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Effects of stanozolol on normal and
IL-1β-stimulated equine chondrocytes in
vitro
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Abstract

Background: Intra-articular administration of stanozolol has shown promising results by improving the clinical
management of lameness associated with naturally-occurring osteoarthritis (OA) in horses, and by decreasing
osteophyte formation and subchondral bone reaction in sheep following surgically induced OA. However, there is
limited evidence on the anti-inflammatory and modulatory properties of stanozolol on articular tissues. The
objective of the current study was to evaluate the effects of stanozolol on chondrocyte viability and gene
expression in normal equine chondrocytes and an inflammatory in vitro system of OA (interleukin-1β (IL-1β) treated
chondrocytes).

Results: Chondrocytes from normal metacarpophalangeal joints of skeletally mature horses were exposed to four
treatment groups: (1) media only (2) media+IL-1β (3) media+IL-1β + stanozolol (4) media+stanozolol. Following
exposure, chondrocyte viability and the expression of catabolic, anabolic and structural genes were determined.
General linear models with Dunnet’s comparisons with Bonferroni’s adjustment were performed. Cell viability was
similar in all groups. Stanozolol treatment reduced gene expression of MMP-13, MMP-1, IL-6 and COX-2 in both
normal and IL-1β treated chondrocytes. Stanozolol treatment reduced ADAMTS4 gene expression in normal
chondrocytes. Stanozolol reduced the expression of COL2A1.

Conclusions: The current study demonstrates stanozolol has chondroprotective effects through downregulation of
genes for pro-inflammatory/catabolic cytokines and enzymes associated with OA. However, there is no evidence of
increased cartilage stimulation through upregulation of the anabolic and structural genes tested.
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Background
Osteoarthritis (OA) is caused by a combination of bio-
mechanical and biochemical changes in the joint that in-
clude synovium and subchondral bone abnormalities,
ultimately resulting in cartilage degeneration [1]. In the past
decade, major advances have been made in molecular biol-
ogy and OA research in both human and veterinary medi-
cine. Equine models have been used extensively providing
invaluable insights into the molecular pathogenesis during
disease establishment and in response to treatment [2, 3].

One of the main goals in the treatment of OA is to in-
hibit further progression of cartilage degeneration and to
restore a functional synovial environment with the
potential to promote cartilage repair. Cartilage repair is
mediated by the balance between chondrocyte gene
expression of catabolic and anabolic genes [4, 5]. The
most important mediator of cartilage degeneration is
interleukin-1 (IL-1) [5, 6] and it has been reported that
low innate production of IL-1β and IL-6 is associated
with the absence of OA in old age [7]. IL-1 enhances the
expression of pro-inflammatory mediators including
matrix metalloproteinases (MMP-3 and -13), inflamma-
tory cytokines (IL-6), a disintegrin and metalloproteinase
with thrombospondin motifs (ADAMTS-4 and -5), cy-
clooxygenase 2 (COX-2), prostaglandin E2 (PGE2) and
free radicals [1]. Cartilage repair is mediated by anabolic
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growth factors including the transforming growth factor β
(TGF-β), insulin-like growth factor 1 (IGF-1), bone mor-
phogenetic proteins (BMPs) and fibroblast growth factors
(FGF) [8]. The IGF-1, TGF-β and BMPs act in part by in-
duction of the transcription factor SOX-9, a key regulator
of mesenchymal chondrogenesis during embryologic de-
velopment [9, 10]. No therapy is currently available to pre-
vent the onset or progression of OA, and latest research
has focused on disease-modifying drugs with the capacity
not only to counteract the effects of pro-inflammatory cy-
tokines but also to promote articular cartilage repair.
Anabolic-androgenic steroids (AAS) are synthetic de-

rivatives of testosterone and were first introduced in the
early 1930s. Since then, an attempt has been made to
minimize the androgenic side effects by increasing their
anabolic: androgenic ratio. Stanozolol has one of the
highest anabolic: androgenic ratios, suggesting it has
anabolic activity with minimal androgenic side effects
[11]. Stanozolol has a wide range of applications in hu-
man medicine and has been used to treat rheumatoid
arthritis [12, 13], hereditary angioedema [14], idiopathic
osteonecrosis [15], postmenopausal osteoporosis [16,
17], muscle wastage and age-related sarcopenia [11],
amongst others [18]. The main claims for stanozolol’s
therapeutic effects are based on its anabolic activity on
the musculoskeletal system and its potential to influence
lean body mass, tissue repair, fibrinolysis, collagen syn-
thesis and bone metabolism [11]. To our knowledge
there are no human studies evaluating the effects of
AAS on articular cartilage and there are no reports on
the intra-articular use of stanozolol in human patients.
Intra-articular administration of stanozolol has recently

been postulated as a treatment for OA. Studies investigat-
ing the clinical effects of the intra-articular use of stanozolol
in horses have shown promising results in the ability of this
drug to effectively manage lameness associated with OA
and have suggested that stanozolol has the potential to
stimulate cartilage repair [19, 20]. There is also anecdotal
evidence of positive results obtained in equine clinical prac-
tice, including cases refractory to intra-articular glucocorti-
coids [21] and in the management of subchondral bone
pain [22]. Furthermore, stanozolol has been used in an ex-
perimental animal model (sheep meniscectomy), demon-
strating decreased osteophyte formation, subchondral bone
reaction and synovial fibrosis, and articular cartilage regen-
eration [23]. However, there is limited evidence of the anti-
inflammatory properties of stanozolol and how it affects ar-
ticular chondrocytes in vitro. Previous data suggests that it
reduces chondrocyte apoptosis by decreasing the produc-
tion of nitric oxide in equine chondrocytes [24], enhances
collagen synthesis though the upregulation of TGF-β in
adult human dermal fibroblasts [25] and enhances the pro-
liferation of cultured growth plate chondrocytes from pu-
bertal female rats treated with GnRHa [26].

The objective of the current study is to evaluate the ef-
fect of stanozolol on chondrocyte viability and gene ex-
pression in normal chondrocytes and an in vitro
inflammatory system of OA. We hypothesise that stano-
zolol will not have an effect on chondrocyte viability; will
have a chondroprotective effect by reducing the expres-
sion of pro-inflammatory/catabolic genes (MMP-13,
MMP-1, IL-6, ADAMTS4 and COX-2) in both normal
and IL-1β treated chondrocytes; and will have an ana-
bolic effect by increasing the expression of SOX9,
COL2A1 and aggrecan in both normal and IL-1β treated
chondrocytes.

Methods
Sample collection
Articular cartilage was aseptically harvested from the en-
tire articular surface of macroscopically normal metacar-
pophalangeal joints of seven skeletally mature horses
euthanized for reasons unrelated to this study, ages ran-
ging from five to eleven years (mean 7.7 +/− SD 2.1).
Samples were collected from an abattoir as a by-product
of the agricultural industry and processed within 12 h of
euthanasia. The Animals (Scientific Procedures) Act
1986, Schedule 2, does not define collection from these
sources as scientific procedures and ethical approval was
therefore not required.

Tissue culture and cell viability
The chondrocytes were isolated as previously described
[27] and the cell viability was determined by trypan blue
exclusion test [28] for each horse. The chondrocytes were
then plated as monolayers in Dulbecco’s modified eagles
medium (DMEM) (Sigma-Aldrich, Dorset, UK), supple-
mented with 10% foetal calf serum (FCS), 100 units/ml
penicillin, 100 mg/ml streptomycin (all from Invitrogen,
Paisley, UK) and 500 ng/ml amphotericin B (BioWhittaker,
Lonza, USA), at a concentration of 100,000 live cells/cm2

(total of 16 wells of a 24-well plate used per horse). The
chondrocytes were incubated in a 5% CO2 humidified at-
mosphere at 37 °C for 48 h. The medium was changed and
replaced with serum-free DMEM 24 h prior to exposure.
Each horse was exposed to 4 different treatment groups (4
wells per group): (1) media only (negative control) (2)
media + IL-1β (Recombinant Equine IL-1β, R&D Systems,
Abingdon, UK) (10 ng/ml) (positive control) (3) media +
IL-1β (10 ng/ml) + stanozolol (Sungate, ACME, Cavriago,
Italy) (0.4 mg/ml) 4) media + stanozolol (0.4 mg/ml). The
stanozolol concentration was extrapolated by using the
clinically recommended dose of 5 mg per joint [20] and as-
suming the volume of a non-distended metacarpalphalan-
geal joint to be 12.5 ml [29]. After 24 h in culture
conditions, cell viability was performed on one well per
group.
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Real-time PCR
Total RNA was isolated separately from 3 wells per
group using 0.5 ml of Tri Reagent (Sigma-Aldrich,
Dorset, UK) per well and stored at -80 °C for later ana-
lysis. The RNA isolated from each well was processed
individually and was purified by the acid guanidinium
thiocyanate-phenol-chloroform extraction technique as
previously described [30]. Total RNA concentrations
and purity were determined spectrophotometrically
(NanoDrop™ 1000 Spectrophotometer, Thermo Fisher
Scientific, Waltham, US) and all the samples used pre-
sented a ratio of absorbance at 260 nm and 280 nm
(A260/A280) between 1.8 and 2.0. cDNA was synthetized
from 500 ng of RNA in a 29 μL reaction using Moloney
Murine Leukemia Virus Reverse Transcriptase (M-MLV
RT) and random hexamer oligonucleotides (both Pro-
mega, Southampton, UK). cDNA samples were individu-
ally diluted to a final concentration of 5 ng/μL and 5 μL
aliquots of cDNA were amplified by reverse transcrip-
tion polymerase chain reaction (RT-PCR) (ABI PRISM®
7500 Sequence Detection System, Applied Biosystems,
Warrington, UK) in a 20 μL reaction volume using a
SYBR Green PCR mastermix (Applied Biosystems, War-
rington, UK). Glyceraldehyde 3-phosphate dehydrogen-
ase (GAPDH) was used as the housekeeping gene and
the relative expression of catabolic, anabolic and struc-
tural genes was analysed using the 2–ΔΔCT method [31].
The fitness of GAPDH as a valid normalisation factor
has been previously identified by us [32, 33]. All primers
used were designed by Applied Biosystems Assays-by-
Design and have been previously validated by our group.
Primers for equine IL-6 and COX-2 had the following
sequences: IL-6 Forward: CTG-CTC-CTG-GTG-ATG-G
CT-AC, Reverse: CCG-AGG-ATG-TGT-ACT-TAA-T
GT-GCT-G; COX-2 Forward: CAG-CAT-AAA-CTG-C
GC-CTT-TTC, Reverse: AGG-CGG-GTA-GAT-CAT-T
TC-CA. The primer sequences for GAPDH, SOX9,
COL2A1, aggrecan, MMP-13 and -1, and ADAMTS4
have been previously reported [32, 34].

Statistical analysis
Statistical analysis was performed using SPSS (IBM,
Portsmouth, UK). Normality of the data was analysed
using a Shapiro-Wilk test, and non-parametric data was
LOG10 transformed prior to analysis. A general linear
model was used for all analyses with Dunnet’s compari-
sons against the control group and pairwise comparisons
with Bonferroni’s adjustment. Statistical significance was
defined as P < 0.05.

Results
Stanozolol does not affect chondrocyte viability
There were no significant differences in cell viability be-
tween the different treatment groups.

Stanozolol reduces catabolic gene expression
There was a statistically significant increase in the expres-
sion of MMP-13, MMP-1, IL-6, ADAMTS4 and COX-2
mRNA expression in chondrocytes treated with IL-1β only
(group 2- positive control) compared to media only (group
1- negative control) (P < 0.001). Conversely, chondrocytes
exposed to stanozolol only (group 4) had a significantly de-
creased expression of all the above catabolic genes com-
pared to the negative control (group 1) (P < 0.001) (Fig. 1).
When comparing both groups with IL-1β treated chon-

drocytes, there was a significant downregulation of MMP-
13 (P < 0.001), MMP-1 (P < 0.03), IL-6 (P < 0.001) and
COX-2 (P < 0.001) expression in chondrocytes exposed to
IL-1β and stanozolol (group 3) compared to chondrocytes
exposed to IL-1β alone (group 2). ADAMTS4 gene ex-
pression was not significantly supressed in chondrocytes
exposed to IL-1β and stanozolol (group 3) compared to
chondrocytes exposed to IL-1β only (group 2) (Fig. 1).

Stanazolol reduces COL2A1 gene expression
There was no statistically significant difference in SOX9
gene expression between treatment groups. COL2A1
gene expression was significantly supressed in both
groups treated with stanozolol (groups 3 and 4) com-
pared to both groups not treated with stanozolol (groups
1 and 2). Aggrecan gene expression was significantly
supressed in both groups treated with IL-1β (groups 2
and 3) compared to both groups not treated with IL-1β
(groups 1 and 4). No statistically significant difference
was seen on COL2A1 gene expression between groups 1
and 2 or 3 and 4, or on aggrecan expression between
groups 1 and 4 or 2 and 3 (Fig. 2).

Discussion
In OA the balance between anabolic and catabolic activ-
ities is compromised and cartilage degeneration prevails
over the capacity of repair. In the present study, treat-
ment with stanozolol was investigated in both normal
and IL-1β stimulated chondrocytes. In accordance with
previous reports [35–37] exposure to IL-1β induced a
catabolic response on equine articular chondrocytes and
increased the gene expression of MMP-13, MMP-1,
IL-6, ADAMTS4 and COX-2. Addition of stanozolol to
IL-1β stimulated chondrocytes counteracted the cata-
bolic effects of IL-1β and downregulated the expression
of MMP-13, MMP-1, IL-6, and COX-2. Similarly, corti-
costeroids have been demonstrated to inhibit MMP
transcription [38–42] and downregulate the expression
of COX-2 [40–42] in cytokine-treated chondrocytes. In
the present study, stanozolol supressed ADAMTS4 gene
expression in normal chondrocytes compared to control
but did not counteract the upregulation induced by IL-
1β. This is in contrast with observations in corticoste-
roids studies [39, 40].
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Further analysis of our results showed that when normal
chondrocytes were treated with stanozolol there was a sig-
nificant decrease in the expression of all the catabolic
genes tested (MMP-13, MMP-1, IL-6, ADAMTS4 and
COX-2) compared to control. Again, similar results have
been obtained in in vitro models studying the effects of
corticosteroids on articular cartilage [38, 39]. Knych et al.

[43] recently evaluated changes in synovial fluid gene ex-
pression following in vivo administration of triamcinolone
in healthy horses undergoing a standardized exercise
programme. In this study they found no significant differ-
ences in COX-2 and MMP-3 gene expression between
baseline and the triamcinolone treatment group. These re-
sults suggest a protective and stronger anti-inflammatory
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Fig. 1 Effects of stanozolol on (a) ADAMTS4, (b) IL-6, (c) COX-2, (d) MMP-13 and (e) MMP-1 gene expression in normal and IL-1β-treated equine articular
chondrocytes. Real-time-PCR analysis of the above genes mRNA in monolayer cultures exposed to media, IL-1β, IL-1β+ stanozolol and stanozolol. GAPDH
was used as the housekeeping gene and data are represented as relative expression using the 2–ΔΔCT method. Data were evaluated using a general linear
model with Dunnet’s comparisons against the control group and pairwise comparisons with Bonferroni’s adjustment (n= 7, three technical replicates per
treatment group)
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response after intra-articular administration of stanozolol
compared to triamcinolone; however, different experimen-
tal models limit direct comparisons between studies.
Contrary to our hypothesis, stanozolol did not enhance

the expression of SOX-9, COL2A1 or aggrecan. The path-
way through which anabolic growth factors promote upregu-
lation of chondrocyte specific genes remains largely unclear.
The transcription factor SOX9 has elicited much interest as
it is co-expressed with type II collagen in mouse fetal chon-
drocytes and is thought to be involved in chondrocyte differ-
entiation and cartilage formation during development [44].
SOX9 has been shown to mediate the expression of many
genes encoding cartilage extracellular matrix proteins, in-
cluding COL2A1 and aggrecan [9, 45, 46]. Kolettas et al. [9]

investigated the effects of IGF-1 and IL-1 on chondrocyte
survival and phenotype and reported an antagonist effect.
IL-1 supressed the expression of chondrocyte-specific genes
(collagen types II and IX, aggrecan, biglycan and link protein)
and downregulated SOX-9; and IGF-1 upregulated SOX-9,
relieved the IL-1 induced inhibition of chondrocyte-specific
genes and enhanced chondrocyte survival. The authors
therefore suggested that IGF-1 and IL-1 modulate chondro-
cyte survival and differentiation through changes in SOX-9
gene expression. Further studies have challenged this con-
cept and showed a negative correlation between COL2A1
and SOX9 gene expression. In human adult articular
chondrocytes, IL-1 had no significant influence on SOX9
mRNA expression whereas COL2A1 was significantly down-

a

c

b

Fig. 2 Effect of stanozolol on (a) COL2A1, (b) SOX-9 and (c) aggrecan gene expression in normal and IL-1β-treated equine articular chondrocytes.
Real-time-PCR analysis of the above genes mRNA in monolayer cultures exposed to media, IL-1β, IL-1β + stanozolol and stanozolol. GAPDH was
used as the housekeeping gene and data are represented as relative expression using the 2–ΔΔCT method. Data were evaluated using a general
linear model with Dunnet’s comparisons against the control group and pairwise comparisons with Bonferroni’s adjustment (n = 7, three technical
replicates per treatment group)
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regulated. The same experiment also demonstrated that
IGF-I up-regulated COL2A1 expression, but not SOX9 [47].
In our study, treatment with IL-1 and stanozolol, alone or in
combination, did not alter SOX-9 gene expression in com-
parison to control. IL-1 did not downregulate SOX-9 as pre-
viously reported, had no effect on COL2A1 and
downregulated aggrecan expression. Furthermore, treatment
with stanozolol supressed COL2A1 without affecting SOX-9
gene expression. Our results suggest that COL2A1 and
aggrecan gene expression are not correlated with the expres-
sion of SOX9 in equine articular chondrocytes and that
treatment with stanozolol does not elicit an anabolic re-
sponse through the upregulation of SOX-9, COL2A1 or
aggrecan.
Both COL2A1 and aggrecan are important structural

genes essential for cartilage integrity and formation. Sta-
nozolol has been shown to increase collagen synthesis in
cultures of human dermal fibroblasts [25]. The decrease
in COL2A1 levels, which we have observed when chon-
drocytes were treated with stanozolol, goes against what
has been reported in human dermal fibroblasts, and is
similar to that reported by Knych et al. [43] in synovial
fluid and Richardson and Dodge [38] in articular chon-
drocytes following treatment with corticosteroids. In the
present study, aggrecan expression was downregulated by
IL-1β and treatment with stanozolol did not ameliorate
the IL-1 inhibition of aggrecan, which is also in accord-
ance with what has been reported with corticosteroids
[38]. Furthermore, the downregulation of COL2A1 in-
duced by stanozolol in this study warrants careful consid-
eration of its intra-articular use as it may suggest
deleterious effects on cartilage. A limitation of our study is
the use of a short-term in vitro system and different re-
sults may have been obtained with longer exposure times
or with repeat exposures mimicking what has been de-
scribed in clinical trials. Additionally, this study used
chondrocytes and not cartilage explants. However, we
used freshly isolated chondrocytes plated at high density
in order to reduce dedifferentiation of chondrocytes in cell
culture which can results in an altered phenotype. Future
studies using cartilage explants are needed.
The similarities between the anti-catabolic effects of

stanozolol and corticosteroids might be associated with
the previously reported affinity of AAS for the gluco-
corticoid receptors [48]. Alternative pathways through
which AAS might be able to exert an anabolic effect on
articular tissues merit further investigation; and a plaus-
ible explanation for the lack of anabolic activity in our in
vitro system might be related to a single and short-lived
exposure time. Further studies investigating the systemic
effects of a low intra-articular dose of stanozolol and its
local effects on articular tissues with naturally-occurring
OA are warranted. The use of AAS is banned by the
main organizations overseeing drug regulation in sport,

therefore its use should only be considered in non-
competing individuals.

Conclusions
Stanozolol has been described as having disease-modifying
activity by attenuating the degenerative response in osteo-
arthritic cartilage in in vivo studies. The results of our in
vitro study support the hypothesis that stanozolol has an
anti-inflammatory effect and is effective at inhibiting the pro-
duction of pro-inflammatory mediators in both normal and
IL-1 treated chondrocytes. However, in our in vitro system
there is no evidence of stanozolol having an anabolic effect
through upregulation of SOX-9, COL2A1 and aggrecan gene
expression.
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