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Abstract

Background: Common carp (Cyprinus carpio L.), one of the most economically valuable commercial farming fish
species in China, is often infected by a variety of viruses. As the first line of defence against microbial pathogens,
the innate immune system plays a crucial role in teleost fish, which are lower vertebrates. Interferon (IFN) regulatory
factor 5 (IRF5) is a key molecule in antiviral immunity that regulating the expression of IFN and other pro-inflammatory
cytokines. It is necessary to gain more insight into the common carp IFN system and the function of fish IRF5 in the
antiviral and antibacterial response.

Results: In the present study, we characterized the cDNA and genomic sequence of the IRF5 gene in common carp,
and analysed tissue distribution and expression profile of this gene in response to polyinosinic:polycytidylic acid (poly I:
O) and lipopolysaccharides (LPS) treatment. The common carp IRF5 (ccIRF5) gene is 5790 bp in length and is
composed of 9 exons and 8 introns. The open reading frame (ORF) of ccIRF5 is 1554 bp, and encodes 517 amino acid
protein. The putative ccIRF5 protein shares identity (65.4-90.0 %) with other fish IRF5s and contains a DNA binding
domain (DBD), a middle region (MR), an IRF-associated domain (IAD), a virus activated domain (VAD) and two nuclear
localization signals (NLSs) similar to those found in vertebrate IRF5. Phylogenetic analysis clustered cclRF5 into the IRF5
subfamily with other vertebrate IRF5 and IRF6 genes. Real-time PCR analysis revealed that cclRF5 mRNA was expressed
in all examined tissues of healthy carps, with high levels observed in the gills and the brain. After poly I:.C challenge,
expression levels of ccIRF5, tumour-necrosis factor a (ccTNFa) and two IFN stimulated genes [ISGs (ccISG5 and ccPKR)]
were up-regulated in seven immune-related tissues (liver, spleen, head kidney, foregut, hindgut, skin and gills).
Furthermore, all four genes were up-regulated in vitro upon poly I:C and LPS challenges.

Conclusions: Our findings suggest that IRF5 might play an important role in regulating the antiviral and antibacterial
response in fish. These results could provide a clue for preventing common carp infection by pathogenic microorganisms
present in the aquatic environment.
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Background

Interferon (IFN) regulatory factors (IRFs) are key tran-
scriptional mediators of virus-, bacteria- and IFN-
induced signalling pathways, and they play an important
role in antiviral defence, immune response, cell growth
regulation, apoptosis and oncogenesis [1-3]. IRFs were
originally identified as participating in the transcriptional
regulators of IFN and IFN stimulated genes (ISGs) [4].
To date, eleven IRF family members have been identified
in vertebrate, including IRF1, IRF2, IRF3, IRF4 [also
known as PU.1 interaction partner (PIP), lymphoid-
specific IRF (LSIRF) or consensus sequence-binding pro-
tein in adult T-cell leukemia cell line or activated T cells
(ICSAT)], IRF5, IRF6, IRF7, IRF8 [also known as IFN
consensus sequence binding protein (ICSBP)], IRF9 [also
called as ISG factor 3 gamma (ISGF3y)], IRF10 and
IRF11. However, IRF10 and 11 have been identified in
fish but in mammalians [5]. IRFs used to be classified
into three groups according to differences in the C-
terminal region: activators (IRF1, 3, 5, 7, 9 and 10), re-
pressors (IRF2 and 8) and multifunctional factors that
both activate and repress gene transcription (IRF2, 4, 5
and 7) [3, 4]. All members share a well-conserved N-
terminal DNA-binding domain (DBD), and the con-
served tryptophan repeat cluster in the first 120 amino
acids of the DBD is responsible for binding the pro-
moters of target genes [6]. [IRF-associated domain (IAD)
in the C-terminal of IRF3-11 mediates the interactions
between IRFs and other protein to form transcriptional
complexes [7].

Human IRF5 plays a crucial role in regulating the
expression of IFN-a and IFN-B, mediating the virus- and
cell type-specific immune response. IRF5 is also critical
for the retinoic acid-inducible gene I (RIG-I) and Toll-
like receptors immune pathways [8—12]. Other reports
have also indicated that IRF5 may promote lymphocyte
differentiation and apoptosis [9]. IRF5 knockout mice
were reported to be susceptible to viral infections, while,
the expression levels of type I IFNs and other pro-
inflammatory cytokines including tumour-necrosis factor
(TNF)-«, interleukin (IL)-6 and IL-12, were reduced in
response to viral infections [12, 13].

IRF5 have been previously identified in several fish
species, including grass carp (Ctenopharyngodon idella)
[14], zebrafish (Danio rerio) [15], Atlantic salmon (Salmo
salar) [16], Japanese flounder (Paralichthys olivaceus)
[17], rock bream (Oplegnathus fasciatus) [18], half-
smooth tongue sole (Cynoglossus semilaevis) [19], chan-
nel catfish (Ictalurus Punctatus) [20], Mi-iuy croaker
(Miichthys miiuy) (unpublished data) and paddlefish
(Polyodon spathula) [21]. Common carp (Cyprinus carpio
L.), one of the most economically valuable commercial
farming fish species, is often infected by a wide variety of
viruses [22, 23]. To date, among the IRFs, only IRF3 and
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IRF7 have been identified in common carp [22]. Add-
itional studies are needed to gain a better insight into the
IEN system in common carp and the function of fish IRF5
in the antiviral and antibacterial immune response. In the
present study, we characterized the cDNA sequence and
genomic structure of IRF5 from common carp. We
reported the evolutionary relationship of common carp
IRF5 (ccIRF5) gene with other IRF genes. What’s more, we
analysed its tissue-specific distribution in twelve tissues
and expression profiles upon polyinosinic:polycytidylic
acid (poly I:C) and lipopolysaccharides (LPS) stimulation
both in vivo and in vitro by using real-time PCR.

Methods

Fish and poly I:C challenge

Common carp (body weight approximately 200 g) were
obtained from the Fresh Water Fishery Research Insti-
tute of Shandong Province, China. Fish were reared in
aerated freshwater tanks at 24-26 °C and were fed twice
per day with commercial carp pellets (Shandong Tianshen
Fishing Feedstuff Co., Ltd). After acclimatization for
1 week, the fish were used for the experiments.

Poly L:C (Sigma, USA) was re-suspended in phosphate-
buffered saline (PBS) for the immune challenge experi-
ments. Fish were intraperitoneally injected with 500 ul of a
poly L:C solution (2.6 mg/ml) per fish, while un-challenged
fish served as controls (indicated as 0 h). After injection, all
fish were placed into a rectangular tank containing fresh
water. At 0, 3, 6, 12, 24, 48 and 72 h post-injection (hpi),
three fish in each group were euthanized and seven tissues
including liver, spleen, head kidney, skin, gills, foregut and
hindgut were sampled for total RNA extraction.

RNA and genomic DNA extraction

Total RNA was extracted from different tissues of com-
mon carp using an RNA simple Total RNA Kit (TIAN-
GEN) according to the manufacturer’s instructions. Total
RNA quality and concentration were determined by 1 %
gel electrophoresis and ultraviolet spectrophotometry,
respectively. RNA samples had an OD260:0D280 ratio
between 1.8 and 2.0. Genomic DNA was then removed
and first-strand c¢cDNA was synthesized by using the
FastQuant RT Kit (containing gDNase) (TTANGEN) fol-
lowing the manufacturer’s protocol. Genomic DNA was
extracted from the spleen of healthy fish using a TIA-
Namp Genomic DNA Kit (TIANGEN).

Cloning of cDNA and genomic sequences

A pair of primers, IRF5-F and IRF5-R (shown in Table 1),
designed based on the conserved regions of different
IRF5 genes, was used to amplify the corresponding
ccIRF5 sequence from spleen cDNA of healthy fish. The
PCR cycling parameters were 94 °C for 5 min, followed
by 30 cycles of 94 °C for 30 s, 54 °C for 30 s, 72 °C for
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Table 1 Primers used in this study
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Primer Sequence (5-3") Application GenBank No.
IRF5-F GCAAGTACCAGGAAGGAG Homologous amplification

IRF5-R AAATCAGTTAAGGGCAACA

IRF5-3 F1 GTCACTCATTCTGTAGGCCCT First round 3-RACE PCR

IRF5-3 F2 GCAGAGAACCAGGTTCATCC Nested 3-RACE PCR

IRF5-5R1 TGTCCTTCGTGCCATCGTAGTG First round 5-RACE PCR

IRF5-5R2 GTTTAGGGCACAGCGGAGATT Nested 5-RACE PCR

IRF5g1-F CAGCACCATGAGTGGTCAACCACG For the first intron

IRF5g1-R AATATAGAGTTCTCCTCCTCCAG

IRF5g2-F AGGACTGCACTGGCTCAATCAAGA For the second intron

IRF5g2-R ATCTACTCCTTCCTGATACTTGCCT

IRF5g3-F ATGGAAAGCCAATCTCCGCTGTG For the third, fourth and fifth intron

IRF593-R GTAACATGAGCGGACTGCTCAGC

IRF5g4-F AGTGCAATCAAAGTTGAGCAGGCA For the sixth intron

IRF5g4-R ATGATCGGTATAGAACCTCTGCTT

IRF5g5-F ACGCCATCAGGCTGTGCCAGTGTA For the seventh intron

IRF5g5-R CAATGATGAGC CTCCTTG

IRF5g6-F GCTTCGGTGAGGACTGGCCAGACA For the eighth intron

IRF5g6-R ACTCTGCAGAAGTCTGTGGAGCT

IRF5-rF CCTGGGCTCAGAACATCCACTAAC Real-time PCR

IRF5-rR AGTATGGCATCATAGAGGGCACCT

TNFa-F ACAGGTGATGGTGTCGAGGAGGA Real-time PCR JF957372
TNFa-R TCTGAGACTTGTTGAGCGTGAAG

S1-F CCGTGGGTGACATCGTTACA Real-time PCR AB012087
S11-R TCAGGACATTGAACCTCACTGTCT

ISG15-F GTGAGCGGTGAAGCCACAGTTG Real-time PCR KP115358
ISG15-R GCGAACCGTTATCGGCAGACAG

PKR-F AGGCTTGATCCACAGAGACCTGAA Real-time PCR JX516101
PKR-R CGTTCCAGAAGTTGCACGTCATTG

50 s, and a final extension step of 72 °C for 10 min.
Then, the full-length ¢cDNA of ccIRF5 was obtained by
the rapid amplification of the cDNA ends (RACE)
method using a 3’-Full RACE and 5-Full RACE Core
Set Kit (TaKaRa). The detailed procedure was performed
as described in the user manual, and two primers pairs
(IRF5-3 F1/-3 F2 and IRF5-5R1/5R2) were used in the
RACE-PCR (shown in Table 1).

PCR products were analysed by electrophoresis on a
1 % agarose gel and the anticipated fragments were puri-
fied from agarose gels. These fragments were ligated into
the pMD18-T vector (TaKaRa) and transformed into com-
petent Escherichia coli DH-5a competent cells, and
recombinants were identified and sequenced (Invitrogen).

Sequence and phylogenetic analysis

The full-length cDNA sequence of ccIRF5 was compared
with other corresponding IRF5 sequences by using the
BLAST program from the National Center for Biotech-
nology Information (NCBI) [24] and the MegAlign pro-
gram DNASTAR. The putative ORF and the protein
prediction were analysed with Editseq within DNAS-
TAR. The protein domains were predicted with simple
modular architecture research tool (SMART) [25].

Phylogenetic analysis was performed with MEGA 5.0,
using the neighbor-joining method. Homologous se-
quences were searched using the NCBI BLAST server.

Leukocyte isolation and in vitro challenges

The methods for isolating common carp leukocytes from
peripheral blood (PBLs) and head kidney (HKLs) have
been described by Rymuszka et al. [26]. Peripheral blood
was diluted 1:1 with Leibovitz's L-15 medium (supple-
mented with 10 U/ml of heparin, 10 mM HEPES, 60 mM
NaCl, 5 % FBS, 100 U/ml penicillin, 100 pg/ml strepto-
mycin, and 250 ng/ml amphotericin B) and layered on a
65 % Percoll (Sigma) solution, and centrifuged at
2500 rpm for 30 min at 4 °C. The cells were washed by
centrifugation in PBS and re-suspended in cold Leibovitz’s
L-15 medium.

Head kidney cell suspensions were obtained by gently
pressing the tissue with a plunger through a 100-pm
sterile nylon mesh with Leibovitz’s L-15 medium. Percoll
layers of 51 and 34 % were used and centrifuged at
1500 rpm for 30 min at 4 °C. The cell layers at the inter-
phase were collected and washed twice with Leibovitz’s
L-15 medium.
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For stimulation experiments, 1 x 10° cells were main-
tained at 25 °C in a 24-well tissue culture plate with
0.5 mg/ml poly I:C and 1 mg/ml LPS (suspended in PBS),
while un-challenged cells served as controls (indicated as
0 h). The cells were harvested at 0, 3, 6, 9, 12 and 24 hpi
and RNA was extracted and reverse transcribed.

Real-time quantitative PCR

The inducible expression profiles of ccIRF5, ccTNFa and
two ISG genes [ccISG15 and ccPKR (protein kinase R)]
upon poly I:C and LPS challenges were analysed by real-
time PCR using gene-specific primers (Table 1) on an iQ5
Real-time PCR instrument (Bio-Rad). Reactions were per-
formed in a 20 pl volume using SYBR Green RealMaster-
Mix (TIANGEN). Cycling conditions were one cycle of
94 °C for 5 min, followed by 40 cycles of 94 °C for 20 s,
60 °C for 30 s and 72 °C for 20 s. The 40S ribosomal pro-
tein S11 gene was amplified in parallel as a housekeeping
control for normalization [27]. The amplification efficiency
of the primers used in the real-time PCR was between 0.80
and 0.86. All samples were analysed in triplicate. Standard
curves were run on the same plate. The real-time PCR data
were analysed with the 2°**“T method.

Statistical analysis

Differences in relative gene expression between the chal-
lenged group and the control group were tested using
one-way analysis of variance (ANOVA) in Graphpad
Prism 5. P values<0.05 were considered statistically
significant.

Results

Characterization of the cDNA sequence of ccIRF5

The full-length ¢cDNA of ccIRF5 (GenBank Accession
No.: KP979609) was 2042 bp, consisting of a 5'-
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untranslated region (UTR) of 266 bp, a 3-UTR of
222 bp with a polyadenylation signal (AATAAA) starting
30 bp upstream of the poly (A) tail and an ORF of
1554 bp encoding a peptide of 517 amino acids. The
predicted molecular weight of ccIRF5 is 58.5 kDa, and
the isoelectric point is 5.8. The deduced amino acid se-
quence of ccIRF5 shares higher identities with the fish
IRF5s (65.4 % of P. spathula to 90.0 % of C. idella) than
with IRF5s of other species (51.6 % of G. gallus to
56.7 % of M. musculus) (Table 2) and contains a DBD, a
middle region (MR), an IAD and a virus activated do-
main (VAD) (Fig. 1).

Genomic structure of ccIRF5

The ccIRF5 gene is 5798 bp and is composed of 9 exons
and 8 introns (Fig. 2). The exon-intron splice junctions
follow the AG/GT rule (Table 3). The ccIRF5 gene has
the same size exons as the grass carp IRF5, while, the in-
trons sizes are different, which are 495, 804, 225, 131,
88, 761, 518, and 766 bp (listed in Additional file 1).

Phylogenetic analysis

The phylogenetic tree was constructed based on a
Clustal W alignment using MEGA 5.0 by the
neighbor-joining method. All IRF members were
divided into four subfamilies: IRF1, IRF2, and zebra-
fish IRF11 belonged to the IRF1 subfamily, IRF3 and
IRF7 belonging to the IRF3 subfamily; IRF4, 8, 9, and
10 belonging to the IRF4 subfamily; IRF5 and IRF6
belonging to the IRF5 subfamily. In the phylogenetic
tree, ccIRF5 showed a closer relationship with genes
from other cyprinid fish, including grass carp and
zebrafish IRF5s, and clustered into the fish IRF5 sub-
group (Fig. 3).

Table 2 Amino acid identities (%) of ccIRF5 to other vertebrate IRF5 proteins

Species Protein length (aa) GeneBank No. Full-length identities DBD identities
Ctenopharyngodon idella 519 ACT83675 90.0 96.5
Danio rerio 498 ABY91289 879 939
Ictalurus Punctatus 478 AHH37262 768 85.1
Paralichthys olivaceus 472 AEY55357 68.9 754
Scophthalmus maximus 487 AEG76960 69.7 754
Salmo salar 532 NP_001133324 69.6 825
Oplegnathus fasciatus 498 AFZ938%4 69.7 80.7
Miichthys miiuy 492 AHB59743 70.1 80.7
Polyodon spathula 496 AEW27153 654 746
Xenopus laevis 517 NP_001088065 56.9 737
Gallus gallus 472 NP_001026758 516 588
Mus musculus 497 AAB81997 56.7 67.5
Homo sapiens 498 AAH04201 553 67.5
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Fig. 1 Domain organization of ccIRF5 and other vertebrate IRF5 proteins. The DBD (pink), MR (grey), IAD (green) and VAD (yellow) are depicted in
different colours. The two NLSs are boxed in blue and the conserved tryptophan residues are indicated by downward arrowheads. Numbers refer
to the length of the amino acid sequences. The accession numbers are listed in Table 2

Tissue distribution of cclRF5 mRNA in healthy carps The highest expression levels were in the gills and the
Constitutive expression of ccIRF5 mRNA in various brain, followed by the skin, the spleen, the gonad, the
tissues (gills, brain, skin, spleen, gonad, head kidney, head kidney, the buccal epithelium, the hindgut, the
buccal epithelium, hindgut, foregut, muscle, liver and foregut and the muscle, while low expression was
blood) of healthy carps was examined by real-time PCR.  observed in the liver and the blood (Fig. 4).

human 206 190 62 34 306 393 119 246 1212
osobp) [~ ————1— R
3568 466 460 173 193 88 243
mouse 195 190 65 34 258 350 42 119 246
w0e00) [~ E————1—E 1
3043 325 728 174 168 134 87 248
frog 174 190 41 34 345 390 119 249
©s2sbp)  [H——E———1—— - -
3603 1357 115 797 826 1306 279
paddiefish 174 184 26 28 372 390 119 199 334
coreop) R
519 410 648 253 494 549 279
zebrafish 51 123 187 26 28 444 390 119 183
as2eop) R R -
1358 1009 972 85 95 548 922 786
grasscarp 51 123 187 26 28 441 390 119 189 233
cosoppy R
905 1372 322 120 89 512 535 427
common carp 226 51 123 187 26 28 441 390 119 189 222
ey L 7R
495 804 225 131 88 761 518 766
Fig. 2 Schematic diagram of exon-intron arrangement of IRF5 genes from various vertebrates. Exons are indicated by boxes and introns by straight or
interrupted lines (>200 bp). The numbers above the boxes and below the lines indicate the lengths of exons and introns, respectively. Sequences selected
are the following IRF5s: Human (Gene ID 3663), Mouse (Gene ID 27056), Paddlefish (Gene ID JF511655), Zebrafish (Gene ID 405811), Grass carp (GenBank:
FJ556995) and Common carp (GenBank: KP979609)
J
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Table 3 Intron-exon junctions and flanking sequences of the ccIRF5 gene

Exon no. Position in DNA Exon size (bp) Splice donor Splice acceptor Intron size (bp)
1 1-277 277 gtgaattgtg accctgccag 495

2 773-896 123 gtgagtaata tgctcttcag 804

3 1701-1888 187 gtaaggaccg ttgattttag 225

4 2114-2140 26 gtaagttctg tgcctttcag 131

5 2272-2300 28 gtaagatttt tgcttgacag 88

6 2389-2830 441 gtaagcctct tcttctctag 761

7 3592-3982 390 gtaagaggaa ttcttctcag 518

8 4501-4620 119 gtttggagat cgttatctag 766

9 5487-5798 411

Bold text indicates the invariant nucleotides of the exon-intron boundaries

Gene expression of ccIRF5 in response to poly I:C
challenge in vivo

Temporal expression of ccIRF5 upon poly I:C challenge
in seven immune-related tissues (liver, spleen, head kid-
ney, foregut, hindgut, skin and gills) was examined at 0,
3, 6, 12, 24, 48 and 72 hpi using real-time PCR. The highest
expression levels in different tissues were reached at different
time points. The maximum induction of ccIRF5 in mucosa-
associated tissues including the foregut, the hindgut, the skin
and the gills, occurred within 24 hpi. In contrast, the expres-
sion levels in the spleen, the head kidney and the liver were
up-regulated at later time points (48 and 72 hpi). The ex-
pression of ccIRF5 was weakly up-regulated in all tested tis-
sues (1.7- to 4.2-fold, p<0.01 or p<0.05) except in the
foregut (22.8-fold increase, p < 0.01) (Fig. 5).

Gene expression of ccTNFa and ccISGs in response to
poly I:C challenge in vivo

The expression levels of ccTNFa, ccISG15 and ccPKR in
all tested tissues were increased at different time points
upon stimulation with poly I:C. Subsequently, the ex-
pression levels decreased gradually until 48 hpi. The
highest induction of ccTNFa was detected in the spleen
(42.3- fold, p <0.01) and liver (20.4-fold, p < 0.01), respect-
ively. Whereas, the expression levels of ccTNFa in the skin
(2.8-fold) and the gills (5.8-fold, p < 0.05) were weakly up-
regulated. The expression of ccISG15 and ccPKR in all
tested tissues reached peak levels at 3 and 6 hpi, respect-
ively. Fold induction of ccISG15 was significantly increased
in the foregut (3464.8-fold, p < 0.05) and hindgut (1364.1-
fold, p<0.05). Furthermore, the highest expression of
ccPKR was observed in the liver and the hindgut at 6 hpi
by 95.9-fold and 88.1-fold, respectively (Fig. 6).

Expression profiles of cclRF5 upon poly I:C and LPS
challenges in vitro

To further investigate the antiviral and antibacterial
response of ccIRF5 in vitro, common carp PBLs and
HKLs were isolated and challenged them with poly I:.C

or LPS. In accordance with the in vivo studies, ccIRF5
transcripts in the common carp PBLs reached the peak
level at 3 hpi (2.9-fold, p <0.05) and 6 hpi (2.0-fold p <
0.05), upon poly I:C and LPS challenges, respectively. As
well as in the HKLs, expression of ccIRF5 reached the
peak level at 24 hpi by 5.2-fold and 3.3-fold upon poly
I:C and LPS challenges, respectively (Fig. 7).

Expression profiles of ccTNFa and ccISGs in poly I:C- and
LPS- stimulated PBLs

All three genes were up-regulated at 3 hpi by both poly
I:C and LPS challenges in the PBLs. However, compared
to the challenge by poly I:C (4.1- to 29.1-fold), expres-
sion levels of the three genes were weakly induced upon
LPS challenge (1.8- to 3.2-fold) (Fig. 8).

Discussion

The IRF family of transcription factors plays an import-
ant role in the regulation of type I IFN genes and ISGs.
IRF5 genes have been identified in several vertebrates.
However, there is no evidence about the identification
and function of IRF5 in common carp. In the present
study, we cloned the full-length cDNA and genomic se-
quence of ccIRF5. The deduced amino acid sequence
contains a DBD, a MR, an IAD and a VAD (Fig. 1). Simi-
lar to other IRF5s in vertebrates, five tryptophan resi-
dues (W13, W28, W40, W60 and W79) are present in
the DBD which forms a helix-turn-helix structure to
bind to the IFN stimulated response element (IRSE)/IRF
binding element (IRF-E) consensus in the target pro-
moters [28]. The VAD that comprises all serine residues
function as virus-induced phosphorylation sites. The MR
which contains a proline-rich domain and is less con-
served. Although this domain is also present in IRF3, 4
and 6, its function is still unclear [29]. The IAD, which
was originally identified in IRF8, can form transcrip-
tional complexes with other IRFs or transcriptional co-
modulators to initiate the transcription of target genes
[7]. Chen W et al. reported that the dimerization
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Similar to IRF5 genes of other Cypriniformes (zebra-
fish and grass carp), the genomic sequence of ccIRF5 is
also composed of 9 exons and 8 introns. However, the
IRF5 genes in human and several other vertebrates
contain 8 exons and 7 introns. Interestingly, the sizes of
the first and second exons, which encode the DBD of
IRF5s in common carp, zebrafish and grass carp, are

between hydrophobic and ionic interactions in the IAD
played a crucial role in the high basal activity of IRFs
[30]. Similar to other IRF5s, two nuclear localization sig-
nals (NLSs) are found in the N- and C-termini of the
predicted ccIRF5 protein, and these NLRs play an
important role in IRF nuclear translocation and reten-
tion in virus-infected cells [11, 14, 17].
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Fig. 4 Tissue distribution analysis of cclRF5 mRNA by real-time PCR. Total
RNA was isolated from various tissues of healthy carps. Gene expression
levels were normalized to 40S ribosomal protein S11 mRNA. The data are
presented as the mean +SD. (n=3)

similar to the size of the first exon in other vertebrates,
while the other exons sizes comparable to exons in ver-
tebrates (Fig. 2). These results suggest that the genomic
structure of vertebrate IRF5s is evolutionarily conserved,
and the first intron of IRF5s in common carp, zebrafish
and grass carp may be lost in some other teleosts and
tetrapods during evolution.

The phylogenetic tree showed that all IRF family mem-
bers were divided into four subfamilies, and ccIRF5
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showed a closer relationship with other cyprinids, includ-
ing grass carp and zebrafish IRF5s, which were well clus-
tered into the fish IRF5 subgroup (Fig. 3). This result
matches the evolutionary relationship observed at the gen-
omic structure level for the IRF5s in all species (Fig. 2).

The ccIRF5 transcripts were ubiquitously expressed in
all tested tissues of healthy carp, which was similar to
the expression of other known fish IRFs [14, 31-35].
The highest ccIRF5 expression levels in healthy common
carp were in the gills and the brain, while low expression
was observed in the liver and the blood (Fig. 4). Simi-
larly, the highest expression levels of Japanese flounder
and paddlefish IRF5 were also detected in the gills,
which are mucosa-associated lymphoid tissues that
harbour lymphocytes [17, 21]. These results suggest that
IRF5 may be crucial role for the activity of the mucosal
immune system in fish. Turbot IRF5 was highly
expressed in the brain, with which our result is in more
agreement, suggesting that IRF5 might also play a
significant role in the central nervous system [36]. High
expression levels of IRF5 were shown in various tissues
of different fish species. For instance, grass carp and
half-smooth tongue sole IRF5s were expressed in all ex-
amined organs and the highest expression was in the
spleen [14, 19]. The rock bream IRF5 gene was highly
expressed in the liver [18]. In contrast, the highest ex-
pression levels of IRF5 in zebrafish were in the ovaries
and the muscle, which are not immune-associated tis-
sues [15]. The reason for the dissimilarities in IRF5
expression patterns in different fish species may be due
to the diverse immune systems of fishes.
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Previous studies have highlighted the important role of
IRF5 in regulating the expression of IFN and other pro-
inflammatory cytokines in TLR7 and 8 antiviral re-
sponses [13]. To gain insight into the role of ccIRF5 in
response to the treatment with poly I:C, which is a syn-
thetic double-stranded RNA, the temporal expression of
ccIRF5 in seven immune-related tissues was examined.
As shown in Fig. 5, the expression levels of ccIRF5 in
different tissues reached peak levels at different time
points. The maximum induction of ccIRF5 in mucosa-
associated tissues including the foregut, the hindgut, the
skin and the gills, occurred within 24 hpi compared to

the expression levels in the spleen, the head kidney and
the liver (at 48 and 72 hpi). This phenomenon may be
because the fish mucosal immune system is the first line
of defence against the invading pathogens. The expres-
sion of ccIRF5 was slightly up-regulated in all tested
tissues (1.7- to 4.2-fold), with the exception of the fore-
gut (22.8-fold). Similarly, the expression levels of IRF3
and IRF7 mRNA were highly up-regulated in the intes-
tine of spring viraemia of carp virus (SVCV)-infected
common carps [22]. These results may indicate that the
IRF family plays a key role in the intestinal immune sys-
tem. The expression levels of IRF5 in the immune and
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non-immune tissues of zebrafish, rock bream and turbot
were weakly affected by infectious poly I:C, which is in
accordance with our study [15, 18, 36]. In contrast, the
induction magnitude of IRF5 was much stronger in the
tissues of poly I:C-injected Japanese flounder [17]. In
addition, fish (grass carp, Japanese flounder, rock bream,
turbot and half-smooth tongue soles) IRF5 genes were
reported to be significantly induced by different patho-
gens (grass carp reovirus, lymphocystis disease virus,
iridovirus, turbot reddish body iridovirus and megalocy-
tivirus) [14, 15, 17-19, 36]. These results indicate that
fish IRF5 may respond to different pathogens in a tissue-
or virus-specific manner, but the mechanism involved
require further investigation.

TNF«, a potent proinflammatory cytokine produced
following PAMP recognition by PRRs, and ISGs were
also observed at different time points upon the stimula-
tion of poly I:C in vivo by real-time PCR. The highest in-
duction of ccTNFa was detected in the spleen and the
liver at 24 hpi (42.3- fold) and 6 hpi (20.4-fold), respect-
ively (Fig. 6). This finding is potentially because the

spleen and liver are key innate immune tissues in fish
that have a rich resident population of macrophages and
lymphocytes, which secrete large quantity of TNFa upon
stimulation with pathogens. The Skin, the gills and the
intestine (including foregut and hindgut) are important
mucosal lymphoid tissues in fish [37]. In this study, fol-
lowing poly L:C challenge, ccISG15 and ccPKR in the
foregut and the hindgut were significantly induced. This
result indicates that IRF5 might play an important role
in mucosal immune system. Further, in our preliminary
studies, gene expression of ccIFN and ccMx in all tested
tissues was also significantly induced by poly I:C stimu-
lation (unpublished data). In Japanese flounder and
turbot, Mx expression was strongly induced by poly I:C
in the head kidney and the gills [38, 39]. Thus, these re-
sults suggest a role of ccIRF5 in the activation of down-
stream antiviral pathways.

In accordance with the in vivo study, ccIRF5 tran-
scripts in common carp PBLs and HKLs were induced
upon the stimulation of poly I:C and LPS (Fig. 7). The
reason for this phenomenon might because of the

Relative expression
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Fig. 8 Expression analysis of ccTNFa and cclSGs in common carp PBLs upon poly I:.C (@) and LPS (b) challenges. Total RNA was extracted from
the challenged samples at each time point (shown in Fig. 7). The expression was normalized to S11 and shown relative to control. The data are
presented as the mean + S.D. (n = 3). Significant values in comparison to the control are indicated by *p < 0.05 and **p < 0.01
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presence of immune cells, including monocytes, granu-
locytes and lymphocytes [40, 41]. Notably, the highest
induction of ccIRF5 in the PBLs (3 to 6 hpi) was earlier
than the induction in the HKLs (24 hpi). This might be
due to that IRF family members perform different cellu-
lar activities in a cell type-specific way [42].

Mx and TNFa were induced upon transfection of
IRF5 in rock bream heart cells [18]. In this study,
ccTNFa, ccISG15 and ccPKR transcripts in common
carp PBLs were significantly up-regulated upon the
two stimuli (Fig. 8). Intriguingly, following LPS stimu-
lation, c¢cISG15 and ccPKR expression reached the
highest level at 24 hpi, which was later than the
stimulation by poly I:C. And the fold change of the
three genes induced by poly L:C (4.1- to 29.1-fold)
was stronger than that induced by LPS (1.8- to 3.2-
fold). This phenomenon may be due to that IRF5 me-
diates immune response in a pathogen-specific way.
In accordance with our study, expression of IRF5 in
half-smooth tongue sole was significantly increased
post bacterial infection in vivo [19]. Therefore, these
results are signifying ccIRF5 may be not only play an
the important role in regulating the antiviral immune
response, as reported for mammalian IRF5, but also
can respond to bacterial challenge [12, 43].

Conclusions

In summary, we report the cloning and characterization of
an IRF5 gene from common carp at transcriptional and
genomic DNA levels. Furthermore, we describe tissue dis-
tribution and in vivo and in vitro induction of ccIRFS5,
c¢cINFa and ccISGs upon stimulation with poly I:C and
LPS. Our findings suggest that IRF5 might play an import-
ant role in regulating the antiviral and antibacterial
response in fish, and these results could provide a clue for
preventing common carp infection by pathogenic micro-
organisms present in the aquatic environment.
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Additional file 1: Intron sequences of the ccIRF5 gene. Intron sizes are
495, 804, 225, 131, 88, 761, 518, and 766 bp. (TXT 3 kb)
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