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Abstract

Background: In an era of ubiquitous electronic collection of animal health data, multivariate surveillance systems
(which concurrently monitor several data streams) should have a greater probability of detecting disease events than
univariate systems. However, despite their limitations, univariate aberration detection algorithms are used in most
active syndromic surveillance (SyS) systems because of their ease of application and interpretation. On the other hand,
a stochastic modelling-based approach to multivariate surveillance offers more flexibility, allowing for the retention of
historical outbreaks, for overdispersion and for non-stationarity. While such methods are not new, they are yet to be
applied to animal health surveillance data. We applied an example of such stochastic model, Held and colleagues’
two-component model, to two multivariate animal health datasets from Switzerland.

Results: In our first application, multivariate time series of the number of laboratories test requests were derived from
Swiss animal diagnostic laboratories. We compare the performance of the two-component model to parallel
monitoring using an improved Farrington algorithm and found both methods yield a satisfactorily low false alarm rate.
However, the calibration test of the two-component model on the one-step ahead predictions proved satisfactory,
making such an approach suitable for outbreak prediction. In our second application, the two-component
model was applied to the multivariate time series of the number of cattle abortions and the number of test requests
for bovine viral diarrhea (a disease that often results in abortions). We found that there is a two days lagged effect from
the number of abortions to the number of test requests. We further compared the joint modelling and univariate
modelling of the number of laboratory test requests time series. The joint modelling approach showed evidence of
superiority in terms of forecasting abilities.

Conclusions: Stochastic modelling approaches offer the potential to address more realistic surveillance scenarios
through, for example, the inclusion of times series specific parameters, or of covariates known to have an impact on
syndrome counts. Nevertheless, many methodological challenges to multivariate surveillance of animal SyS data still
remain. Deciding on the amount of corroboration among data streams that is required to escalate into an alert is not a
trivial task given the sparse data on the events under consideration (e.g. disease outbreaks).
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Background
Animal health surveillance provides scientific and factual
evidence that is critically essential to inform decisionmak-
ing, and to motivate timely and appropriate animal health
action [1]. An obvious specificity of animal health surveil-
lance data is that they come from different species and
different environments (e.g. wild animals, companion ani-
mals, and livestock). For the purpose of this paper, we
will focus on the latter, i.e. through surveillance, we are
interested in detecting health changes at all levels of the
complex web that is a food production system, made up
of sub-populations which are constantly moving around
between farms to markets and slaughter.
Few stories illustrate the importance of early event

detection for efficient disease control better than the 2001
foot-and-mouth epidemic in the UK. The 3 weeks delay
in clinical detection of the virus by surveillance systems
allowed the virus to spread across the country unnoticed.
Ultimately, over 6.5 million livestock were slaughtered
for disease control purposes, putting the estimated total
cost of the epidemic at £8 billion [2]. Healthy animals
contribute to public health by providing safe food and
preventing contact between people and infectious ani-
mals carrying zoonotic pathogens. Healthy animals also
contribute to strong rural agricultural economies. Being
free from many animal diseases reduces the losses from
disease (including lost animals and production), the cost
for controlling diseases, and increases the quality of ani-
mal derived products, thereby making agriculture more
competitive. Being free from animal diseases that prevent
international free trade also opens market opportunities
to farmers.
National veterinary services navigate “waters of bud-

getary restraint, strewn with the flotsam of competing
issues”, in efforts to understand, control and eliminate
complex disease situations [3]. Active surveillance meth-
ods, i.e., collecting data according to a defined plan
relating to a particular condition, form the backbone of
animal health surveillance systems and require significant
investments in terms of resources and persons. Surveys
to substantiate freedom from disease, routine serologi-
cal surveillance for foreign animal diseases in sentinel
farms or sampling of wildlife are all very costly and
time-consuming. At the same time veterinary services
are more and more confronted with limited resources.
The development of cost-effective tools for animal dis-
ease and food safety surveillance is therefore of priority
to decision-makers in the field of animal health [4]. Rapid
advances in bioinformatics and data mining in the last
decade have resulted in an increasing amount of data
directly or indirectly related to animal health being col-
lected and stored in very diverse databases. Some of these
databases are curated by governmental organisations at
national and regional levels; while others (e.g. production

and reproduction data) are maintained by, and for the
benefit of the livestock industry and affiliated businesses
(e.g. veterinary practice). Most of these data are used for
administrative or economic purpose. However, they could
be used in the passive surveillance of animal health as part
of an integrated syndromic surveillance (SyS) system. The
goal of SyS is to monitor non-specific health indicators
(termed “syndromes”) in a continuous real-time fashion
in order to detect disease outbreaks earlier; and more
rapidly characterise them than traditional notifiable dis-
ease methods [5]. Temporal aberrations in the occurrence
of pre-defined syndromes are detected using algorithms
that produce alerts when such syndromes occur more
often than expected by chance. By definition, SyS does not
target specific diseases as it is based on health data col-
lected before a diagnostic has been made for individual
cases. This is why alerts should be followed with epi-
demiological investigations that will identify the hazard
present. Beyond outbreak detection, SyS, more gener-
ally, contribute to timely and accurate population health
situation awareness.
Multivariate SyS systems (which concurrently monitor

several health-related data streams) have greater sensitiv-
ity and are more reliable than univariate systems [6]. Not
only does no single data source capture information from
all the individuals involved in an outbreak; the informa-
tion recorded is only partial and unspecific. For example,
some diseases will cause a wide variety of clinical symp-
toms in different people or animals (e.g. diarrhea in some,
fever in others) and/or will affect different strata of the
population (e.g. different age or production groups). Since
there is often different information contained in observa-
tions from different data sources, SyS systems should be
multivariate by nature, i.e. simultaneously evaluating vari-
ous combinations of multiple datasets. A SyS continuously
screening multiple data streams may appeal to decision
makers as consistent evidence may be used to suggest
inferential accuracy.
Despite this demonstrated advantage [7], most opera-

tional SyS systems usually run multiple univariate aber-
ration detection methods, each focused on detecting an
unexpected increase in the times series of a particular
syndrome (e.g. The Electronic Surveillance System for
the Early Notification of Community-Based Epidemics
ESSENCE II [8]). Univariate aberration detection algo-
rithms have the advantage of ease of application and
interpretation: they employ hypothesis testing to provide
systematic alert protocols. However, univariate methods
are less sensitive to changes in disease incidence and suffer
from a higher rate of false alerts, causing users to ignore
alerts when they occur all the time. Furthermore, most
univariate aberration detection algorithms, such as sta-
tistical process control methods, cannot adequately deal
with the specificities of surveillance time series such as
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the presence of strong seasonality or trends. These pre-
dictable effects must first be modelled and removed from
the data, a step called pre-processing [9]. A historical
baseline free of outbreaks is also necessary in order to
be able to create models of expected behavior. This often
constitutes a real challenge as most outbreaks may not
be labelled, nor will their shape and magnitude be known
[10]. On the other hand, a stochastic modelling-based
approach to outbreak detection offers more flexibility,
allowing for the retention of historical outbreaks, for
overdispersion (low counts are typical), non-stationarity
(e.g. decrease following an intervention) and the possibil-
ity to base the alarm system on the predictive distribution
(i.e. performing outbreak prediction one time step ahead)
[11]. While such methods are not new, they have only
recently received attention in the field of public health
surveillance [12] and are yet to be applied to animal health
surveillance data.
The aim of this paper is to apply an example of

such stochastic model, namely Held and colleagues’ two-
component model [11], to two multivariate animal health
datasets from Switzerland in order to 1) evaluate its per-
formance under different properties- namely time align-
ment versus time mis-alignment of the events under
surveillance; 2) and assess its calibrations under outbreak
prediction surveillance scenarios. We start our Meth-
ods section by providing a succinct review of aberration
detection methods (with a focus on multivariate meth-
ods), developed within the context of prospective SyS
surveillance. We then explain the two-component model
in more details before showing, in the Results section, its
outbreak prediction performance compared to univariate
models when applied to Swiss diagnostic laboratory data
and cattle abortion data. In the Discussion, we share our
experience of the methodological challenges encountered
when attempting to apply multivariate methods to animal
SyS data.

Methods
Prospective univariate surveillance
Outbreak detection
A comprehensive review of univariate statistical methods
for prospective outbreak detection was compiled by [13].
In summary, the outbreak detection statistical process can
be viewed as a two-step hierarchical model:

• In step 1, the data (e.g: counts, incidence rates, . . .)
are modelled in order to obtain a prediction for each
time point t, Yt ∼ distr(μt , σ 2

t ), where μt and σ 2
t are

the mean and variance. This step requires the
training data to be free of historical disease outbreaks
in order to determine ‘typical’ background behaviour
against which the presence of abnormalities can be
investigated [10].

• In step 2, the observed value at t is assessed against a
prediction threshold, derived from the model in step
1, to define whether an alarm should be triggered.

Parametric regressions are commonly used in step 1. For
example, Serfling’s method, a cyclic regression model, is
capable of dealing with time trends and seasonal varia-
tions [14], and is the standard Center for Disease Control
algorithm for flu detection. The method developed by
[15], based on a quasi-Poisson regression, is routinely
used by Health Protection Agency in UK. Semiparamet-
ric methods, such as the combined use of Gaussian kernel
smoothers with generalised additive models as in [16], are
also available. The threshold (ut) above which an alarm is
triggered in step 2, can be defined in different ways: it can
be defined as the upper prediction limit ut = μ̂t + kσ̂t
(where k > 0 is a parameter to control the size of the
aberration), or based on 2

3 -power transformation in the
methods of [15, 17].
Statistical process control (SPC) charts also have a long

history of application in public health surveillance. Cumu-
lative sums (CUSUM), Exponentially Weighted Moving
Averages (EWMA), and Shewhart control charts are rou-
tinely used for early disease detection on data from diag-
nostic laboratories in Sweden and parts of Canada [18].
Assuming that Yt follows a normal distribution,

Yt ∼ N(μt , σ 2
t ), the one-sided (standardised) Gaussian

CUSUM at t is defined iteratively by

Ct = max
(
0,Ct−1 + yt − μt

σt
− k

)
, (1)

where C0 = 0, k > 0 and the threshold h are the two con-
stants that depend on the size of the aberration of interest.
The parameter k is often chosen to be 1/2 [19] while h
will depend on the desired false alarm rate. A CUSUM
approach for count data [20–23] is implemented in R:
surveillance [24] and R:vetsyn [25] packages.

Outbreak prediction
Outbreak prediction algorithms differ from their outbreak
detection counterparts in two major ways. First, mod-
els are fitted using the whole historical data available, i.e.
without removing data linked to past disease outbreaks.
They have the feature to model epidemics. Second, the
alarm system is based on the predictive distribution itself
instead of comparing the observed value to a threshold.
One example is the two-component model proposed by
[11] for univariate analysis, later extended to multivari-
ate modelling by [26]. The two-component model can be
based on Poisson- or negative binomial distributed obser-
vations. Its first component is parameter-driven and links
latent endemic seasonal patterns to disease incidence. Its
second component is observation-driven and is based on
the number of disease cases at previous time points.
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Outbreak prediction has many advantages over out-
break detection. Since in step 1, the model does not
require the removal of disease outbreaks from the data, it
is based on all available historic information, unlike many
other algorithms that ignore a large percentage of the data
in order to avoid having to deal with seasonal effects.
Furthermore, selection of a suitable model can be per-
formed through the Akaike information criterion (AIC)
or the Bayesian information criterion (BIC). The quality
of the predictions can be assessed based on several diag-
nostic tools. Proper scoring rules have been applied in
[27] to evaluate the predictions, which measure the pre-
dictive quality by assigning a numerical score, based on a
stated predictive distribution and the later observed true
value. The scoring rules are preferred by [28] to check
the predictions frommixedmodels which include random
effects for multivariate modelling. There are three com-
monly used proper scoring rules: the logarithmic score
(LS) [29], the Dawid-Sebastiani score (DSS) [30] and the
ranked probability score (RPS) [31, 32]. LS is the negative
log-likelihood evaluated at the actual observation; DSS
is the standardised difference between the actual obser-
vation and predictive mean value plus a penalty of the
predictive variance; RPS is the sum of the Brier scores
[33] for binary predictions at all possible thresholds. Cali-
bration tests are developed in [34] to check the statistical
consistency between observed values and their predic-
tions. Such tests can be constructed based on the proper
scoring rules and interpreted so that small p-values signify
poorly calibrated predictions.
In step 2, outbreak prediction methods will raise a sta-

tistical alarm earlier than outbreak detection methods. An
alarm is triggered based on the prediction instead of com-
paring the observed number with a predefined threshold.
An alarm can be triggered at time t if the predictive prob-
ability that more than ut cases will be reported is bigger
than θ :

Pr(Yt > ut) > θ . (2)

Here, the two threshold ut and θ can be chosen to
control the false alarm rate or be based on expert opin-
ion. Alternatively, an alarm can be triggered based on a
sequential Monte Carlo change point algorithm as in [35,
36]. This method can be applied to the epidemic com-
ponent which is allowed to change over time [27] from
one-step-ahead forecast distributions. Sequential particle
filter algorithms have been applied in this setting in [37].

Multivariate surveillance
Diseasemapping and clustering
Point-pattern methods on spatio-temporal data can be
used to assess whether disease cases are clustered, to iden-
tify areas of elevated disease risk and to generate hypothe-
ses regarding disease etiology [38]. Numerous methods

of spatial cluster detection have been published (see [39]
for a review), including spatial point process summary
methods [40], nearest neighbour methods [41], and local
rate scanningmethods [42]. Most of these methods can be
implemented within freely available software: the K func-
tion and kernel intensity function within R [43], Cuzick
and Edwards’ method [44] within ClusterSeer® (BioMed-
ware Inc. 2011), and Kulldorff ’s scan statistic [45] within
SaTScan [46].
A multivariate scan statistic was developed in software

SaTScan to allow the detection of clusters in either a sin-
gle or multiple datasets (without having to pre-specify
which ones). Such multivariate approach can be useful
to detect different sources related to the same pathogen
or whether a common environmental hazard exists.
Space-time scan statistics have further been extended
using Bayesian methods as in the multivariate Bayesian
scan statistics [47]; the Bayesian-network-based spatial
scan statistic [48]; and the anomalous group detection
methods [49].
Multivariate disease models may be considered to

describe the space-time behaviour of diseases when the
different datasets are correlated (influenced by com-
mon confounding factors). The multivariate conditional
autoregressive (MCAR) model [50] and the shared com-
ponent model [51] are the two main approaches to model
disease risk correlations across both spatial units and
diseases. However, spatial surveillance is only a special
case of multivariate surveillance. Comparatively speaking,
non-spatial data aggregation methods have received little
attention.

Parallel monitoring ofmultivariate series
Parallel monitoring is often used on time series of a similar
syndrome originating from multiple data sources, assum-
ing that all the time series are independent and ignoring
the correlation and interaction structure among them.
Aberration detection algorithms are applied separately to
each time series and an alert may be raised depending
on how many statistics exceeds a limit and how the sep-
arate results are combined. The statistical challenge is to
retain sensitivity while limiting the number of false alerts
arising frommultiple testing. Multiplicity adjustments are
necessary to control the overall type I error, by applying
a Bonferroni-type procedure [52] for example. A variant
of parallel monitoring consists in combining the p-values
to produce a single p-value by applying Edgington’s con-
sensus method [53] for multiple experiments, or Fisher’s
method of p-value aggregation [54]. Other authors pro-
pose rules to combine alarms [7]; the use of detection
limits to generate an overall score representing the “sever-
ity” of any alarm [55]; or an approach using Bayes Belief
Networks for combining univariate algorithm output [56].
Yet a different approach, [57] validated the use of multiple



Vial et al. BMC Veterinary Research  (2016) 12:288 Page 5 of 17

sources of routinely collected data in order to develop
a weighting score system, the Continuous Cattle Health
Monitor, which can be used to systematically (quarterly in
this study) detect herds with poor cattle health, and direct
surveillance efforts.
The main drawbacks of parallel monitoring are as fol-

lows:

• the different time series must be independent from
one another, an assumption which is often violated
with surveillance data. In our example, it would be
fair to assume that the numbers of test requests
received by the different diagnostic laboratories are
not independent from one another.

• no extra knowledge about the health situation in the
population is be gained when considering multiple
sources of evidence in parallel (instead of jointly).

• the rate of false positives increases with the number
of time series monitored.

The problem of multiple testing over units has been
addressed by [58], as well as time by estimating the false
discovery rate (FDR-proportion of all alarms detected
that are false) for multiple units over a fixed surveil-
lance period. As an alternative, a signalling procedure has
been proposed by [59] to control the FDR. SPC critical
thresholds depend on the data and thus change over time,
“which can make the technique difficult to justify to a
general audience” [60].
Even when spatial monitoring is not explicitly applied,

the monitoring of multiple, parallel time-series can be
used to deal with the availability of data over large spa-
tial scales, with counts being grouped for specific regions.
For example, [61] used hierarchical time series statis-
tics, which account for the hierarchical spatial structure
when grouping observations into different geographi-
cal scales. [62], on the other hand, monitored mor-
tality rate in each of 1125 hexagons, into which
France had been divided, and identified, weekly, which
hexagons presented excessive mortality compared to
the expectation of a Poisson regression model cali-
brated with historical data. They then applied special
scan statistics to detect clusters of hexagons with high
mortality.

Dimension reduction
An alternative to monitoring a large number of univari-
ate time series is to try and reduce the number of random
variables considered. Several approaches have been sug-
gested to achieve a reduction of dimensionality. The sum
or another linear combination of the variables, or princi-
pal components may be used instead of the original data
variables [63, 64]. SPC methods are then applied to this
single statistic [65]. The work presented in [66] would be
a recent example of dimension reduction method used

in animal SyS. In this example, assuming that the three
sources of evidence were conditionally independent, the
time series of nervous syndromes in horses, the time series
of mortality in adult horses and the time series of the
number of necropsied wild birds were added to provide
evidence for or against the hypothesis of a West Nile
outbreak.
Dimension reduction methods applied to surveillance

suffer from several drawbacks: 1) by combining the infor-
mation contained across all variables; we may lose some
valuable health-related information contained in only one
time series. For example, samples from an aborted cat-
tle foetus sent to diagnostic laboratories may be tested
for bovine viral diarrhea, infectious bovine rhinotra-
cheitis, Q-fever or brucellosis as all four diseases can
cause abortions. It is possible to reduce the dimension
of our surveillance by combining the counts from all
four time series and applying SPC methods. This aggre-
gated time series would still allow us to detect early
signs of an abnormal increase in the number of abor-
tions which may signify a disease outbreak. However,
the aggregated time series will not provide us with the
information of which test request(s) increase, the knowl-
edge of which would impact the ensuing epidemiological
investigation and potential containment measures. 2) The
variables monitored may be recorded using different units
and it may not be possible to find a common scale. 3)
Even when the variables are recorded on the same scale,
they may exhibit different relationships to the underly-
ing unobserved disease process. For example, daily counts
of cattle births and cattle deaths should not be aggre-
gated as most diseases would lead to a decrease of the
former and an increase of the latter. 4) Finally, the covari-
ance matrix of the input data streams will highly depend
on a recent estimate [67]. More sophisticated methods
of dimension reduction, termed “sufficient reduction”,
will not reduce the information but still allow a joint
solution to the full surveillance problem. However, the
sufficient reduction solution cannot be applied to all mul-
tiple data streams, some further discussion can be found
in [68].

Vector accumulation
The accumulated information from each time series is
used by a transformation of the vector of component-wise
alarm statistics into a scalar alarm statistic [65]. Multi-
variate SPC methods [69], such as MEWMA [70] (Lowry,
Woodall, Champ, and Rigdon, 1992) and MCUSUM
[19, 71] fall into this category. They are based on the
assumption that the data or their residuals follow the nor-
mal distribution although a rank-based method or non-
parametric scheme are discussed in [72, 73]. Applications
in the field of veterinary public health and surveillance can
be found in [74, 75].
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Joint modellingmethods
Joint modelling of the original data without dimension
deduction or stepwise procedures is preferable when pos-
sible. Optimal methods can be constructed based on the
full likelihood function of multiple series when known;
although it can be complicated or require many assump-
tions. To counter this, a multivariate model has been
developed by incorporating a branching process for count
data in [76]. This model is capable of handling seasonal
effects, time trends as well as spatio-temporal interactions
(using auto regressive and neighbourhood effects). This
model was further extended to analyse surveillance data
of several pathogens [26], and an application to animal
health surveillance can be found in [77, 78]. For a recent
review and details on software see [79].

Results
Number of postcodes sending test requests to two
laboratories
Laboratory test requests can be suitable for animal SyS
[55] if laboratories collect and store the data in an auto-
mated and electronic way such as is done in Switzerland.
Using data from the Swiss Federal Food Safety and Veteri-
nary Office, we produced time series of the daily number
of unique postcodes fromwhich animal samples were sent
to the largest two animal diagnostic laboratories (termed
A and B) between 2008 and 2010. Only the data from
weekdays were modelled (laboratories rarely process test
requests at the weekend). The historic sample identifica-
tion notation system used did not allow us to establish a
direct link between samples and individual cattle. A vet-
erinarian may send 5 samples to a laboratory all originat-
ing from the same animal but being tested for 5 different
pathogens. Grouping the samples by postcode of origin
allowed us to make such a link indirectly, although it is not
possible to currently differentiate between samples com-
ing from different individuals within the same herd or
same municipality. The data were split into two parts: a
training set (2008 and 2009) used for model learning and a
validation set (2010) for outbreak detection or prediction.
The improved Farrington’s method [17] was

applied to these two time series (Fig. 1), using the
surveillance::farringtonFlexible function
[24] in the R:surveillance package, to illustrate
the application of parallel monitoring methods to the
outbreak detection problem. The algorithm takes range
values of the surveillance time series and for each time
point uses a quasi-Poisson regression with overdisper-
sion to compute a reference distribution for the current
number of cases under an outbreak-free scenario - see
[15, 17] for details. A quantile, say the 99% quantile, of
this reference distribution then served as threshold to
determine if the actual observation is unusually high:
If the observation is above the bound, then an alarm is

raised. In order to control the overall type I error, we
applied a Bonferroni adjustment and defined the upper
bound based on the 99.5% percentile corresponding to
a 0.005 significance level for each time series, half of
the significance level 0.01 used in [17]. Data from the
same weekday (e.g. Monday, Tuesday, ..., Friday) in the
previous five weeks was included as historical data. An
alarm was flagged (denoted by a red triangle on Fig. 1)
on days for which the observed count was higher than
the upper prediction threshold (blue line). Under these
settings, two alarms were flagged for laboratory A and
one alarm in laboratory B. Noting that one of the two
alarms for laboratory A was close in time to the alarm
raised for laboratory B, we decided to investigate possible
interdependencies between the two time series using a
joint modelling approach.
To that effect, we applied the two-component model

to the laboratory data to predict outbreaks as discussed
in Section “Outbreak prediction”. The full likelihood was
assumed to follow a negative binomial distribution con-
ditional on previous data, and the two time series were
assumed to be conditionally independent. We denoted by
XA,t and XB,t the number of cases in Laboratory A and
B, respectively, in weekday t, conditional on the number
of cases xA,t−1 and xB,t−1 one weekday earlier (with time
index t − 1). The joint model was defined as

XA,t|xA,t−1, xB,t−1 ∼ NBin(μA,t ,ψA)

XB,t|xA,t−1, xB,t−1 ∼ NBin(μB,t ,ψB), (3)

where ψA or ψB were the overdispersion parameters. The
means were modelled as

μA,t = νA,t + λA xA,t−1 + φ xB,t−1 (4)
μB,t = νB,t + λB xB,t−1 + φ xA,t−1, (5)

where νA,t and νB,t were the endemic components,
λAxA,t−1 and λBxB,t−1 were the epidemic components
considered as autoregressive effects, and φxA,t−1 and
φxB,t−1 referred to the neighbourhood component repre-
senting the interactive effects from the other laboratory.
The endemic component νj,t was modelled by includ-
ing the time trend, yearly fluctuation and a weekday
effect [80]:

log νj,t = αj,tt +
S∑

s=1
(δs sin(ωst) + γs cos(ωst))

+αj,Monday +αj,Tuesday + αj,Wednesday +αj,Thursday

+ αj,Friday, (6)

where j = A or B and ωs = 2πs/260, because there are
260 weekdays in one year. The data from the two lab-
oratories shared the same seasonality, as modelled by a
sine/cosine function. The neighbourhood effect parame-
ter φ was assumed to be equal because we assumed the
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Fig. 1 Outbreak detection. Statistical alarms (red triangles) raised by the improved Farrington algorithm applied to the time series of test requests
(black bars) for laboratories A and B in 2010. Alarms are raised when the number of test requests on a given day exceeds the 0.995 percentile (blue
dashed line)

interactive effect was similar in both directions between
Laboratory A and B. In contrast to outbreak detection,
model selection based on Akaike information criterion
(AIC) was possible, because it was based on the all his-
torical data from 2008 to 2009. The model with S = 2
was selected with the smallest AIC (for S = 1, 2, 3, the
corresponding AICs were 5151.9, 5148.8 and 5151.6).
The effect of the different components in such a model

can be quantified to further understand disease dynam-
ics. Parameter estimates from the model with S = 2 are
shown in Table 1. Parameters in the upper part of the table
were fixed at the same value for both Laboratory A and
B, while the laboratory specific parameters are shown in
the lower part. The decomposition of the fitted values into
the endemic (in grey color), the epidemic/autoregressive
(in blue) and the neighbourhood/interactive (in orange)
components (upper panel) are shown in Fig. 2a & b, while
the observed numbers are plotted as dots. Both time
series exhibited a time trend: the number of unique loca-
tions requesting tests increased over time for laboratory
A (αt = 0.001) but decreased over time for laboratory B
(αt = −0.001). No evidence for an interaction was found
(φ = 0). The parameters ψ for laboratory A and B were
large compared to the predictive means from the mod-
els, indicating that there is no strong overdispersion in the
data.

A model-based approach to outbreak prediction would
now be based on the one-step-ahead probabilistic fore-
casts. Good quality of the predictions is essential for the
appropriateness on this approach. Proper scoring rules
are commonly used to evaluate the quality of probabilistic
forecasts [32]. A scoring rule imposes a penalty on the dif-
ference between the observation and the point prediction,
the smaller the value is, the better the forecast is. Here
the one-step-ahead predictions for the year 2010 have
been evaluated using three commonly used proper scor-
ing rules: LS, DSS and RPS. Generally it is very difficult
to interpret the score value and the difference of the two
scores. Hence we apply calibration tests based on these
scoring rules to investigate if there is evidence for miscal-
ibration [34, 81]. The p-values from the three calibration
tests based on RPS, LS and DSS were large (0.60,0.93,0.59
for Laboratory A and 0.61,0.64,0.47 for Laboratory B). The
p-values did not show any evidence of the predictions
from this model being poorly calibrated, thereby vali-
dating our choice of a model-based outbreak prediction
approach.
Figure 3 illustrates the one-step-ahead predictions for

the year 2010 as well as the alarms generated from the
joint model. The grey bar shows the mean of the predic-
tive distribution at each time point while the black dots
are the observed numbers. The blue line is the probability
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Table 1 Estimates with standard error (S.E.) of the parameters
from the joint two-component model (S = 2) in Eqs. (4) - (6)
applied to the daily numbers of postcodes sending test requests
to two diagnostic laboratories

Parameter Laboratory A Laboratory B

Estimate S.E. Estimate S.E.

φ 0.000 0.000

δ1 0.149 0.031

γ1 0.063 0.031

δ2 0.057 0.030

γ2 −0.058 0.030

Laboratory specific

λ 0.042 0.035 0.030 0.036

αt 0.001 0.000 -0.001 0.000

αMonday -0.106 0.107 1.293 0.075

αTuesday 0.165 0.098 0.976 0.095

αWenesday 0.364 0.095 0.833 0.093

αThursday -0.011 0.110 0.882 0.086

αFriday -0.109 0.107 1.068 0.081

ψ 7.388 2.187 29.391 23.563

Parameters for Laboratory B in the upper part are empty because they are the same
as those for Laboratory A: φ is the interactive parameter from the other laboratory;
δ1 to γ2 are the parameters of sine and cosine function to adjust for the seasonal
pattern. In the lower part of the table, parameters are different between Laboratory
A and B: λ is the auto-regressive parameter; αt is the time trend; αMonday to αFriday
refer to weekday effect and ψ is the overdispersion parameter

of more than three locations sending test requests the
following weekday. According to the alarm definition in
Section “Outbreak prediction”, we set ut = 3 and θ = 0.5
in (2). In Fig. 3, the predictive numbers were plotted as
grey bars and the observed number as black dots, the
probability that Pr(Yt > 3) was plotted as a blue line. If
Pr(Yt > 3) > 0.5, an alarm is flagged. No alarms were
raised in either time series. In practice, the threshold of
probability applied in practice could be chosen based on
expert opinion. Increasing it will further decrease the false
alarm rate, while decreasing it will increase the model’s
sensitivity.

Joint modelling of time series with misalignment
An outbreak of disease in the population would produce
signals in the time series at different times. In reality,
the data time lag will often be different in different data
sources. This is true for public health data but perhaps
even more common in animal health surveillance data.
A disease outbreak (e.g. in dairy cows) is best conceived
as a chain of events through time: we may first observe
an increase in the number of animals presenting fever,
followed a few weeks later by an increase in the num-
ber of abortions reported, and even later an increase in

the number of carcasses condemned at slaughter. The
optimal surveillance method may depend on both the
dependency between the monitored processes and the
correlation between the time points when the changes
occur [82]. For example, parallel surveillance works well
when the changes occur far apart but a dimension reduc-
tion approach [83] is optimal when the changes occur very
close in time to one another. For intermediate, but known,
time-lags, an approach combining reduction by time and
reduction by variable should be explored [65]. This “time
alignment issue”, discussed in [6], poses a real problem as
such delays are hard to quantify and will vary depend-
ing on the disease and/or the population. The first step
would be to explore the lagged correlations among the
time series. Lagged correlation between time series can
be estimated in the absence of outbreaks by making some
assumptions [56, 84]. But it may not be representative of
true correlation in the presence of disease.
Let’s illustrate with an example from animal health

surveillance. Because of processing and transporting
delays, it is reasonable to expect that the number of sam-
ples (e.g. aborted material) sent to official diagnostic lab-
oratories will increase later than the number of abortions
recorded on farms. The research question of interest is to
quantify how large such time lag is. We extracted the daily
number of cattle abortions from the Swiss system for the
identification and registration of cattle [85] and the daily
number of test requests for bovine viral diarrhea (BVD-
a disease that often results in abortions) sent to all offi-
cial diagnostic laboratories between 2009 and 2011. The
joint model was applied in order to determine the time
misalignment between the two series denoted as XAbor,t
for the number of abortions and XTest,t for the number
of test requests. Similar to the method in Section“Num-
ber of postcodes sending test requests to two laboratories”,
XAbor,t and XTest,t followed negative binomial distribu-
tions NBin(μAbor,t ,ψAbor) and NBin(μTest,t ,ψTest) respec-
tively conditional on the previous data with

μAbor,t = λAbor XAbor,t−1 + φAbor XTest,t−r + νAbor,t ,
μTest,t = λTest XTest,t−1 + φTest XAbor,t−r + νTest,t . (7)

Neighbourhood effects allowed the interactive effects to
be different with different lags r in both directions :φAbor
from the number of tests to the number of abortions and
φTest from the number of abortions to the number of tests.
In this method we can include the interactive effect with
lags r = 1, 2, . . . , 5 and the lags included are set as the
same for the two series for the sake of simplicity. The data
from 2009 and 2010 were retained as a learning dataset
while the data from 2011 were used as a validation dataset.
As in Section “Number of postcodes sending test

requests to two laboratories”, the weekday effect and
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a

b

Fig. 2 Components of joint model. Observed daily number of test requests (black circles) and fitted values from the joint two-components model
applied to data from laboratories A (a) and B (b). The fitted values can be decomposed into three components: an endemic component (grey), an
epidemic/auto-regressive component (blue) and a neighbourhood/interactive component (orange). In this example, the interactive component is
weak (close to zero) and as such not clearly visible
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Fig. 3 Outbreak prediction. One-step ahead predictions (grey line) and the probability that more than three locations send test requests to a
laboratory on a given day (blue line) are shown. A statistical alarm would be raised should that probability be over 0.5 (none were raised for 2010)

seasonality were included in the endemic component, for
each time series j = Test or Abor,

log νj,t =
S∑

s=1
(δj,s sin(ωst) + γj,s cos(ωst))

+ αMonday,j +αTuesday,j +αWednesday,j +αThursday,j

+ αFriday,j, (8)

and where ωs = 2πs/260 (approximately 260 weekdays
in one year). The best model retained the weekday effect
and a seasonal effect with S = 1 but no time trend (details
are not shown here). Table 2 shows the estimated neigh-
bourhood effects φ and their standard error. As expected,
we did not find any evidence of an effect of the num-
ber of test requests on the number of abortions, since all
estimates of φAbor were close to zero. However, there was
some evidence for an effect of the number of abortions
two days earlier (r = 2) on the number of test requests
with estimate φTest = 0.048 and 95% confidence interval
(0.002,0.091). In addition, the model with r = 2 fitted

the data best according to AIC. We further compared this
result with the univariate modelling of the number of test
requests which included the same model as in (8) but
without the neighbourhood effect. The fitting results from
the two models are shown in Fig. 4a & b. The proper scor-
ing rules for the one-step-ahead predictions from the two
models are shown in Table 3. The RPS and LS scores of

Table 2 The estimated neighbourhood effect φ of the joint
two-components model (S = 1) applied to the daily number of
reported cattle abortions (Abor) and laboratory test requests
(Test) for BVD. The different time lags r (in days) and the
corresponding AIC values are presented

lag φTest(S.E.) φAbor(S.E.) AIC

r = 1 0.000( 0.000) 0.000( 0.000) 13002.9

r = 2 0.048( 0.022) 0.000( 0.000) 12998.2

r = 3 0.005( 0.023) 0.030( 0.056) 13000.3

r = 4 0.017( 0.021) 0.013( 0.056) 13000.4

r = 5 0.009( 0.023) 0.000( 0.000) 13000.9
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a

b

Fig. 4 Joint modelling of time series with misalignment. Fitted values, and their decomposition into endemic (grey), epidemic (blue) and interactive
(orange) components, from the joint model applied to the time series of the daily number of test requests for BVD with (a) and without (b) the
lagged daily number of cattle abortions are shown
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Table 3 Average proper scores for the one-step-ahead
predictions for the number of laboratory test requests from 1) the
joint model accounting for the lagged number of reported
abortions, and 2) the univariate model not accounting for the
number of reported abortions

With abortion Without abortion

Mean (p-value) Mean (p-value)

RPS 3.71 ( 0.088 ) 3.74 ( 0.09 )

LS 3.27 ( 0.002 ) 3.28 ( 0.003 )

DSS 4.93 ( 0.002 ) 4.93 ( 0.003 )

the joint model were slightly smaller than those from the
model without the number of abortions, indicating that
the joint model is better. However, the differences in score
values were not big and the mean DSS scores, rounded to
two decimal places, were in fact the same. That is because
the univariate model (with the overdispersion parame-
ter ψ = 4.99) accommodates larger forecast variances,
making the average scores similar to the ones from the
joint model (ψ = 4.87). The overdispersion parameter in
the joint model was larger, indicating that the predictions
from the joint model are more precise than the ones from
the univariate model. However, the p-values from calibra-
tion tests based on LS and DSS were fairly small for both
models and suggested that the predictions are not well
calibrated.

Discussion
Defining the population under surveillance in animal SyS
systems is often more complex than for public health
surveillance. Such systems have to accommodate diverse
species, production types within species (e.g. dairy versus
meat-producing cattle), different entities of interest (e.g.
individual or herd) and different professionals interacting
with the population. In animal health, most early-warning
systems are based on continuous collection and analysis
of clinical and treatment data from various sources such
as farmers themselves, veterinary practitioners, animal
health services, specialised clinics, university hospitals,
pharmaceutical companies and breeding organisations.
For example, Sikava is the Finnish electronic pig regis-
ter used for national pig health monitoring. Finnish pig
farmers submit the numbers of animals and mortality
rates, as well as drug use information, to Sikava’s medical
records. Breeding farms have additional requirements for
disease testings [86]. In Switzerland, no such centralised
clinical and treatment recording system exist, i.e. such a
system would need to be developed, at great costs before
it could be used in SyS. As budget restrictions continu-
ously force national veterinary services to seek reductions
in the unit cost of assessing animals and animal clus-
ters [3], alternative data sources are being explored for
use in SyS. In Switzerland, these include the national

systems for the identification and registration of cattle
[85] and meat inspection data from slaughterhouses [87].
Animal SyS in Switzerland faces similar statistical issues
to health care surveillance systems. A common theme
is the variety of types of data: there may be standard-
ised (mortality or incidence) ratios, proportions, counts of
adverse events, categorical data and even qualitative ‘intel-
ligence’ thatmay need to be aggregated up a hierarchy. Yet,
as in healthcare surveillance, we experience “a demand
for methods that are straightforward to implement, can
be explained to multiple stakeholders and are robust to
potentially mediocre quality data” [60]. Many research
questions still present themselves. Here we consider four
commonly encountered multivariate data scenarios that
we believe are of importance but to which the multivari-
ate outbreak detection or prediction methods presented
above may not always be applicable.

Different temporal granularity scenario
The time series have the same data type (e.g. counts) but
different temporal resolution (e.g. daily, weekly, monthly).
As animal SyS is based on a variety of indirect health indi-
cators collected by a variety of stakeholders for purposes,
often, other than surveillance, the different indicators to
integrate in a multivariate SyS system may exhibit dif-
ferent temporal and spatial resolution. For example, in
Switzerland, data on cattle births are recorded on a daily
basis, while post-mortem meat inspection data are only
available on a monthly basis. Aggregating all data sources
to the largest resolution present (e.g. monthly) would
make possible the use of the various multivariate methods
described above but would reduce the timeliness of the
system. Time series clustering methods may be applicable
on series which exhibit a small difference in temporal res-
olution. They take into account time series trends during
periods of interest and then performs a clustering analysis
in order to highlight relationship among the different data
and their trends. A novel approach has been developed by
[88] for multivariate time series clustering using dynamic
time series segmentation and Self Organizing Maps tech-
niques, and applied to geophysical data (differing in their
sampling rate) recorded from monitoring networks at
Mt. Etna.

Different spatial granularity scenario
The time series have the same data type (e.g. all counts)
but different spatial resolution (e.g. farm-level, postcode
level, canton). There is a large spectrum of scale and units
at which animal SyS data are recorded. An individual ani-
mal (e.g. a cow or a horse) may be the unit of surveillance.
The animal unit is a window unto the collective health
status of its herd or flock. In some data sources, only a
subset of animals may have been sampled (e.g. animals
sent to slaughter) or the data from several animals may
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be pooled together (e.g. bulk milk testing). Surveillance
data may also originate from an enterprise (e.g. a market
through which animals from different herds pass) or only
be available at the regional or national level. One option
is to aggregate all spatial data to a common denomina-
tor (e.g. municipality) and to look for space-time clus-
ters using a multivariate spatial scan statistic method as
in [89].

Different data types scenario
The time series have the same time resolution (e.g. all
daily) but different data types (e.g. counts, rate, contin-
uous). In the easiest surveillance scenarios, it may be
possible to transform the count data streams into propor-
tions or rates and apply the various multivariate methods
described in Section “Methods”. Data standardization and
aggregation based on Z-scores is also discussed in [60].
Another alternative would consist in performing univari-
ate modelling of all the data streams and setting rules
of thumbs regarding the interpretation of the statistical
alarms (akin to the alarm scoring system proposed in
[90]). However, complex modelling approaches based on
Bayesian methodologies, such as the ones developed by
[91], which are much more apt to discover the interplay
among multiple and disparate syndromic data sources,
will play a big part in the future of AHSyS in which ever
more integrative information systems are put in place for
disease surveillance across domains (One Health).

Reporting delay and nowcasting
Health system users and decision makers depend on time-
liness to take appropriate action based on the urgency and
the type of responses required by the situation. However,
such system is inherently “contaminated” by the reporting
delay between the occurrence of the event, for exam-
ple, time of symptom onset or visit by the veterinarian,
and the time the report becomes available in the surveil-
lance database. Ideally, surveillance systems should be able
to deal with the occurred-but-not-reported-events prob-
lem [92]. Delay-adjusting tracking procedures, also called
nowcasts, are developing in the public health setting
[93]. Nowcasting methods are not limited to univariate
surveillance scenarios. The Bayesian hierarchical models
commonly used for forecasting [94] offer a very suitable
framework for multivariate surveillance.

Conclusions
The answer to the question “which multivariate surveil-
lance method is the best?” is the same as the answer
to the question “which univariate surveillance method
is the best?”: different methods are suitable for differ-
ent problems. The choice of which univariate method(s)
to apply will be based on the characteristics of the
time series, the length of historic data available and the

type of outbreak the SyS system must detect (Section
“Outbreak detection”). The choice of which multivari-
ate method(s) to apply will be based, additionally, on
whether all data are of the same type and granular-
ity as well as on our knowledge of the dependency
between the monitored processes and the correlation
between the time points when the changes occur (Section
“Multivariate surveillance”). Some diseases may lead to
near-simultaneous increases in two or more syndrome
monitored, in which case a reduction of dimensionality
to a univariate surveillance problem is appropriate. On
the other hand, if the syndromes monitored are expected
to “respond” independently to the introduction of a
pathogen in a population, parallel monitoring and joint
modelling may yield more satisfactory results. We favour
the latter. The model assumes that syndrome counts can
be viewed as the sum of an endemic and an epidemic
component. The proportion of the epidemic component
λt is allowed to vary over time according to a Bayesian
multiple change point model, allowing the user to model
time with occasional outbreaks or other non-stationary
features (e.g. decreased counts as a result of quarantine
or other interventions) [11]. The stochastic modelling
approach also offers more interesting possibilities of being
extended to address realistic surveillance scenarios. For
example, the inclusion of times series specific parame-
ters, such as overdispersionψ or seasonality when applied
to multivariate time series [26]. It becomes also possi-
ble to relate the endemic incidence μ or the epidemic
parameter λ to “ecological” covariates [76, 95] known to
have an impact on syndrome counts (e.g. in [87] slaugh-
terhouse size was significantly linked to carcass condem-
nation rates). A spatial extension of the model would
relate the endemic incidence νt or the epidemic param-
eter λ to area-level covariates (e.g. in [87] carcass con-
demnation rates varied between geographical regions), or
would be well suited to capture space-time dependence
caused by the spatial spread of a disease over time [76].
Setting up operational multivariate SyS systems whether
based on traditional outbreak detection algorithms or on
more complex models, requires decision making about:
(1) which combinations of data sources to test, (2) how to
achieve sensitivity over many data streams while retain-
ing manageable false alert rate frequency (see Section
“Parallel monitoring of multivariate series”), and (3) how
much corroboration among data streams is required to
achieve a threshold for escalating the information into an
alert that should require investigation [6]. The first point
is related to the more general issue of the epidemiological
evaluation of data sources used for health surveillance (see
[87] on how to evaluate data sources for SyS). One impor-
tant consideration is how well the data collected match
the required surveillance coverage in terms of popula-
tions, production types and geographic regions. Another
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consideration is timeliness. This is particularly important
for SyS systems whose objectives is the early-detection
of unexpected health events. Not only should data be
collected in near-real time on the unit of interest (e.g.
farm, laboratory), they should also be reported to a cen-
tral database in real-time for data aggregation and analysis
or they will have little value for early disease detection.
Evaluation for animal health surveillance systems and data
exist [96, 97] and should be used to quantify the useful-
ness of health and production recodring systems at the
national level (or whichever level the SyS system is oper-
ated at). It is important to recognise that timeliness should
not be treated as the be all and end all of SyS. A fully elec-
tronic system built around a centralised database is still
of limited value if the system is not reliable (functioning
without fail) or accurate (complete and correct) [98] (see
point 2 above). Finally, point 3 is not trivial given that
the understanding of the relationships between different
data streams can be poor when data are sparse and the
events under consideration (such as disease outbreaks)
occur infrequently.
The key difficulty in dealing with a multivariate sys-

tem in which time misalignment occurs (see Section
“Joint modelling of time series with misalignment”)
resides in measuring the relationship between data
sources when an outbreak occurs. For this, we need
datasets with clearly identified and delimited (in time)
health events. While such data may be more easily avail-
able or derived for large well-defined seasonal outbreaks,
the use of a small number of variables to define the occur-
rence of an outbreak may constitute a limited indicator
and result in smaller outbreaks being missed [99]. Alter-
natively, expert judgement may be used retrospectively
to determine the occurrence of events of public health
importance, often using resource-intensive epidemiologi-
cal investigation techniques.
Going back to the applications of the joint model to data

on laboratory test requests in Section “Number of post-
codes sending test requests to two laboratories”, we note
that the Farrington method has flagged three alarms in
the two time series considered. In general, several defini-
tions of what constitutes a statistical alarm are possible
for multivariate outbreak detection. We could combine
model/algorithm output from each series (each with its
own threshold) in a manner akin to [7]. The combination
process could follow a majority rule (an overall alarm is
flagged if more than half of output signaled an alarm at
time t), or a M + N rule (it is flagged only if all output
in the subset M signaled an alarm, and at least n of the
remaining output signal an alarm). Alternatively, an over-
all alarm may be triggered if the joint probability of an
outbreak across all series is higher than a fixed thresh-
old. Being able to identify why an alarm was raised by a
multivariate surveillance system is essential to guide the

subsequent epidemiological investigation. The first step
in investigating an alarm is confirmation of the signal
through the examination of individual cases that triggered
the alarm to obtain geographic (and potentially demo-
graphic) data [100]. This step may be complicated for
multivariate systems in which data streams were aggre-
gated either spatially or temporally because of differences
in their resolution. Then if the signal is determined to not
be a consequence of duplication of individual case data or
data entry error, the specificity of the signal needs to be
increased by requesting additional testing to rule specific
diseases in or out or by querying specialists about specific
conditions relating to the excess cases for example. This
second step highlights the importance of, and difficulty
in, extracting the right sort of knowledge from multi-
variate health data to focus the health services resources
after a statistical alarm is raised. One advantage of mul-
tivariate parallel surveillance is that the interpretation of
alarms is clear. Other methods, like Hotelling T2 control
chart, are not capable of distinguishing a change in the
mean vector from a change in the covariance structure for
example [69].
We conclude that many methodological challenges to

multivariate animal health SyS still remain. Some of
these challenges may require a change in the legislation
to be surmounted. For example, the ubiquitous lack of
commonly adopted data standards, make difficult data
integration across heterogeneous datasets and/or geo-
graphical regions and may only be overcome through an
official act defining such standards. Other challenges may
only be overcome after the SyS system has been opera-
tional for some time and lessons are learned by trial and
error. For example, deciding on the amount of corrob-
oration among data streams that is required to escalate
a statistical alert into an epidemiological alert is a dif-
ficult decision to take a priori given the sparse data on
the events under consideration (e.g., disease outbreaks).
While some of the desired improvements in multivariate
surveillance data collection may take some time to imple-
ment, animal health SyS experts are encouraged to already
look into stochastic modelling-based approaches to out-
break detection which address more realistic surveillance
scenarios than traditional methods such as SPC and offer
more flexibility. Methods such as the two-component
model allow for the retention of historical outbreaks;
for overdispersion; for non-stationarity; for the inclu-
sion of times series specific parameters, or of covariates
known to have an impact on syndrome counts; and for
the possibility to base the alarm system on the one-step-
ahead predictive distribution rather than comparing the
observed number with a predefined threshold, potentially
expediting the detection of events of veterinary public
health interest and the implementation of containment
measures.



Vial et al. BMC Veterinary Research  (2016) 12:288 Page 15 of 17

Abbreviations
AIC: Akaike information criterion; BIC: Bayesian information criterion ; BVD:
Bovine viral diarrhea; CUSUM: Cumulative sums; DSS: Dawid-Sebastiani score;
EWMEA: Exponentially weighted moving averages; FDR: False discovery rate;
LS: Logarithmic score; MCAR: Multivariate conditional autoregressive;
MCUSUM: Multivariate cumulative sums; MEWMEA: Multivariate exponentially
weighted moving averages; MSPC: Multivariate statistical process control; RPS:
Rank probability score; SyS: Syndromic surveillance; SPC: Statistical process
control

Acknowledgements
We thank the Swiss Federal Food Safety and Veterinary Office for providing
Flavie Vial with the data. We also thank John Berezowski for our fruitful
discussions on the topic. Financial support from Swiss National Foundation
(SNF) is greatly acknowledged.

Funding
WW’s work was funded by the Swiss National Foundation (SNF) [project
#137919]. The funders were not involved in the study design, data acquisition,
analyses, results, or manuscript preparation.

Availability of data andmaterials
The data that support the findings of this study are available from the Swiss
Federal Food Safety and Veterinary Office but restrictions apply to the
availability of these data, which were used under license for the current study,
and so are not publicly available.

Authors’ contributions
FV and LH conceived the study, and participated in its design and coordination.
WW analysed the data. WW, FV and LH interpreted the output. WW and FV
drafted the manuscript . All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
As no experimentation on animals or use of confidential human data was
carried out during this study, no ethical approval application was needed as
stated in the Swiss law on https://www.admin.ch/opc/en/classified-
compilation/19920153/.

Author details
1Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern,
Switzerland. 2Epi-connect, Skogås, Sweden. 3Department Biostatistics,
Epidemiology, Biostatistics and Prevention Institute, University of Zurich,
Zurich, Switzerland.

Received: 8 September 2015 Accepted: 6 December 2016

References
1. Salman MD, (ed). Animal disease surveillance and survey systems:

methods and applications, Wiley-blac edn. Iowa: John Wiley & Sons;
2003.

2. Office NA. The 2001 Outbreak of Foot and Mouth Disease. Technical
report. 2002. http://www.nao.org.uk/wp-content/uploads/2002/06/
0102939.pdf.

3. Kellar JA. Animal health surveillance: Navigation amidst the flotsam of
human frailty and fiscal inertia. Prev Vet Med. 2012;105(3):169–75.
doi:10.1016/j.prevetmed.2011.12.009.

4. Reist M, Jemmi T, Stärk KDC. Policy-driven development of
cost-effective, risk-based surveillance strategies. Prev Vet Med.
2012;105(3):176–84. doi:10.1016/j.prevetmed.2011.12.014.

5. Buehler JW, Hopkins RS, Overhage JM, Sosin DM, Tong V. Framework
for evaluating public health surveillance systems for early detection of
outbreaks: recommendations from the CDC working group. Morb
Mortal Wkly Rep (MMWR). 2004;53:5.

6. Rolka H, Burkom H, Cooper GF, Kulldorff M, Madigan D, Wong WK.
Issues in applied statistics for public health bioterrorism surveillance

using multiple data streams: research needs. Stat Med. 2007;26(8):
1834–56.

7. Yahav I, Shmueli G. Algorithm Combination for Improved Performance
in Biosurveillance Systems In: Zeng D, Gotham I, Komatsu K, et al.,
editors. Intelligence and Security Informatics: Biosurveillance. New
Brunswick: Springer; 2007. p. 91–102.

8. Lombardo JS, Burkom H, Pavlin J. ESSENCE II and the Framework for
Evaluating Syndromic Surveillance Systems. Morb Mortal Wkly Rep
(MMWR). 2004;53:159–65.

9. Lotze T, Murphy SP, Shmueli G. Preparing biosurveillance data for
classic monitoring. Adv Dis Surveill. 2007;2:55.

10. Shmueli G, Burkom H. Statistical challenges facing early outbreak
detection in biosurveillance. Technometrics. 2010;52(1):39–51.
doi:10.1198/TECH.2010.06134.

11. Held L, Hofmann M, Höhle M, Schmid V. A two-component model for
counts of infectious diseases. Biostatistics. 2006;7(3):422–37.
doi:10.1093/biostatistics/kxj016.

12. Corberán-Vallet A, Lawson AB. Prospective analysis of infectious disease
surveillance data using syndromic information. Stat Methods Med Res.
2014;23(6):572–90.

13. Unkel S, Farrington CP, Garthwaite PH, Robertson C, Andrews N.
Statistical methods for the prospective detection of infectious disease
outbreaks: a review. J R Stat Soc Ser A Stat Soc. 2012;175(1):49–82.
doi:10.1111/j.1467-985X.2011.00714.x.

14. Serfling RE. Methods for current statistical analysis of excess
pneumonia-influenza deaths. Public Health Rep. 1963;78(6):494–506.

15. Farrington CP, Andrews NJ, Beale AD, Catchpole MA. A statistical
algorithm for the early detection of outbreaks of infectious disease. J R
Stat Soc Ser A Stat Soc. 1996;159(3):547–63.

16. Wieland S, Brownstein J, Berger B, Mandl K. Automated real time
constant-specificity surveillance for disease outbreaks. BMC Med Inf
Decis Making. 2007;7(1):. doi:10.1186/1472-6947-7-15.

17. Noufaily A, Enki DG, Farrington P, Garthwaite P, Andrews N, Charlett A.
An improved algorithm for outbreak detection in multiple surveillance
systems. Stat Med. 2013;32(7):1206–22. doi:10.1002/sim.5595.

18. Dórea FC, Lindberg A, McEwen BJ, Revie CW, Sanchez J. Syndromic
surveillance using laboratory test requests: A practical guide informed
by experience with two systems. Prev Vet Med. 2014;116(3):313–24.
doi:10.1016/j.prevetmed.2014.04.001.

19. Rogerson PA, Yamada I. Monitoring change in spatial patterns of
disease: comparing univariate and multivariate cumulative sum
approaches. Stat Med. 2004;23(14):2195–214.

20. Lucas JM. Counted data CUSUM’s. Technometrics. 1985;27(2):129–44.
21. Rossi G, Lampugnani L, Marchi M. An approximate CUSUM procedure

for surveillance of health events. Stat Med. 1999;18(16):2111–22.
22. Rogerson PA, Yamada I. Approaches to syndromic surveillance when

data consist of small regional counts. Morb Mortal Wkly Rep.
2004;53(Suppl):79–85.

23. Höhle M, Paul M. Count data regression charts for the monitoring of
surveillance time series. Comput Stat Data Anal. 2008;52(9):4357–68.
doi:10.1016/j.csda.2008.02.015.

24. Salmon M, Schumacher D, Höhle M. Monitoring count time series in r:
Aberration detection in public health surveillance. J Stat Softw.
2016;70(1):1–35.

25. Dórea FC, Widgrén S, Lindberg A. Vetsyn: An R package for veterinary
syndromic surveillance. Prev Vet Med. 2015;122(1–2):21–32.

26. Paul M, Held L, Toschke A. Multivariate modelling of infectious disease
surveillance data. Stat Med. 2008;27(29):6250–67. doi:10.1002/sim.3440.

27. Paul M, Held L. Predictive assessment of a non-linear random effects
model for multivariate time series of infectious disease counts. Stat Med.
2011;30(10):1118–36. doi:10.1002/sim.4177.

28. Braun J, Held L, Ledergerber B. Predictive cross-validation for the choice
of linear mixed-effects models with application to data from the Swiss
HIV Cohort Study. Biometrics. 2012;68(1):53–61.

29. Good IJ. Rational decisions. J R Stat Soc Ser B Stat Methodol. 1952;14(1):
107–14.

30. Dawid AP, Sebastiani P. Coherent dispersion criteria for optimal
experimental design. Ann Stat. 1999;27(1):65–81.

31. Epstein ES. A scoring system for probability forecasts of ranked
categories. J Appl Meteorol. 1969;8:985–7.

https://www.admin.ch/opc/en/classified-compilation/19920153/
https://www.admin.ch/opc/en/classified-compilation/19920153/
http://www.nao.org.uk/wp-content/uploads/2002/06/0102939.pdf
http://www.nao.org.uk/wp-content/uploads/2002/06/0102939.pdf
http://dx.doi.org/10.1016/j.prevetmed.2011.12.009
http://dx.doi.org/10.1016/j.prevetmed.2011.12.014
http://dx.doi.org/10.1198/TECH.2010.06134
http://dx.doi.org/10.1093/biostatistics/kxj016
http://dx.doi.org/10.1111/j.1467-985X.2011.00714.x
http://dx.doi.org/10.1186/1472-6947-7-15
http://dx.doi.org/10.1002/sim.5595
http://dx.doi.org/10.1016/j.prevetmed.2014.04.001
http://dx.doi.org/10.1016/j.csda.2008.02.015
http://dx.doi.org/10.1002/sim.3440
http://dx.doi.org/10.1002/sim.4177


Vial et al. BMC Veterinary Research  (2016) 12:288 Page 16 of 17

32. Gneiting T, Balabdaoui F, Raftery AE. Probabilistic forecasts, calibration
and sharpness. J R Stat Soc Ser B Stat Methodol. 2007;69(2):243–68.
doi:10.1111/j.1467-9868.2007.00587.x.

33. Brier GW. Verification of forecasts expressed in terms of probability. Mon
Weather Rev. 1950;75:1–3.

34. Wei W, Held L. Calibration tests for count data. Test. 2014;23(4):787–805.
doi:10.1007/s11749-014-0380-8.

35. Fearnhead P. Exact and efficient Bayesian inference for multiple
changepoint problems. Stat Comput. 2006;16(2):203–13.
doi:10.1007/s11222-006-8450-8.

36. Fearnhead P, Liu Z. On-line inference for multiple changepoint
problems. J R Stat Soc Ser B Stat Methodol. 2007;69(4):589–605.

37. HofmannM. Statistical Models for Infectious Disease Surveillance Counts.
PhD thesis: Department of Statistics, Ludwig-Maximilians-Universität
München; 2007. http://edoc.ub.uni-muenchen.de/6601/.

38. Lai PC, So FM, Chan KW. Spatial epidemiological approaches in disease
mapping and analysis. Boca Raton: Taylor & Francis; 2008.

39. Robertson C, Nelson TA, MacNab YC, Lawson AB. Review of methods
for space-time disease surveillance. Spatial Spatio-temporal Epidemiol.
2010;1(2-3):105–16. doi:10.1016/j.sste.2009.12.001.

40. Diggle P, Rowlingson B, TingLi S. Point process methodology for on-line
spatio-temporal disease surveillance. Environmetrics. 2005;16(5):423–34.

41. Jacquez GM. A k nearest neighbour test for space-time interaction. Stat
Med. 1996;15(18):1935–49.

42. Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and
inference. Stat Med. 1995;14:799–810.

43. Team RDC. R: A language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing. 2014. http://www.r-
project.org/.

44. Cuzick J, Edwards R. Spatial clustering for inhomogeneous populations.
J R Stat Soc Ser B Methodol. 1990;52:73–104.

45. Kulldorff M. A spatial scan statistic. Commun Stat Theory Methods.
1997;26(6):1481–96.

46. Kulldorff M, Services IM. SaTScanTM: Software for the spatial and
space-time scan statistics. 2009. http://www.satscan.org. Accessed 21
Nov 2016.

47. Neill DB, Cooper GF. A multivariate Bayesian scan statistic for early event
detection and characterization. Mach Learn. 2010;79(3):261–82.

48. Jiang X, Neill DB, Cooper GF. A Bayesian network model for spatial
event surveillance. Int J Approx Reason. 2010;51(2):224–39.
doi:10.1016/j.ijar.2009.01.001.

49. Das K, Schneider J, Neill DB. Detecting anomalous groups in categorical
datasets. In: Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining; 2007. p.
220-229. http://reports-archive.adm.cs.cmu.edu/anon/ml2009/CMU-
ML-09-104.pdf.

50. Gelfand AE, Vounatsou P. Proper multivariate conditional autoregressive
models for spatial data analysis. Biostatistics. 2003;4(1):11–25.

51. Knorr-Held L, Best NG. A shared component model for detecting joint
and selective clustering of two diseases. J R Stat Soc Ser A Series A Stat
Soc. 2001;164:73–85.

52. Simes RJ. An improved Bonferroni procedure for multiple tests of
significance. Biometrika. 1986;73:751–4.

53. Edgington ES. An additive method for combining probability values
from independent experiments. J Psychol. 1972;80(2):351–363.

54. Fisher RA. Statistical Methods for Research Workers, 13th ed.(rev.) edn.
Edinburgh: Oliver & Boyd; 1958, p. 354.

55. Dórea FC, McEwen BJ, McNab WB, Sanchez J, Revie CW. Syndromic
surveillance using veterinary laboratory data: algorithm combination
and customization of alerts. PloS ONE. 2013;8(12):82183.
doi:10.1371/journal.pone.0082183.

56. Burkom HS, Ramac-Thomas L, Babin S, Holtry R, Mnatsakanyan Z,
Yund C. An integrated approach for fusion of environmental and human
health data for disease surveillance. Stat Med. 2011;30(5):470–9.
doi:10.1002/sim.3976.

57. Brouwer H, Stegeman J, Straatsma J, Hooijer G, van Schaik G. The
validity of a monitoring system based on routinely collected dairy cattle
health data relative to a standardized herd check. Prev Vet Med.
2015;122(1):76–82.

58. Marshall C, Best N, Bottle A, Aylin P. Statistical issues in the prospective
monitoring of health outcomes across multiple units. J R Stat Soc Ser A
Stat Soc. 2004;167(3):541–59.

59. Grigg OA, Spiegelhalter DJ, Jones HE. Local and marginal control charts
applied to methicillin resistant Staphylococcus aureus bacteraemia
reports in UK acute National Health Service trusts. J R Stat Soc Ser A Stat
Soc. 2009;172:49–66.

60. Spiegelhalter D, Sherlaw-Johnson C, Bardsley M, Blunt I, Wood C,
Grigg O. Statistical methods for healthcare regulation: rating, screening
and surveillance. J R Stat Soc Ser A Stat Soc. 2012;175(1):1–47.
doi:10.1111/j.1467-985X.2011.01010.x.

61. Alba-Casals A, Fernández-Fontelo A, Revie C, Dórea F, Sánchez J,
Romero L, Cáceres G, Pérez A, Puig P. Development of new strategies
to model bovine fallen stock data from large and small subpopulations
for syndromic surveillance use. Epidemiol Sante Anim. 2015;67:67–76.

62. Perrin JB, Durand B, Gay E, Ducrot C, Hendrikx P, Calavas D, Hénaux V.
Simulation-based evaluation of the performances of an algorithm for
detecting abnormal disease-related features in cattle mortality records.
PloS ONE. 2015;10(11):0141273.

63. Jolliffe IT. Principal Component Analysis, 2nd ed. New York: Springer;
2002.

64. Scranton R, Runger GC, Keats JB, Montgomery DC. Efficient shift
detection using multivariate exponentially-weighted moving average
control charts and principal components. Qual Reliab Eng Int.
1996;12(3):165–71.

65. Frisén M, Andersson E, Schiöler L. Sufficient reduction in multivariate
surveillance. Commun Stat Theory Methods. 2011;40(10):1821–38.

66. Faverjon C, Andersson MG, Decors A, Tapprest J, Tritz P, Sandoz A,
Kutasi O, Sala C, Leblond A. Evaluation of a multivariate syndromic
surveillance system for west nile virus. Vector-Borne Zoonotic Dis.
2016;16(6):382–90.

67. Lau EHY, Cowling BJ, Ho LM, Leung GM. Optimizing use of multistream
influenza sentinel surveillance data. Emerg Infect Dis. 2008;14(7):1154–7.
doi:10.3201/eid1407.080060.

68. Schiöler L, Frisén M. Multivariate outbreak detection. J Appl Stat.
2012;39(2):223–42. doi:10.1080/02664763.2011.584522.

69. Frisen M. On multivariate control charts. Production. 2011;21:235–41.
70. Lowry CA, Woodall WH, Champ CW, Rigdon SE. A multivariate

exponentially weighted moving average control chart. Technometrics.
1992;34(1):46–53.

71. Crosier RB. Multivariate generalizations of cumulative sum
quality-control schemes. Technometrics. 1988;30(3):291–303.

72. Qiu P, Hawkins D. A rank-based multivariate CUSUM procedure.
Technometrics. 2001;43:120–32.

73. Qiu P, Hawkins D. A nonparametric multivariate cumulative sum
procedure for detecting shifts in all directions. Statistician. 2003;52:
151–64.

74. Miekley B, Stamer E, Traulsen I, Krieter J. Implementation of multivariate
cumulative sum control charts in mastitis and lameness monitoring.
J Dairy Sci. 2013;96(9):5723–33. doi:10.3168/jds.2012-6460.

75. Whist AC, Liland KH, Jonsson ME, Sæbø S., Sviland S, O Ø steras
MNOM, Hopp P. Designing a risk-based surveillance program for
Mycobacterium avium ssp. paratuberculosis in Norwegian dairy herds
using multivariate statistical process control analysis. J Dairy Sci.
2014;97(11):6835–49. doi:10.3168/jds.2013-6821.

76. Held L, Höhle M, Hofmann M. A statistical framework for the analysis of
multivariate infectious disease surveillance counts. Stat Model. 2005;5(3):
187–99. doi:10.1191/1471082X05st098oa.

77. Höhle M, Paul M, Held L. Statistical approaches to the monitoring and
surveillance of infectious diseases for veterinary public health. Prev Vet
Med. 2009;91(1):2–10. doi:10.1016/j.prevetmed.2009.05.017.

78. Höhle M, Meyer S, Paul M. Surveillance: Temporal and Spatio-temporal
Modeling and Monitoring of Epidemic Phenomena. 2014. R package
version 1.8-1. http://CRAN.R-project.org/package=surveillance.
Accessed 21 Nov 2016.

79. Meyer S, Held L, Höhle M. Spatio-temporal analysis of epidemic
phenomena using the R package surveillance. J Stat Softw. 2016.
Available as http://arxiv.org/pdf/1411.0416.

80. Held L, Paul M. Modeling seasonality in space-time infectious disease
surveillance data. Biom J. 2012;54(6):824–43. doi:10.1002/bimj.201200037.

81. Held L, Rufibach K, Balabdaoui F. A score regression approach to assess
calibration of continuous probabilistic predictions. Biometrics.
2010;66(4):1295–305. doi:10.1111/j.1541-0420.2010.01406.x.

http://dx.doi.org/10.1111/j.1467-9868.2007.00587.x
http://dx.doi.org/10.1007/s11749-014-0380-8
http://dx.doi.org/10.1007/s11222-006-8450-8
http://edoc.ub.uni-muenchen.de/6601/
http://dx.doi.org/10.1016/j.sste.2009.12.001
http://www.r-project.org/
http://www.r-project.org/
http://www.satscan.org
http://dx.doi.org/10.1016/j.ijar.2009.01.001
http://reports-archive.adm.cs.cmu.edu/anon/ml2009/CMU-ML-09-104.pdf
http://reports-archive.adm.cs.cmu.edu/anon/ml2009/CMU-ML-09-104.pdf
http://dx.doi.org/10.1371/journal.pone.0082183
http://dx.doi.org/10.1002/sim.3976
http://dx.doi.org/10.1111/j.1467-985X.2011.01010.x
http://dx.doi.org/10.3201/eid1407.080060
http://dx.doi.org/10.1080/02664763.2011.584522
http://dx.doi.org/10.3168/jds.2012-6460
http://dx.doi.org/10.3168/jds.2013-6821
http://dx.doi.org/10.1191/1471082X05st098oa
http://dx.doi.org/10.1016/j.prevetmed.2009.05.017
http://CRAN.R-project.org/package=surveillance
http://arxiv.org/pdf/1411.0416
http://dx.doi.org/10.1002/bimj.201200037
http://dx.doi.org/10.1111/j.1541-0420.2010.01406.x


Vial et al. BMC Veterinary Research  (2016) 12:288 Page 17 of 17

82. Andersson E. Effect of dependency in systems for multivariate
surveillance. Commun Stat Simula Comput®. 2009;38(3):454–72.

83. Frisén M. Methods and evaluations for surveillance in industry, business,
finance, and public health. Technical report, Statistical Research Unit
Department of Economics University of Gothenburg Sweden. 2011.
https://gupea.ub.gu.se/bitstream/2077/24394/1/gupea_2077_24394_1.pdf.

84. Takeuchi H, Mayuzumi Y, Kodama N. Analysis of time-series correlation
between weighted lifestyle data and health data. In: Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society; 2011. p. 1511–14. http://www.ncbi.nlm.nih.gov/
pubmed/22254607.

85. Struchen R, Reist M, Zinsstag J, Vial F. Investigating the potential of
reported cattle mortality data in Switzerland for syndromic surveillance.
Prev Vet Med. 2015. doi:10.1016/j.prevetmed.2015.04.012.

86. Dupuy C, Bronner A, Watson E, Wuyckhuise-Sjouke L, Reist M, Fouillet
A, Calavas D, Hendrikx P, Perrin JB. Inventory of veterinary syndromic
surveillance initiatives in Europe (Triple-S project): Current situation and
perspectives. Prev Vet Med. 2013;111(3):220–9.

87. Vial F, Reist M. Evaluation of Swiss slaughterhouse data for integration in
a syndromic surveillance system. BMC Vet Res. 2014;10(1):33.

88. Di Salvo R, Montalto P, Nunnari G, Neri M, Puglisi G. Multivariate time
series clustering on geophysical data recorded at Mt. Etna from 1996 to
2003. J Volcanol Geotherm Res. 2013;251:65–74. doi:10.1016/j.jvolgeores.
2012.02.007.

89. Jonsson M, Heier B, Norström M, Hofshagen M. Analysis of
simultaneous space-time clusters of Campylobacter spp. in humans and
in broiler flocks using a multiple dataset approach. Int J Health
Geographics. 2010;9(1):. doi:10.1186/1476-072X-9-48.

90. Dórea FC, McEwen BJ, McNab WB, Sanchez J, Revie CW. Syndromic
surveillance using veterinary laboratory data: algorithm combination
and customization of alerts. PLoS ONE. 2013;8(12):82183.
doi:10.1371/journal.pone.0082183.

91. Andersson MG, Faverjon C, Vial F, Legrand L, Leblond A. Using bayes’
rule to define the value of evidence from syndromic surveillance. PloS
ONE. 2014;9(11):111335.

92. Lawless JF. Adjustments for reporting delays and the pediction of
occurred but not reported events. Can J Stat. 1994;22(1):15–31.

93. Donker T, van Boven M, van Ballegooijen WM, van’t Klooster T,
Wielders C, Wallinga J. Nowcasting pandemic influenza A/H1N1 2009
hospitalizations in the Netherlands. Eur J Epidemiol. 2011;26(3):
195–201. doi:10.1007/s10654-011-9566-5.

94. Höhle M, an der Heiden M. Bayesian nowcasting during the STEC
O104:H4 outbreak in Germany, 2011. Biometrics. 2014.
doi:10.1111/biom.12194.

95. Herzog SA, Paul M, Held L. Heterogeneity in vaccination coverage
explains the size and occurrence of measles epidemics in German
surveillance data. Epidemiol Infect. 2011;139(04):505–15.
doi:10.1017/S0950268810001664.

96. Hendrikx P, Gay E, Chazel M, Moutou F, Danan C, Richomme C, Boue
F, Souillard R, Gauchard F, Dufour B. Oasis: an assessment tool of
epidemiological surveillance systems in animal health and food safety.
Epidemiol Infect. 2011;139(10):1486–96.

97. Drewe J, Hoinville L, Cook A, Floyd T, Gunn G, Stärk K. Serval: a new
framework for the evaluation of animal health surveillance.
Transboundary Emerg Dis. 2015;62(1):33–45.

98. Velasova M, Drewe J, Gibbons J, Green M, Guitian J. Evaluation of the
usefulness at national level of the dairy cattle health and production
recording systems in Great Britain. Vet Rec. 2015;177(12):304–4.

99. Watkins RE, Eagleson S, Hall RG, Dailey L, Plant AJ. Approaches to the
evaluation of outbreak detection methods. BMC Public Health.
2006;6(1):1.

100. Lau EHY, Cheng CKY, Ip DKM, Cowling BJ. Situational awareness of
influenza activity based on multiple streams of surveillance data using
multivariate dynamic linear model. PloS ONE. 2012;7(5):38346.
doi:10.1371/journal.pone.0038346.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

https://gupea.ub.gu.se/bitstream/2077/24394/1/gupea_2077_24394_1.pdf
http://www.ncbi.nlm.nih.gov/pubmed/22254607
http://www.ncbi.nlm.nih.gov/pubmed/22254607
http://dx.doi.org/10.1016/j.prevetmed.2015.04.012
http://dx.doi.org/10.1016/j.jvolgeores.2012.02.007
http://dx.doi.org/10.1016/j.jvolgeores.2012.02.007
http://dx.doi.org/10.1186/1476-072X-9-48
http://dx.doi.org/10.1371/journal.pone.0082183
http://dx.doi.org/10.1007/s10654-011-9566-5
http://dx.doi.org/10.1111/biom.12194
http://dx.doi.org/10.1017/S0950268810001664
http://dx.doi.org/10.1371/journal.pone.0038346

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Prospective univariate surveillance
	Outbreak detection
	Outbreak prediction

	Multivariate surveillance
	Disease mapping and clustering
	Parallel monitoring of multivariate series
	Dimension reduction
	Vector accumulation
	Joint modelling methods


	Results
	Number of postcodes sending test requests to two laboratories
	Joint modelling of time series with misalignment

	Discussion
	Different temporal granularity scenario
	Different spatial granularity scenario
	Different data types scenario
	Reporting delay and nowcasting

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

