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Abstract

Background: Prenatally stressed offspring exhibit increased susceptibility to inflammatory disorders due to in utero
programming. Research into the effects of n-3 PUFAs shows promising results for the treatment and prevention of
these disorders. The purpose of this study was to investigate whether maternal fishmeal supplementation during
pregnancy and lactation protects against programming of the offspring’s immune response following simulated

maternal infection.

Methods: In order to accomplish this, 53 ewes were fed a diet supplemented with fishmeal (FM; rich in n-3
PUFA) or soybean meal (SM; rich in n-6 PUFASs) from day 100 of gestation (gd 100) through lactation. On gd135, half
the ewes from each dietary group were challenged with either 1.2 ug/kg Escherichia coli lipopolysaccharide (LPS)
endotoxin to simulate a bacterial infection, or saline as the control. At 4.5 months of age the offspring’s dermal
immune response was assessed by cutaneous hypersensitivity testing with ovalbumin (OVA) and candida albicans
(CAA) 21 days after sensitization. Skinfold measurements were taken and serum blood samples were also collected to
assess the primary and secondary antibody immune response.

Results: Offspring born to SM + LPS mothers had a significantly greater change in skinfold thickness in response to
both antigens as well as a greater secondary antibody response to OVA compared to all treatments.

Conclusions: Supplementation during pregnancy with FM appears to protect against adverse fetal programming that
may occur during maternal infection and this may reduce the risk of atopic disease later in life.
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Background

Adverse uterine environments caused by maternal stress
and infection can alter the planned programming of
various tissues, organs and systems of the fetus. When
the re-programming of these systems do not match the
predicted environment, the offspring may be more sus-
ceptible to inflammatory diseases such as atopy, cardio-
vascular disease and type II diabetes in later life [1-10].

* Correspondence: nkarrow@uoguelph.ca

'Department of Animal and Poultry Science, University of Guelph, 50 Stone
Road East, Building 70, Guelph, Canada

Full list of author information is available at the end of the article

( BiolMed Central

This hypothesis has recently become one of the main fo-
cuses in atopic disease research.

With the increase in atopic disorders, such as asthma,
food allergies and atopic dermatitis in the Westernized
population, it is speculated that genetic predisposition it-
self cannot be solely responsible, and focus is being
placed on in utero events and environmental factors that
may be playing a contributing role [11-13]. Prenatal
stress and the associated rise in glucocorticoids (GCs),
as well as the high concentration of pro-inflammatory
mediator omega-6 polyunsaturated fatty acid (n-6 PUFA)
has been found to be a factor contributing to the suscep-
tibility to atopic diseases by altering the programming of
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both the immune system and hypothalamic-pituitary-
adrenal axis (HPAA) [14, 15]. For example, alterations in
the HPAA through fetal programming have been shown
to increase the occurrence of respiratory, and skin dis-
eases [16—18]. These alterations in HPAA programming
may be responsible for the typical increase in T helper
type 2 (Th2) lymphocytes as well as the associated cyto-
kines and chemokines observed in individuals who were
prenatally stressed and those with atopic disease [19, 20].
During normal pregnancy the dominant immune re-
sponse is of Th2 origin and this helps to facilitate ma-
ternal tolerance for the fetus. Shortly after parturition
the balance between Th2:Th1l is restored. However, in
prenatally stressed individuals, it has been suggested
that this shift may be delayed, which may increase the
susceptibility to atopic diseases [11].

Recent studies suggest that supplementation with
omega-3 polyunsaturated fatty acids (n-3 PUFAs) may
help to alleviate atopic disorders during both child-
hood and adulthood [21-23]. Unlike n-6 PUFAs, n-3
PUFAs promote anti-inflammatory mediators and may
help protect against inflammatory challenges. For ex-
ample, n-3 PUFAs have been shown to alter T lymphocyte
gene expression profiles by suppressing their differenti-
ation. Their function is also inhibited due to decreased
concentrations of cytokines, chemokines and immuno-
globulins associated with these responses [24—26]. How-
ever, it appears that the timing, type and dosage of n-3
PUFA supplementation may be crucial in the treatment of
atopic disease, as various studies have also shown no
beneficial affects with supplementation [27, 28]. Previous
studies have focused their efforts on postnatal impacts,
however the role of n-3 during pregnancy and an activa-
tion of protection is ill defined.

Therefore, the purpose of this study was to investi-
gate whether maternal fishmeal (FM) supplementation
rich in n-3 PUFA can protect the offspring’s immune
system from simulated maternal infection. It was hypothe-
sized that maternal supplementation with n-3 PUFAs
would protect the offspring from maternal endotoxin
challenge and will decrease the dermal immune response
and antibody-specific response to novel antigens. In order
to test this objective a sheep model will be used. Sheep are
an excellent model for humans as their offspring are a
similar size at birth, and their brain development occurs
during fetal development.

Methods

Ewe parameters and experimental procedures

Fifty-three cross-bred Rideau-Arcott ewes were used in
a randomized block design. All animals were housed at
the Ontario Ministry of Agriculture, Food and Rural
Affairs (OMAFRA) Ponsonby Sheep Research facility.
Beginning on day 100 of gestation (gd 100; gestation
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period ~145 days) ewes were allocated to a diet rich in
either fishmeal (FM; high in n-3 PUFA) or soybean meal
(SM; high in n-6 PUFA) and maintained on the diet
through 50 days of lactation. The SM diet was consid-
ered the control diet in this study because this diet is
commonly fed to sheep in Ontario, Canada. Ewes were
housed individually indoors in an 8" x 4’ pen and of-
fered feed twice a day at 2.5 % of body weight for a total
amount of 2.64 kg of feed/day (0.312 kg supplement,
0.441 kg mixed grain, 0.630 kg chopped hay and 1.261 kg
alfalfa pellet) with average feed intake of 2.53 kg of feed/
day in the FM group and 2.59 kg of feed/day in the SM
group during gestation. During lactation 3.90 kg of feed/
day was offered (0.455 kg supplement, 0.652 kg mixed
grain, 0.931 kg chopped hay and 1.862 kg alfalfa pellets)
with average feed intake of 3.83 kg of feed/day in the FM
group and 3.877 kg of feed/day in the SM group. The
amount of DHA and EPA fed per day in the FM supple-
ment was 0.85 g/day during gestation and 1.23 g/day dur-
ing lactation, while that of the SM was 0.10 g/day during
gestation and 0.15 g/day during lactation. In comparison
the amount of linoleic acid fed per day in the FM supple-
ment was 0.85 g/day during gestation and 1.33 g/day lac-
tation, while 1.24 g/day during gestation and 1.94 g/day
during lactation was fed per day in the SM supplement.
This resulted in n-6:n-3 ratios of 1.0 for the FM supple-
ment and 13.2 for the SM supplements. Nutrient re-
quirements were based on both the weight and age of
the ewes and were calculated from the Cornell Net Carbo-
hydrate and Protein System for sheep (Cornell University,
Ithaca, NY). Data from a preliminary trial demonstrated
that dietary PUFA concentrations plateau approximately
27 days after the introduction of the dietary supplement
[29]. A detailed dietary composition can be found in
Tables 1 and 2.

On gd135, half of each the ewes from each dietary
treatment group were endotoxin challenged with a 2 ml
i.v bolus of 1.2 ug/kg body weight of lipopolysaccharide
(LPS) from Escherichia coli 055:B5 (Sigma-Aldrich,
Oakville, Ontario) dissolved in saline, or a 2 ml bolus of
saline for control (CON). Health status such as febrile
response, respiration rate and haptoglobin concentra-
tions of these ewes were previously reported in Stryker
et al. [30]. The treatment groups and animal numbers
are as follows SM +LPS (z=12), SM + CON (n=13),
FM + LPS (1 = 14) or EM + CON (1 = 14).

All block trials were conducted under the strict ethical
guidelines set out by the University of Guelph Animal
Care Committee in accordance with the Canadian Council
of Animal Care (Protocol number 07R052).

Lamb parameters and experimental procedures
Eighty-nine lambs were born from the 53 ewes [(SM +
LPS (n=19); SM+CON (n=21); FM +LPS (n=24);
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Table 1 Diet and nutrient composition (DM basis) for soybean
meal (SM) and fishmeal (FM) supplemented diets fed to ewes

Soybean meal (% DM) Fishmeal (% DM)

Ingredients®

Mixed grain (barley, oats, corn) 16.34 16.34
Alfalfa hay 24.72 24.72
Alfalfa pellets 47.26 47.26
Supplement
Soybean meal 6.62 -
Fishmeal - 4.73
Feather meal 236 147
Wheat grain 0.71 236
Wheat shorts - 1.68
Calcium mono phosphate  0.66 0.25
Calcium carbonate 0.57 042
Salt 042 038
Magnesium oxide 0.19 0.23
Mineral and vitamins® 0.16 0.16
Chemical composition®
DM (%) 90.7 90.7
CP (N X 6.25) 216 216
ADF 22.7 22.5
NDF 353 36.3
Lignin 4.7 48
Crude fat 26 28
NFC 376 37.1
MES(MCAL/kg) 2.1 2.1

DM dry matter, SM soybean meal, FM fishmeal, NFC non-fibre carbohydrate
The following are presented as % DM: CP, ADF, NDF, lignin, crude fat and NFC.
Adapted from Or-Rashid et al. [52]

*The inclusion rate for all dietary ingredeints is presented on a % dry

matter basis

PMaster Feeds Inc., London, Ontario, Canada

“All chemical components expressed on a % of dry matter basis except ME
¥Non-fibre carbohydrates = 100 -[(NDF - neutral detergent insoluble protein) +
CP + crude fat + ash]

€Calculated using the Cornell Net Carbohydrate and Protein System for Sheep
(CNCPS-Sheep v.1.0.21, Cornell University, Ithica, NY, USA) using

chemical analysis

FM + CON (n =25)]. In order to ensure adequate milk
supply to the lambs, ewes were allowed to raise a max-
imum of 2 lambs that remained with their dam until
50 days of age. Once weaned lambs were housed in
groups indoors at the OMAFRA Ponsonby General Ani-
mal Facility. All lambs were fed the same diet of lamb
grower and hay ad libitum.

At 4.5 months of age, all lambs were antigen sensitized
with two 1 ml iém. injections containing of 0.5 mg/ml of
ovalbumin (OVA; Sigma-Aldrich, Oakville, Ontario) or
0.5 mg/ml of candida albicans (CAA; Greer Laboratories
Inc., Lenoir, North Carolina) dissolved in 0.5 mg/ml Quil-A
adjuvant and saline. Ten days following sensitization, lambs
received a booster of the same concentration of OVA and
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CAA. On day 21 post sensitization, lambs underwent i.d.
cutaneous hypersensitivity testing on both sides of the neck
using OVA and CAA at a concentration of 100 pg/50 ul sa-
line, as well as saline as a control. Skinfold measurements
were performed using Harpenden Skinfold Calipers (Cre-
ative Health Products, Ann Arbor, Michigan) 0, 1, 2, 4, 6,
24, 48, and 72 h post challenge.

Blood sampling and IgG ELISA

Blood samples were collected on day 0, 10, and 21 days
post sensitization to assess the primary and secondary
immunoglobulin G (IgG) antibody-mediated immune re-
sponse to OVA. Serum blood samples were collected via
jugular venipuncture using 10 ml clot-activated serum
vacutainers and allowed to clot for 30 min at room
temperature prior to centrifugation at 2500 rpm for
15 min. Serum was stored at —80 °C until IgG specific
antibodies were analyzed.

The OVA specific antibody response was measured
using an indirect enzyme-linked immunosorbent assay
(ELISA). Plates were coated with 1.4 mg/ml OVA dis-
solved in carbonate coating buffer and stored at 4 °C for
48 h. Plates were then washed five times with 200 pl of
phosphate buffered saline (PBS)+0.05 % tween 20.
Blocking solution (ELISA ultrablock, Serotec, Raleigh,
NC) was added to the plate at 200 pl per well and incu-
bated for 1 h at room temperature. Plates were again
washed five times and serum samples and reference
standard curve samples were added to wells at 100 pl/well
and incubated for 2 h. Serum was diluted as follows, day 0
samples were diluted 1/50, day 10 1/500 and day 21
1/4000. The plates were again washed 5 times with
200 pl PBS+0.05 % tween 20 and conjugate rabbit-
anti-sheep IgG antibody was added to the plates at a dilu-
tion of 1/4000 and incubated for 1 h. The plates were then
washed and alkaline phosphatase yellow liquid substrate
system (Sigma-Aldrich, Oakville, ON) was then added to
the wells at 80 pl and incubated for 30 min. The plate ab-
sorbance was read on Victor Wallac Plate Reader at a
wavelength of 405 nm. Intra- and inter- plate coefficients
of variation for the ELISA plates were 1.48 and 524 %
respectively.

Statistical analysis

Separate analyses were performed on both the OVA and
CAA skinfold thickness measurements on the offspring
at the test site. All sites were analyzed as randomized
complete block designs with subsampling and with re-
peated measurements over time on each subsample
using the same model. Measurements of OVA and CAA
skinfold thickness were performed on a log scale and
measurements at 1, 2, 4, 6, 24, 48, 72 h were expressed
as differences from time 0 measurements. The model
accounted for the 7 blocks, 53 ewes and 89 lambs as
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Table 2 Fatty acid composition of various dietary components: alfalfa pellets, alfalfa hay, mixed grains (barley, oats, and corn), the

SM and FM supplements presented as content (g)/100 g

Percent of total fatty acid Alfalfa pellets Alfalfa hay Mixed grain SM supplement FM supplement
10:0 0.266 0.000 0.000 0.202 0.142
12:.0 0538 0.328 0.025 0.132 0.117
14:0 1.274 0.592 0313 0.770 3.049
14:1 0.061 0.000 0.000 0.052 0.070
16:.0 19.496 23932 18974 16.033 19.768
16:1-9¢ 0433 0.365 0.206 2.104 4.940
18:0 3625 3.071 1623 4.808 3.665
18:1-9¢ 3.775 3.126 24.987 25.064 16.206
181-11c 0.638 0.821 1.185 1.687 3.057
18:2n-6 20.758 21322 47.905 26.993 17.197
20:0 1132 1.775 0.240 0.562 0454
20:1 0.000 0.000 1.008 0223 1425
18:3n-3 44984 41.920 3.007 18.390 10.868
22:0 1475 1.256 0.206 0.309 0.236
20:4n-6 0.000 0.000 0.000 0.191 0.729
20:5n-3 0.000 0.000 0.000 0.732 6.096
24:0 1.542 1493 0.322 0.346 0.192
22:5n-3 0.000 0.000 0.000 0.093 0.713
22:6n3 0.000 0.000 0.000 1.309 11.073
random effects and the 2 diets (fishmeal versus soymeal)  Results

and 2 challenges (LPS versus control) plus their inter-
action, the sex of the offspring, time and interactions
among time, challenge and diet as fixed effects. The
number of offspring born per ewe was also included as a
covariate to account for any in utero effects. The mixed
model procedure from SAS (version 9.4) was used to
perform the analysis. Repeated measurements over time
for each offspring were handled according to the ap-
proach given by Wang and Goonewardene (2004) which
recommends using the best-fitting (co)variance structure
over time [31]. The Akaike criterion was used to deter-
mine the appropriate structure for these analyses which
was unstructured for both the CAA and OVA saline
sites, Toeplitz for the CAA test site and heterogeneous
autocorrelation for the OVA test site. Linear and quad-
ratic orthogonal polynomial contrasts over time and in-
teractions of these with the diets and challenges were
used to assess differences in the changes of skinfold
thickness over time among the diets and challenges. The
mixed model procedure from SAS (version 9.2) was also
used to analyze repeated IgG measurements over time
for each offspring per ewe. Significant differences over
time were reported at a P-value < 0.05 and trends over
time were indicated by P-values ranging from 0.06 to
0.10. Residual plots were examined for all analyses, and
showed no evidence of variance heterogeneity.

All lambs survived this study with no significant treat-
ment differences in body weight. The plasma n-3 PUFA
concentrations at weaning (50 days of age), where the
least square means of EPA concentrations were 1.33 for
FM and 1.109 for SM offspring and DHA concentrations
were 1.72 for FM and 1.53 for SM offspring. At the time
of hypersensitivity testing (135 days of age) there was no
difference in plasma n-3 concentrations where EPA con-
centrations were 0.528 for FM and 0.520 for SM off-
spring and DHA concentrations were 1.16 for FM and
1.26 for SM offspring [32].

Dermal hypersensitivity response to OVA and CAA
Antigens

All lambs responded to both OVA and CAA dermal
hypersensitivity challenge with a significant increase
in skinfold thickness represented by both linear and
quadratic over time (P <0.05, Fig. 1). Offspring born
to SM +LPS mothers demonstrated the greatest in-
crease in skinfold thickness trend to both antigens
compared to their control counterparts (SM + CON)
as well as both FM treatment groups (FM + LPS, FM +
CON, P<0.05; Fig. 1). There was no difference in con-
trasts for skinfold thickness trends to either OVA or CAA
between FM treatment groups (FM +LPS, FM + CON;
P> 0.05; Fig. 1). There was also a three-way interaction of
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Fig. 1 Offspring change in skinfold thickness following cutaneous hypersensitivity test with OVA and CAA. This figure depicts offspring born to
mothers supplemented with fishmeal and challenged with saline (FM + CON) or endotoxin (FM + LPS), or offspring born to mothers supplemented
with soybean meal and challenged with saline (SM + CON) or endotoxin (SM + LPS). The lettering in the graph represent the specific gender response
the antigen; a represents the response of female offspring to OVA antigen, b represents the response of female offspring to CAA
antigen, ¢ represents the response of male offspring to OVA antigen and d represents the response of male offspring to CAA antigen.
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diet by treatment by quadratic time between the FM +
LPS lambs and the SM + LPS lambs to the CAA antigen
(P<0.05; Fig. 1 b, d). Therefore, quadratic time trends dif-
fered between dietary groups but also between treatment
groups.

Linear and quadratic sex difference trends were also
observed following both CAA and OVA dermal sensitiv-
ity challenge. The diet by treatment by sex contrast dem-
onstrated an increase in skinfold thickness trends, which
was greater in female and male offspring born to SM +
LPS dams as compared to all other treatment groups
within the same sex (P <0.05; Fig. 1). There was also a
significant difference in the trends over time with female
and male FM +LPS lambs having a slightly greater
change in skinfold thickness to the CAA antigen com-
pared to the FM + CON lambs of the same sex (P < 0.05;
Fig. 1 b, d). This trend was not present at the OVA test
site over time in the FM offspring in which both groups
responded slightly to the same degree in both sexes
(Fig. 1 a, ¢). A sex difference trend was observed be-
tween female and male offspring born to SM + LPS dams
over time during the CAA challenge. Quadratic trends
demonstrated that SM +LPS female offspring had a
greater skinfold thickness response over time to CAA
antigen compared to male offspring (P <0.05; Fig. 1 b,

d). There were no differences over time observed be-
tween male and female offspring born to FM + LPS or
FM + CON dams (P > 0.05).

Serum OVA-specific IgG response

There was an increase in OVA IgG concentrations over
time across all treatment groups demonstrating that the
inoculation protocol worked to induce both a primary
and secondary IgG immune response (P <0.05; Fig. 2).
Offspring from SM +LPS mothers had an increased
OVA- specific IgG response during both the primary (d
10) and secondary (d 21) immune response compared to
all other treatment groups (P<0.05). Unlike the SM
treatment groups, a difference was not observed between
offspring born to FM + LPS or FM + CON mothers.

Sex differences were only observed for the secondary
IgG immune response. Female offspring from SM + LPS
mothers had a greater secondary IgG response com-
pared to their male counterparts (P < 0.05; Fig. 2). This
trend was not observed in any of the other treatment
groups. Additionally, SM + LPS female offspring had a
greater concentration of OVA-specific IgG antibodies
compared to the female offspring born to both SM +
CON and FM + LPS mothers. This response was not
observed between male offspring. However, SM + LPS
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Fig. 2 Offspring change in OVA specific IgG response during the primary (d 10) and secondary (d 21) immune response. This figure depicts
offspring born to mothers supplemented with fishmeal and challenged with saline (FM + CON) or endotoxin (FM + LPS), or offspring born to mothers
supplemented with soybean meal and challenged with saline (SM + CON) or endotoxin (SM + LPS). Data are reported as least squared means + SE

male offspring tended to have a greater IgG response
following the primary immune response compared to
SM + CON male offspring (P < 0.10).

Discussion

Maternal infection during pregnancy has been shown to
increase the offspring’s susceptibility to atopic disease
[1]. Recent studies have shown that n-3 PUFA supple-
mentation may provide protection from atopic disease
because of its immunomodulatory properties [33-35].
This study investigated whether maternal supplementa-
tion with FM (high in n-3) could protect the offspring’s
immune system from maternal stress caused by a simu-
lated bacterial infection using endotoxin. The offspring’s
immune response was assessed by cutaneous hypersensi-
tivity tests to novel antigens OVA and CAA, as well as
the IgG response to OVA. All offspring responded to
both antigens with an increase in skinfold thickness, and
a primary and secondary response to the OVA antigen.

As expected offspring born to mothers supplemented
with SM and challenged with endotoxin had the greatest
secondary antibody response to OVA antigen as well as
the greatest increase in skinfold thickness to both OVA
and CAA compared to all other treatment groups. Other
studies have demonstrated alterations in both the dermal
hypersensitivity response and Ab-mediated response but
this was during n-3 PUFA supplementation. One study
showed that fish oil supplemented cats had a signifi-
cantly lower skinfold thickness response to an intrader-
mal injection of histamine compared to the control
group [36]. While Lauritzen et al. [37], demonstrated
that fish oil supplementation to mouse dams decreased
their offspring’s IgG1 antibody response to OVA com-
pared to dams consuming an n-3 PUFA deficient diet or
a linseed diet (rich in n-6 PUFA) [37]. The IgE antibody
response to OVA has also been shown to be decreased
following supplementation with fish oil in mice [38].
Additionally, many studies looking at atopic dermatitis
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and allergies in humans have also showed improvement
in the disorder following supplementation with n-3
PUFAs [28, 39, 40]. Therefore, it appears that n-3 PUFA
supplementation may improve atopic disease, however,
further research is required to determine the proper
dietary inclusion level as well as timing of treatment, as
multiple studies that have demonstrated no differences
or even increases in both the skinfold thickness and the
ADb response with n-3 PUFAs [41, 42]. One should also
note that FM and fish sources of n-3 PUFAs might also
contain various other fatty acids and amino acids that
could also influence the immune response of the offspring.

When comparing to the above-mentioned studies,
this is the first study to investigate whether FM supple-
mentation during gestation and lactation can protect
the offspring from programming following simulated
maternal infection during late gestation. This study is
different from others as supplementation with n-3 PUFAs
occurred solely through the dam and the offspring n-3
PUFA concentrations were not different across treatments
at the time of challenge with OVA and CAA. n-3 PUFA
EPA enrichment was observed at 50 days of age with
greater concentrations of EPA in the plasma of offspring
from FM supplemented dams demonstrating that mater-
nal supplementation during gestation and lactation does
in fact cause enrichment in the lambs. However, these dif-
ferences were small and warrant further investigation into
PUFA partitioning in the body to assess whether greater
enrichment occurred in other tissues or organs. Nonethe-
less this suggests that n-3 PUFA supplementation during
pregnancy could help reduced the risk of topic disease
later in life as well as reducing the risk of infection-
induced programming.

Alterations in the ratio of Th1:Th2 lymphocytes and
associated mediators have been reported as a factor in
the development of atopic disease and it has been sug-
gested that n-3 PUFAs may be acting in a way to restore
the balance. For example, various animal models have
demonstrated that maternal supplementation with n-3
PUFAs may reverse the skewed Th2 biased response as
they have been shown to promote a Thl population with
the increase in IL-2 and IFNy [25, 43]. This shift in the
Th population may explain the differences observed in
the skinfold thickness response and Ab-response to
OVA in the current study as OVA is typically thought of
as a Th2 antigen. However, it does account for the ob-
served decrease in the skinfold thickness response to the
CAA, a known Thl antigen. Therefore, this suggests
that a different mechanism may be at work.

Recently, T regulatory cells (T regs) have been shown
to play a role in the reduction of atopic disease. T regs
are found in the lymph nodes, spleen, and peripheral
blood, help to maintain tolerance again allergens [44]. T
regs act to suppress the proliferation of Thl and Th2
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lymphocytes as well as their function [44, 45]. It was
previously suggested that pregnancy hormones sup-
ported a Th2 dominant immune profile, however, new
evidence suggests that Tregs induce maternal tolerance
to the fetus and help to maintain a successful pregnancy
[46]. It has also been shown that maternal stress can re-
duce the number of T regs at the maternal-fetal inter-
face and this may influence programming of the fetal
immune system to one that is less tolerant to novel anti-
gens [11, 47, 48]. Interestingly, supplementation with
both DHA and EPA increases the expression of IL-10
and TGF-p as well as Foxp3, a transcription factor re-
quired for the production and function of T regs [49].
With this in mind it is speculated that n-3 PUFAs sup-
press the Thl and Th2 response by up-regulating T regs
and T reg mediators. This may also explain the observed
hypersensitivity and Ab suppression in the FM +LPS
from the present study offspring and not the SM + LPS
offspring to both OVA and CAA antigens, although fur-
ther research is needed to validate this hypothesis.

Sex differences were also observed in this study between
male and female offspring born to SM + LPS mothers. To
our knowledge this is the first study to investigate the sex
effects of offspring born to mothers supplemented with
PUFAs and challenged with endotoxin. It was observed
that female offspring had a greater skinfold measurement
to the CAA antigen compared to the male offspring.
Female offspring also had a greater IgG response to OVA
antigen compared to their male counterparts. There was
no difference between FM groups observed. This is not
surprising, as females have typically demonstrated greater
antibody responses to allergens and vaccine. For example,
female mice exposed to environmental tobacco smoke,
which is known to increase allergic sensitization, and then
sensitized with OVA demonstrated greater OVA specific
IgG1 and IgE in their serum compared to males [50, 51].
Although females in this study demonstrated the greatest
increase in OVA specific IgG, one cannot conclude
that the males were not also susceptible to this type
of programming, as the male offspring born to SM +
LPS mothers also demonstrated great differences in
the skinfold measurements to both antigens. This em-
phasizes the fact that the timing and type of stressor
as well as species differences may need to be taken
into account for when using animal models. Based on
these results of this study, however, it appears that
maternal supplementation with FM helps to counter-
act the in utero programming of offspring’s risk of al-
lergic disease later in life regardless of sex.

Conclusions

Overall this study has provided insight into the poten-
tial benefits of supplementing maternal diets with FM
to reduce the risk of atopy. It is apparent that FM
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provides a protective effect from maternal endotoxin
challenge during late gestation as indicated by the de-
crease in offspring change in skinfold thickness in re-
sponse to OVA and CAA as well as a decreased IgG
response to OVA in female offspring. Future studies
should focus on the immune and epigenetic mecha-
nisms involved in this protective effect.
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