type. Cardiac tissues were collected from D6 (S96/wt),
D9 (H95/wt) and D10 (H95/S96). PrPCWD accumulation
was detected in multiple heart samples from D6, affect-
ing separated groups of cardiac myocytes (Fig. 4a). Con-
versely, no immunolabeling was observed in any heart
sample from deer expressing the H95-PrPC (Fig. 4b, c).
A distinct pattern of distribution of PrPCWD was also

observed in intestinal tissues for H95 carriers. It is not
surprising that strong immunolabeling was observed in
gut-associated lymphoid and nervous tissues as these are
known to be the first sites of PrPd accumulation follow-
ing oral infection [26, 30, 31, 38]. Nevertheless, H95/wt
and H95/S96 deer, which had the longest incubation pe-
riods [18], showed more restricted or localized PrPCWD

accumulation (Fig. 5). These findings however, do not
necessarily indicate that these animals excrete a lower
amount of prions or present a lack of infectivity in intes-
tinal tissues.
PrPCWD deposits were observed in renal tissues of all

wt/wt and S96/wt deer evaluated in the present study,
whereas no immunopositive material was found in any of
the kidney samples collected from deer expressing the
H95 allele (Fig. 6). Immunohistochemical detection of
PrPCWD in kidneys of CWD-infected white-tailed deer has
previously only been reported in ectopic lymphoid follicles
[31, 39]. PrPCWD in renal tissues has, however, been dem-
onstrated by sPMCA [40] and it has been shown that
CWD-infected cervids can shed infectious prions in urine
[41–43], although the proximal source of PrPCWD in urine
is not known [40]. In the present study, PrPCWD positive
immunolabeling of kidney samples was detected along the
wall of the renal arteries, especially in the main renal ar-
tery and the wall of arcuate arteries (Fig. 6a, b). In
scrapie-affected sheep, prion deposition has been found in
renal papillae and renal corpuscles [33, 44]. Periarterial
and periarteriolar immunolabeling could be due to spread
of prions through peripheral nerves [44] since the wall of
these renal arteries is strongly innervated and sympathetic
nerve fibers from the renal plexus enter the kidney accom-
panying the branches of the main renal artery. To our
knowledge, this is the first description of PrPCWD depos-
ition, detected by conventional techniques, in renal arter-
ies of CWD-infected deer.

D1 also presented intense PrPCWD immunolabeling in
the renal cortex associated with accumulations of in-
flammatory cells (Fig. 7a). Inflammatory processes affect
prion pathogenesis and peripheral accumulation [45, 46],
and chronic nephritis triggers prionuria in
prion-infected mice [47]. In addition, PrPCWD shedding
has been reported in CWD infected deer presenting with
inflammatory kidney disease [41]. We cannot predict the
effect of prion accumulation in the arterial walls on prio-
nuria, however, we have observed that inflammatory kid-
ney conditions greatly increase PrPCWD deposition in
renal tissues from deer with CWD, which might increase
shedding of PrPCWD within urine. This deer also showed
PrPCWD accumulation in the lungs associated with in-
flammatory cell foci and in the bronchiolar epithelium
(Fig. 7b). PrP accumulation in the lung related to inflam-
matory conditions and in the epithelium of the bronchi-
oles has been previously described in scrapie-affected
sheep [33, 48]. Deer in our study were housed indoors
with ample access to clean food and water [18]. It is
likely that free-ranging deer would be at greater risk of
coincident infections and commensurate inflammation
that may influence the effect of protective alleles on sus-
ceptibility to CWD, tissue colonization by CWD prions
and shedding.
In organs related to excreta production, differences in

PrPCWD deposition were found in salivary glands be-
tween deer genotypes. PrPd in salivary glands, detected
by conventional techniques, has been described in
scrapie-affected sheep [49] and in the serous epithelial
cells of the submandibular salivary gland in experimen-
tally infected red deer [50]. Likewise, considerable
PrPCWD amplifying activity, similar to that observed in
brain, accumulates in salivary glands of cervids with
CWD [40]. Comparison of single salivary gland sections
identified PrPCWD immunostaining in wt/wt or S96/wt
deer but not in deer expressing H95-PrPC (Table 2). In-
tense PrPCWD immunolabeling in ganglia cells immersed
in the salivary gland tissue was observed in animal D4
(Fig. 6c).
Our observations suggest that deer expressing

H95-PrPC have reduced centrifugal trafficking via de-
scending nerves into peripheral tissues (i.e. salivary
glands, pancreas, heart and kidney). This is consistent
with previous observations in different experimental
prion infections [32, 33, 36, 44, 51]. However, it has been
suggested that, in initial stages of CWD infection,
PrPCWD may be trafficked via blood [26], and infectivity
has been demonstrated in blood components [52, 53].
Therefore, we cannot exclude the hematogenous route
as a complementary pathway of prion dissemination.
None of the clinically affected deer presented positive

immunolabeling in any of the skeletal muscle samples
evaluated, including the tongue. The absence of PrPd
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accumulation in skeletal muscles detectable by IHC
techniques has been reported in both naturally and ex-
perimentally prion infected deer [54, 55]. Nevertheless,
although we did not detect PrPCWD deposition in skel-
etal muscle samples in this experimental Wisc-1 trans-
mission to white-tailed deer, we cannot assume the
complete absence of prion accumulation. Others have
demonstrated the presence of PrPCWD in skeletal mus-
cles by bioassay [56], Western Blot, PMCA and
tissue-blotting [34].
The presence of prion deposits in skeletal muscles has

previously been reported in neuromuscular spindles,
which are highly innervated structures [33, 35] and, in
CWD-infected white-tailed deer, in nerve fascicles [34].
Although most of the vagus nerve samples evaluated in
the present study showed positive immunolabeling, sci-
atic nerve and brachial plexus samples presented sparse
or no PrPCWD deposits (Table 2). Our results are similar
to those in mule deer naturally infected with CWD [32].
We did not detect PrPCWD deposition in forelimb and
hindlimb skeletal muscle samples, not even in the
neuromuscular spindles. Due to the fact that brachial
plexus and sciatic nerve innervate, respectively, the fore-
limb and hindlimb muscles, and taking into account that
prions can spread to these muscles via these neural
pathways [32], we can suggest that the scant or absent
PrPCWD immunolabeling in brachial plexus and sciatic
nerve samples from deer in our study may relate to the
absence of deposits in these groups of muscles.
Cumulative evidence supports the limiting effect of

H95 and S96 PrPC polymorphisms on natural CWD in-
fection and disease progression [16–18, 37]. These PrPC

allelic variants modulate CWD propagation and the effi-
ciency of intraspecies CWD transmission [19, 57]. The
passage of CWD prions in white-tailed deer expressing
the H95-PrPC led to the emergence of the novel CWD
strain H95+ [19]. This strain presented distinct biochem-
ical and transmission properties, efficiently propagating
in transgenic mice expressing deer S96-PrPC and in
non-transgenic C57BL/6 mice [19, 20]. Wisc-1 propaga-
tion in deer expressing the H95-PrPC also presented lim-
ited peripheral PrPCWD accumulation.
As demonstrated in sheep with scrapie, PRNP geno-

type strongly influences the tropism and distribution of
PrP deposits [23, 25, 30]. In the present study, the ob-
served effects of the H95 allele in prion distribution re-
semble those described for sheep expressing the
resistance-associated allele ARR at codons 136, 154 and
171 of the prion protein. ARR/VRQ sheep, despite devel-
oping disease and accumulating PrPSc in the brain,
present a much more limited and infrequent PrPSc dis-
tribution in lymphoid tissues compared to those with
other susceptible genotypes [30, 58, 59]. This effect is
likely due to a modulation of the prion pathogenesis [25,

60] and it is not necessarily associated with the pro-
longed incubation period [25].
The similarities in peripheral PrPCWD accumulation

between H95/wt and H95/S96 deer indicate a limiting
role for the H95 amino acid substitution on the produc-
tion and/or accumulation of PrPCWD. Similar observa-
tions have been made in goats expressing methionine at
codon 142, which show reduced incidence of scrapie in-
fection and a lower tendency to accumulate PrPSc out-
side the brain compared to 142 isoleucine homozygotes
[50, 61]. In contrast, our findings suggest that H95-PrPC

does not affect LRS involvement in CWD-affected deer
(Table 1).
Influences of genotype on PrPCWD deposition pattern

have been described in experimentally infected mule
deer, with F225/S225 deer presenting with milder
PrPCWD accumulation and limited tissue distribution
compared to S225 homozygotes at identical intervals
post-inoculation. This suggests the F225 amino acid
variant limits prion conversion and delays PrPCWD tissue
accumulation [31, 57]. Similar observations have been
made in white-tailed deer expressing the S96 PrPC,
which, compared to wt/wt deer, show reduced PrPCWD

in brain and lymphoid tissues, consistent with slower
disease progression [17, 26]. Deer of this genotype have
also been reported to present lower PrPCWD immuno-
staining scores in the obex than wt/wt deer [62, 63].
However, observations were made in naturally infected
animals in different stages of the disease. Although we
observed certain differences between wt/wt and S96/wt
deer in particular brain regions (Fig. 2), the overall in-
tensity and peripheral distribution of PrPCWD was simi-
lar for both genotypes at the terminal stage of the
disease (Tables 1 and 2). By contrast, the H95 poly-
morphism was a stronger driver of disease phenotype.
The interference exerted by H95-PrPC in the replication
and tissue accumulation of Wisc-1 prions relates to the
biology of cervid PrPC polymorphisms and the evolution
of CWD prion strains [19, 20].
Given that the diversity of CWD agents can be expanded

in deer expressing PrPC polymorphisms [19, 20, 64], our
findings cannot be generalized to include all potentially
existing CWD strains which will likely have distinct host
specific interactions. Prion disease characteristics, including
the lesion distribution and the IHC phenotype of PrPd ac-
cumulation, are strongly influenced by the infecting prion
strain [21, 65–67]. Thus, it is possible that the reduced
PrPCWD immunolabeling observed in areas of the H95/S96
brain (Figs. 1 and 2) could be due to intra-species transmis-
sion barrier determined by the compatibility between the
invading strain and the PrPC sequence of the host [68, 69].
Likewise, heterozygous deer presented lower levels of
PrPCWD deposits in certain rostral brain areas, as compared
to wt/wt deer (Fig. 2). These observations are consistent

Otero et al. BMC Veterinary Research           (2019) 15:50 Page 10 of 14



with the reduced amounts of PrPCWD as detected by West-
ern blottimg [18]. Deer in the present study were orally in-
oculated with Wisc-1 prions [19], a CWD source obtained
from animals homozygous for the wt-PrPC [18]. Therefore,
transmission of the Wisc-1 strain into H95/S96 deer in-
volves the adaptation of the infectious agent to this new
host microenvironment, which could partially explain the
reduced PrPCWD accumulation in particular brain regions,
considering that the expression of wt-PrPC favors the
propagation of the Wisc-1 strain [19].
The PrPCWD accumulated in the H95/S96 animal

(H95-PrPCWD) [19] is more PK-sensitive than PrPCWD

from deer with at least one wt allele [18]. Differences in
PrP resistance to proteolytic degradation can lead to
variable results in diagnostic tests. For example, atypical/
Nor98 scrapie isolates are highly sensitive to PK diges-
tion compared with classical scrapie strains, which leads
to inconsistent diagnosis by PrPd IHC [70]. Therefore,
this particular characteristic of H95-PrPCWD may also
explain the lower immunolabeling observed in the brain
of H95/S96 deer. Nevertheless, prion disease neuro-
pathological phenotypes, which include the PrPd profile,
may depend on complex interactions between the infect-
ing prion strain and host factors (e.g. the PRNP geno-
type) [23]. This host-pathogen interaction might explain
the differences observed between deer genotypes with
respect to the PrPCWD deposition in the cerebellum (Fig.
2). However, as mentioned, other CWD strains could
differentially interact with PrP primary sequence and
those effects should be further explored to understand
how PrPC polymorphisms modulate the propagation of
CWD infectious agents.

Conclusions
The present study indicates that expression of the
H95 PrPC polymorphism limits the intensity and dis-
tribution of PrPCWD aggregates in a wide variety of
tissues and supports previous findings on the role
deer PRNP genotype plays on the modulation of
CWD progression and adaptation of CWD strains. Al-
though breeding programs selecting for less suscep-
tible PRNP genotypes can be effective in reducing
scrapie prevalence in flocks [71], our data regarding
the impact of deer PRNP genotypes need to be inter-
preted with caution. Animals expressing H95 PrPC,
although presenting with a more limited prion distri-
bution and longer incubation periods, represent the
adaptation of a new strain [19]. Genetic enrichment
for H95-PRNP alleles in deer herds may enhance the
selection of H95+ or of novel strains with increased
ability to propagate in genotypes including this PrPC

polymorphism. The significantly longer incubation pe-
riods observed in deer with H95-PRNP alleles may
not impact secretion of CWD (i.e., less CWD secreted

over longer time periods). The emergence of new
CWD strains could implicate a zoonotic potential
[20].

Methods
Animals and tissue sampling
Brain and peripheral tissues were collected from orally in-
fected white-tailed deer expressing different PRNP geno-
types: Q95G96/Q95G96 (wt/wt; N = 5; D1-D5), S96/wt
(N = 3; D6-D8), H95/wt (N = 1; D9) and H95/S96 (N = 1;
D10) [18]. All deer developed terminal clinical prion dis-
ease, showing different survival periods depending on
their PrPC primary structure. Deer were euthanized when
evident clinical signs were established and persisted for a
week [18]. Animals were euthanized by pentobarbital
overdose (120mg/kg) following anesthesia with a cocktail
of 0.2 mg/kg medetomidine, 4.0 mg/kg ketamine and 0.2
mg/kg butorphanol. Non-infected white-tailed deer of wt/
wt PRNP genotype (N = 2; D11 and D12) were also col-
lected, euthanized as described, and examined as controls.
No prion aggregates were found in any of the samples
obtained from these animals.
All deer used in this study were obtained as

wild-abandoned fawns (no permit was required) from
the CWD-free region of northern Wisconsin, and, prior
to the bioassay, all animals tested negative for CWD, as
determined by tonsil biopsy [18]. This study was carried
out in accordance to the recommendations in the Guide
for the Care and Use of Laboratory Animals of the Na-
tional Institutes of Health. The research animal ethics
protocol was approved by the School of Veterinary
Medicine Animal Care and Use Committee at the Uni-
versity of Wisconsin.

PrPCWD immunohistochemical analysis
The brain and peripheral tissues were fixed in 10% for-
malin and embedded in paraffin. Tissues were cut into
5-μm-thick sections and mounted on glass slides for im-
munohistochemical analysis. PrPCWD immunolabeling
was performed using the monoclonal antibody 6H4
(Prionics, Switzerland) at the dilution recommended by
the manufacturer, followed by incubation with a second-
ary anti-mouse antibody, a peroxidase-streptavidin con-
jugate, a substrate chromogen and hematoxylin
counterstain, as previously described [18]. Immunostain-
ing was performed at the Wisconsin Veterinary Diagnos-
tic Laboratory using NexES automated immunostainer
(Ventana Medical Systems).
Sections were then scanned using a Hamamatsu

NanoZoomer 2.0RS digital scanner (Hamamatsu Pho-
tonics, Hamamatsu, Japan).
The distribution, morphology and intensity of PrPCWD

deposits were blindly evaluated in 15 brain areas: Obex,
cerebellar molecular layer (Cml), cerebellar Purkinje cell
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layer (Cpl), cerebellar granular layer (Cgl), cerebellar
white matter (Cwm), Pons, superior colliculus (SC), thal-
amus (TH), hypothalamus (HT), caudate nucleus (CA),
septal nucleus (SN), hippocampus (HC), frontal cortex
grey matter (FCgm), frontal cortex white matter (FCwm)
and olfactory bulb (OB). The intensity of PrPCWD accu-
mulation in each brain area was semi-quantitatively
scored on a scale of 0 (absence of deposits) to 4 (severe
deposition) in order to obtain a PrPCWD brain profile for
each genotype. Data was analyzed using GraphPad Prism
version 6.0 (GraphPad Software, La Jolla, CA, USA).
The presence of PrPCWD deposits was also evaluated in

the following tissues: lymph nodes (retropharyngeal, sub-
mandibular, axillary, prescapular, prefemoral, popliteal, in-
guinal, tracheobronchial, ileocecal, hepatic, pancreatic and
adrenal), spleen, third eyelid, tonsil, pituitary gland, per-
ipheral nerves (vagus, brachial plexus and sciatic), skeletal
muscle, heart, intestine, liver, pancreas, kidney, adrenal
glands, lung, salivary glands (parotid, submandibular and
sublingual), retina and optic nerve. PrPCWD immunostain-
ing in lymphoid tissues was scored as: - (absence of immu-
nostaining), + (< 10% of the lymphoid follicles presenting
immunostaining), ++ (10–50% of the lymphoid follicles
presenting immunostaining) and +++ (> 50% of the
lymphoid follicles presenting immunostaining) as previ-
ously reported [43]. For the remainder of the tissues,
PrPCWD immunostaining was subjectively scored as: - (ab-
sence of immunostaining), + (minimal to slight immuno-
staining found in a small part of the tissue section), ++
(moderate immunostaining present in several areas of the
evaluated tissue section and/or several tissue sections),
and +++ (strong and widespread immunostaining
throughout the entire section and/or several tissue
sections).
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