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Genome-wide association study reveals a
locus for nasal carriage of Staphylococcus
aureus in Danish crossbred pigs
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Abstract

Background: Staphylococcus aureus is an important human opportunistic pathogen residing on skin and mucosae
of healthy people. Pigs have been identified as a source of human colonization and infection with methicillin-
resistant Staphylococcus aureus (MRSA) and novel measures are needed to control zoonotic transmission. A recent
longitudinal study indicated that a minority of pigs characterized by high nasal load and stable carriage may be
responsible for the maintenance of S. aureus within farms. The primary objective of the present study was to detect
genetic loci associated with nasal carriage of S. aureus in Danish crossbred pigs (Danish Landrace/Yorkshire/Duroc).

Results: Fifty-six persistent carriers and 65 non-carriers selected from 15 farms surveyed in the previous longitudinal
study were genotyped using Illumina’s Porcine SNP60 beadchip. In addition, spa typing was performed on 126 S.
aureus isolates from 37 pigs to investigate possible relationships between host and S. aureus genotypes. A single
SNP (MARC0099960) on chromosome 12 was found to be associated with nasal carriage of S. aureus at a genome-wide
level after permutation testing (p = 0.0497) whereas the association of a neighboring SNP was found to be borderline
(p = 0.114). Typing of S. aureus isolates led to detection of 11 spa types belonging to the three main S. aureus clonal
complexes (CC) previously described in pigs (CC9, CC30 and CC398). Individual carriers often harbored multiple S.
aureus genotypes and the host-pathogen interaction seems to be independent of S. aureus genotype.

Conclusion: Our results suggest it may be possible to select pigs genetically resistant to S. aureus nasal colonization as
a tool to control transmission of livestock-associated MRSA to humans.
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Background
Staphylococcus aureus is a significant human pathogen
causing wound and skin infections, endocarditis and
bacteremia [1, 2]. It has long been recognized that
healthy individuals may be colonized on skin and mu-
cosae, the most frequent carriage site in humans being
the anterior nares [3, 4]. Longitudinal studies have dem-
onstrated the existence of three S. aureus nasal carriage
patterns, i.e., persistent carriers (~20 % of the popula-
tion), non-carriers (~50 %) and intermittent carriers
(~30 %) [3, 4]. There is evidence showing that nasal car-
riage is associated with a higher risk of S. aureus infec-
tion [5, 6]. Colonization of the host is a complex process

which is influenced by host factors, bacterial factors, and
environmental factors [6–8]. Although the heritability of
S. aureus carriage was not significant in two human
studies [9, 10], single nucleotide polymorphisms (SNPs)
associated with nasal carriage have been found for several
candidate genes, e.g., C-reactive protein (CRP), interleukin
4 (IL-4), and glucocorticoid receptor (NR3C1) [11–15]. In
addition, genetic loci associated with susceptibility to S.
aureus infection have been reported in murine studies [16,
17]. Collectively, these studies suggest that host gene vari-
ants underlie differences in susceptibility to S. aureus
colonization. However, candidate gene studies suffer from
the limitation that they only assess the effects of specific
genes picked by the researcher based on hypothesized in-
volvement in disease etiology. In contrast, genome-wide
association studies (GWAS) survey the entire genome,
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and many of the associations found in GWAS identify
novel candidate genes [18, 19].
Pigs and other livestock species carrying methicillin-

resistant S. aureus (MRSA) clonal complex (CC) 398
may act as a source of human colonization and infection
[20, 21]. Spread of this livestock-associated MRSA clone
is presently regarded as a threat to public health, and ef-
fective control measures preventing transmission of
MRSA to farmers and other people exposed to livestock
are urgently needed [22, 23]. A recent longitudinal study
revealed that a minority of pigs characterized by high
nasal load and stable carriage may be responsible for the
maintenance of S. aureus within farms [24]. The object-
ive of the present study was to detect loci associated
with nasal carriage of S. aureus. Danish crossbreds clas-
sified as persistent carriers (n = 56) and non-carriers (n
= 65) were genotyped by GWAS using Illumina’s Porcine
SNP60 beadchip [25]. A single SNP on chromosome 12
was found to be genome-wide significant after permuta-
tion testing. The region of interest was inspected and we
identified four candidate genes which may control S.
aureus colonization in pigs.

Methods
Phenotypic characterization of pigs
Our study population comprised 56 persistent carriers
and 65 non-carriers from 15 farms located in the central
part of Jutland, Denmark (three specific-pathogen-free
(SPF) and 12 non-SPF farms). Most pigs were pheno-
typed in the previous longitudinal study [24] and 21 add-
itional pigs were recruited for this study on four of the
farms surveyed in the longitudinal study. Nasal swabs
(Dryswab™, MWE, UK) were collected from all pigs
three times on a weekly basis. Pigs that were S. aureus-
positive on all three sampling points were classified as
persistent carriers whereas non-carriers were negative
on at least two sampling points and with no more than
100 CFU/swab in the remaining sample. In order to en-
sure exposure to a minimum colonization pressure, non-
carriers were included only if they originated from farms
where at least one persistent carrier was detected. The
distribution of persistent carriers and non-carriers
among farms is shown in Additional file 1: Table S1. All
pigs were crossbreeds (Danish Landrace/Yorkshire/
Duroc) of approximately 70 kg. Pedigree details were
not available but since the farmers used mixed semen to
produce the offspring, the sample was expected to com-
prise a mixture of half-sibs (by sow and boar) and more
distantly related pigs.
According to Danish laws (Danish Animal Experimen-

tation Act, Chapter 1, Paragraph 1, point 3) no ethical
approval was required for this study since the blood
samples collected from the animals were taken for diag-
nostic purposes. All procedures concerning the animals

were part of routine examinations and diagnosis of ani-
mals normally used at production farms. All handling of
animals was performed by trained personnel and
veterinarians.

Genotyping of pigs
To detect QTLs associated with S. aureus carrier status,
we genotyped all pigs using diagnostic blood samples
collected in EDTA tubes (VWR, USA). DNA was ex-
tracted using either a salting out procedure with minor
modifications [26] or MasterPure™ Complete DNA and
RNA Purification Kit (Epicentre Biotechnologies, USA)
according to the manufacturer’s instructions. The concen-
tration and purity of DNA was measured on a NanoDrop
1000 spectrophotometer (Thermo Fisher Scientific, USA).
2500 ng of each sample was submitted for genotyping to
GeneSeek, Inc. (http://www.neogeneurope.com). Samples
were genotyped for 61,565 SNPs using Illumina’s Porcine
SNP60 beadchip [25].

Isolation and genotyping of S. aureus
To study possible relationships between host and S. aur-
eus genotypes, S. aureus was isolated from 37 persistent
carriers whose nasal swabs had been stored at−80 °C in
the previous study [24]. Swabs were directly plated onto
SaSelect agar (Biorad, USA) and enriched in Müller-Hin-
ton broth containing 2.5 % of NaCl to enhance S. aureus
detection. After overnight incubation one presumptive S.
aureus colony was randomly selected for each sampling
point. Additional colonies were isolated if they had clear
morphological features suggesting the presence of differ-
ent strains on the same plate. If S. aureus was not de-
tected by direct plating, the enrichments were further
processed as described above. All isolates were charac-
terized by spa typing [27, 28] and spa types were
assigned using Ridom Staphtype software, version 2.2.1
(Ridom GmbH, Würzburg, Germany). Associations be-
tween spa types and clonal complexes (CC) were deter-
mined according to information available in the scientific
literature. For spa types not previously associated to a
clonal complex, BURP cluster analysis (Ridom StaphType
software, version 2.2.1) was used to infer association [27].

Statistical analyses
Data were analyzed in R version 3.1.0 [29]. Genotype
data were analyzed and visualized using the GenABEL
package [30, 31] except for Manhattan plots which were
made using the qqman package [32]. SNPs were ex-
cluded prior to analysis if genome position was not pro-
vided (n = 12,627) or if they were located on sex
chromosomes (n = 1381). SNP genotype data were sub-
jected to quality control (QC) measures. GenABEL ap-
plies QC filters using an iterative process; for individuals
we used the following criteria, call rates > 0.95, false
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discovery rate (FDR) for unacceptably high heterozygos-
ity < 0.01 and identity-by-state (IBS) < 0.95 (based on
2000 markers); for SNPs we used the following criteria
(number of SNPs that did not pass the threshold), call
rate > 0.95 (2500), minor allele frequency (MAF) > 0.05
(7012), and SNPs in Hardy-Weinberg equilibrium with
p-values > 0.05 (15,073). After QC a total of 23,919 auto-
somal SNPs mapped to build Sscrofa 10.2 and 121 indi-
viduals (56 carriers, 65 non-carriers) were included in
the final analysis.
We estimated the average relatedness between pigs by

computing an n × n marker-based genomic kinship
matrix for all pairs of pigs. Kinship coefficients between
two individuals (average identical-by-state value) were
estimated using 23,919 autosomal SNPs which had
passed QC as described elsewhere [31]. The genomic
kinship matrix was transformed to a distance matrix
which was then subjected to multidimensional scaling
analysis and plotted in two dimensions (principal com-
ponent axes) [31].
The association between SNP genotype and nasal car-

riage of S. aureus (binary trait) was tested in GenABEL
using an allelic association test with 1 df. We included
farm as a covariate in the model. To adjust for multiple
testing with a high number of SNPs, we derived the em-
pirical distribution of the chi-square statistic after 10,000
permutations of the whole dataset. Genome-wide signifi-
cance was set to empirical p-values < 0.05. We used gen-
omic control [33] to adjust for any inflation of the test
statistic. Calculations of linkage disequilibrium (LD) and

visualization of LD were performed in Haploview ver-
sion 4.2 [34]. Since the annotation of the pig genome se-
quence is incomplete, we also interrogated the human
orthologue of the candidate region (HSA: 17q12) using
builds Sscrofa10.2 and GRCh38 accessed through the
Ensembl genome browser (www.ensembl.org).
The association between total number of spa types

colonizing over the three-week period (1, 2, or 3) and
SNP MARC0099960 genotype (GG, GA, AA) was tested
using Fisher’s Exact Test for Count Data. We tested if
colonization by each clonal complex (CC9, CC30, and
CC398) was non-random among SNP MARC0099960
genotypes using Fisher’s Exact Test for Count Data. In
addition to the genotype model, we also tested a domin-
ance/recessive model (GG vs. GA and AA; GG and GA
vs. AA).

Results
The 23,919 SNPs which passed quality testing were used
to compute a genomic kinship matrix for all pairs of pigs
(Fig. 1a). Inspection of the matrix suggested that the pigs
in our sample were only distantly related. We next applied
multidimensional scaling to a distance matrix calculated
from the genomic kinship matrix (Fig. 1b). The plot did
not suggest any stratification of data with respect to S.
aureus carriage (persistent carriers vs. non-carriers) or
farm (data not shown). We constructed a quantile-
quantile plot (Fig. 1c) and calculated the genomic inflation
factor (λGC = 1.06) which also confirmed that genetic con-
founding was not an issue in our dataset.

Fig. 1 From left to right: a Distribution of genomic relationships between pairs of pigs (kinship matrix). b Multidimensional scaling plot (n = 121).
0, non-carriers; 1, persistent carriers; PC, principal component. c Quantile-quantile plot. Black line, the expected distribution of association test
statistics under the null hypothesis of no association is plotted against observed values. Any deviation from the X-Y line suggests a consistent
difference between persistent carriers and non-carriers e.g., due to genetic confounding. At the extreme of the distribution, the observed chi-square
values are higher than expected by chance which indicates true association. Red line, fitted slope
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A GWAS was performed on the final dataset (Fig. 2).
One locus (SNP MARC0099960) on porcine chromo-
some 12 demonstrated association with carriage of S.
aureus. The effect was genome-wide significant after
permutation testing (p < 0.05; Table 1; Fig. 2). A
neighboring SNP, ALGA0104951, in high LD with
MARC0099960 (r2 = 0.806), did not reach genome-
wide significance but was borderline significant after
permutation testing (Table 1). These two SNPs are
both located in an intergenic region.
To define the haplotype structure within the region,

LD blocks were analyzed using Haploview. The mea-
sures of pairwise LD are shown in Fig. 3 where Block 1
indicates a region of 234 kb showing LD with SNP
MARC0099960. The proposed candidate region is flanked
by SNP markers ASGA0093685 and ALGA0123748, both
showing no or weak LD with Block 1. Thus, the two SNPs
(MARC0099960, ALGA0104951) delineate a haplotype
block and since LD to flanking markers is weak we con-
servatively use these flanking markers as coordinates and
delineate our QTL to SSC12: 42,422,021–43,436,573.
With the limitations of the annotation of the porcine gen-
ome assembly, this QTL encompasses four annotated
genes encoding chemokines (CCL1, CCL2, CCL8, CCL11).
The following 11 spa types were observed among the

126 S. aureus isolates from persistent carriers (frequency
in brackets): t011 (11 %), t034 (76 %), t337 (5 %), t1333
(16 %), t1334 (8 %), t1580 (3 %), t2315 (16 %), t2370

(3 %), t2462 (11 %), t3131 (14 %), and t5817 (5 %). Thir-
teen pigs (35 %) were found to carry the same strain
throughout the study, while the remaining 24 pigs car-
ried either two (59 %) or three (5 %) different strains
(Additional file 1: Table S1). The identified spa types
have previously been associated with CC9 (t337, t1334,
t2315, t2462, t3131) [35–37], CC30 (t1333) [38] and
CC398 (t011, t034, t1580, t2370) [35, 39]. We did not
find any reported clonal complex association for spa type
t5817, which belonged to CC9 according to BURP cluster
analysis. The association between SNP MARC0099960
and host colonization was independent of S. aureus
genotype.

Discussion
To our knowledge the work presented here is the first
attempt to decipher the host genetic factors involved in
nasal carriage of S. aureus in pigs. The GWAS demon-
strated a significant association between a SNP marker
located in a non-coding region (SNP MARC0099960) and
nasal carriage of S. aureus, while the association of a
nearby polymorphism in high LD with SNP MAR
C0099960 (SNP ALGA0104951) was borderline signifi-
cant. Regardless, the results presented here are prelimin-
ary and the association should be replicated in other pigs
to confirm the findings.
The frequency of the G allele at the SNP MAR

C0099960 locus was twice as high in carrier pigs

Fig. 2 Manhattan plots for GWAS of nasal Staphylococcus aureus carriage in Danish crossbred pigs. The analysis included 65 non-carriers and 56
persistent carriers which were genotyped at 23,919 autosomal SNPs. p-values were corrected using lambda statistic to account for genetic
confounding. Upper figure shows raw p-values; a suggestive significance threshold (p = 1 ×10−5 is indicated with a horizontal line. Lower figure
shows permuted dataset after 10,000 permutations; the horizontal line shows the genome-wide significance threshold (p = 0.05)
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compared to non-carriers of S. aureus (Table 1). The
majority (31 out of 36) of the 121 genotyped pigs that
were homozygous for the A allele were non-carriers of S.
aureus while the majority (20 out of 28) that were
homozygous for the G allele were persistent carriers,
suggesting that the G allele is associated with suscepti-
bility to nasal carriage of S. aureus. A total of 31 and 26
pigs were heterozygotes in the group of persistent- and
non-carriers, respectively. Since both SNPs are located
in a non-coding part of the genome, our results indicate
that the haplotype tagged by these two SNPs contains
one or several genes with an effect on S. aureus nasal
carriage.
We used the Ensembl genome browser to interrogate

our region of interest (build Sscrofa10.2) and the human
orthologue of the region of interest (build GRCh38). In-
spection of our ~1 Mb QTL region revealed that it en-
compasses a cluster of four chemokine genes (CCL1,
CCL2, CCL8, and CCL11). A causative variant may be a
SNP located in an exon of a protein-coding gene (chan-
ging the amino acid sequence of the protein), a regula-
tory part of a gene (altering the expression level), or a
copy-number variant of a gene [40, 41]. Chemokines are
expressed by a variety of cells to help direct immune

cells of the innate and adaptive branch of the immune
system to the site of foreign antigen [42]. There is evi-
dence suggesting some of our candidate chemokines
may be invoked following bacterial colonization; S. aur-
eus antigens have been shown to stimulate expression of
CCL1 by dendritic cells [43] while another study demon-
strated human alveolar epithelial cells produced CCL2
following stimulation by LPS, a component of the gram-
negative cell wall [44]. CCL2 has chemotactic properties
for monocytes [45]; indeed, recruitment of macrophages
required expression of the CCL2-binding chemokine re-
ceptor 2 in a mouse model of Steptococcus pneumoniae
colonization [46]. CCL1 and CCL11 had direct anti-
microbial activity against S. aureus while CCL2 and
CCL8 did not have any effect on this pathogen [47].
The host factors underlying the differences in S. aur-

eus carriage are not yet fully understood [6]. Studies in
a murine model have suggested S. aureus clearance is
T-cell mediated and happens via an IL-17A-dependent
recruitment of neutrophils [48]. While the adaptive im-
mune response was found to be important, these au-
thors were not able to demonstrate that B-cells were
crucial. In agreement with these findings there is
evidence showing that immunity to pneumococcal

Table 1 Statistics for two lead single nucleotide polymorphisms (SNPs) associated with nasal carriage of Staphylococcus aureus in
Danish crossbred pigs (56 persistent carriers and 65 non-carriers)

SNP ID Chromosome Position (bp) A1/A2 MAF (persistent carriers) MAF (non-carriers) Pa Pb

MARC0099960 12 43,145,785 G/A 0.63 0.32 6.37×10−6 0.0497

ALGA0104951 12 43,380,247 G/T 0.61 0.33 1.38×10−5 0.1135

MAF minor allele frequency; A1 minor allele; A2 major allele
aAllelic association statistic adjusted for genomic control (Pc1df)
bPermutation test statistic after 10,000 permutations adjusted for genomic control

Fig. 3 Linkage disequilibrium (LD) plot showing r2 x 100-values (correlation coefficient) with standard Haploview color scheme (ranging from
white when r2 = 0 to black when r2 = 1). Block 1 indicates a region of 234 kb showing LD with SNP MARC0099960. The proposed candidate
region is flanked by SNP markers ASGA0093685 and ALGA0123748, both showing no or week LD to block 1
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colonization is antibody independent but does require
CD4+ T cells [49].
Research in humans and murine models using infec-

tion with S. aureus as phenotypic trait have suggested
different positional candidate genes, e.g., SEH1L,
TNFAIP8, KLK, and CDON [16, 17, 50, 51]. However,
none of these genes are situated in or close to our QTL
region. Genetic studies in human populations are chal-
lenged by a considerable genetic heterogeneity which
may explain why previous efforts have shown a non-
significant heritability of nasal carriage of S. aureus [9,
10]. In contrast, pigs may be used as a convenient model
since they are much less heterogeneous and smaller
sample sizes are needed to detect genetic variants associ-
ated with complex traits [52]. The pig model may be
used to further explore S. aureus colonization mecha-
nisms in humans; e.g., by taking advantage of the possi-
bility to control various factors under experimental
settings (e.g., housing conditions, known inoculation
doses, known pedigrees, etc.).
GWAS for host susceptibility to infectious pathogens

should take the genome of the microorganism, i.e., strain
information, into account [53]. This notion is particu-
larly relevant to S. aureus colonization, which is the re-
sult of a complex interplay between host and bacterial
factors [54–56]. All S. aureus spa types identified in the
present study have previously been isolated from pigs
[35, 36, 38, 39] except t3131 (CC9) which has only been
reported in cattle [37]. CC398-associated spa types were
isolated from most (33/37) persistent carriers, suggesting
that CC398 is the most prevalent S. aureus lineage in
Danish crossbreed pigs. Even though the study was not
designed to study coexistence of different lineages in the
nasal cavity of pigs (i.e., only one or two isolates were
spa typed from each sample), our results show that per-
sistent carriers can be colonized by several lineages dur-
ing a period of three weeks and by more than one strain
at the same time.
The association between SNP MARC0099960 and host

colonization was independent of S. aureus genotype.
This is valuable information considering that S. aureus is
a highly clonal microorganism and one clonal lineage
(CC398) accounts for most livestock-associated MRSA
infections in Europe [20, 21]. Identification of genetic
markers associated with nasal carriage of S. aureus may
be used in breeding to select animals with reduced sus-
ceptibility to colonization by this organism. Such a
breeding program may serve as an unexplored option to
prevent spread of livestock-associated MRSA to humans.
A similar approach was used to detect the locus respon-
sible for enterotoxigenic E. coli diarrhea in piglets, and a
genetic marker test which distinguishes between sus-
ceptible and resistant animals has been developed [57].
The findings presented here may also improve our

understanding of the host mechanisms underlying S.
aureus colonization in both pigs and humans. The new
locus detected in the present study provides a basis for
further exploration by validation and functional testing
of the markers and candidate genes.

Conclusion
We have identified significant association between a
SNP marker located in a non-coding region (SNP
MARC0099960) and nasal carriage of S. aureus. The
QTL region encompasses a cluster of four chemokine
genes (CCL1, CCL2, CCL8, and CCL11) which are po-
tential candidate genes for nasal carrige. Our results sug-
gest it may be possible to select pigs genetically resistant
to S. aureus nasal colonization as a tool to control trans-
mission of livestock-associated MRSA to humans.

Additional file

Additional file 1: Table S1. Pig and spa type distribution across farms.
(PDF 16 kb)
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