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Abstract

Background: Bovine respiratory disease (BRD) is a costly feature of modern cattle production. Early and accurate
detection of BRD may prove useful in the successful management of this disease. The primary objective of the study
was to define the time course of covalent complexes of neutrophil, haptoglobin (Hp) and matrix metalloproteinase 9
(Hp-MMP 9) in serum after intravenous lipopolysaccharide (LPS) in comparison to traditional markers. Our hypothesis
was that serum concentrations of neutrophil Hp-MMP 9 provides information distinct from traditional acute phase
protein markers. To characterize the neutrophil responses to lipopolysaccharide (E. coli; O111:B4; 2.5 μg/kg body weight),
nine healthy, Jersey calves (65-82 days of age; 74.5 ± 13.1 kg) were challenged and physiologic parameters, peripheral
blood cell counts and serum cortisol (C), Hp-MMP 9, Hp, alpha1-acid glycoprotein (AGP), serum amyloid A (SAA) were
obtained starting 24 hours before to 96 hours post-LPS challenge.

Results: Physiologic parameters (temperature, pulse, respiratory rate) and attitude assessed at each time point indicated
that LPS challenge resulted in rapid onset of depression, tachypnea, leukopenia, neutropenia and lymphopenia within
1 hour. Serum C concentrations were significantly increased by 1 hour post-LPS. Serum Hp-MMP 9 complexes were
detectable in serum by 0.5 hours and peaked at 16 h, serum total Hp remained <10 μg/mL until 8 hours post LPS infusion
and were significantly greater than baseline by 12 hours post-LPS infusion. Serum amyloid A concentrations increased
significantly by 8 hours post LPS. Serum concentrations of AGP increased significantly by 16 hours post LPS. Serum
concentrations of Hp, SAA and AGP remained significantly greater than baseline out to 96 hours post-LPS. The total
systemic exposure to traditional makers is significantly greater than from Hp-MMP 9

Conclusion: Using a well described model for acute phase protein responses, the data demonstrate that serum
neutrophil Hp-MMP 9 complexes appear sooner and decline more rapidly than other acute phase proteins (APP). Since
Hp-MMP9 is stored pre-formed, it provides information specifically addressing the LPS-induced activation of bovine
neutrophils. Contributions of Hp-MMP 9 to the serum acute phase protein response may provide useful information,
independent of hepatic responses, in diagnosis of acute inflammation.
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Background
Bovine respiratory disease (BRD) and other acute inflam-
matory diseases have major impacts on livestock productiv-
ity. Recent reports indicate the incidence of BRD morbidity
in large feedlots is approximately 5-11% and mortality
attributed to BRD is approximately 0.6 – 1.1% [1]. However,
10% morbidity of received animals approximates 1 million
head and 1% mortality is >10,000 head [2,3]. While there is
some fluctuation in rates of disease, the incidence of
BRD remains relatively constant despite application of
thoughtful management decisions, development of
newer pharmaceutical therapies and biological preventa-
tives. Accurate and early diagnosis of diseases requiring
administration of therapeutic agents would be beneficial
to cattle industries.
Under experimental and field conditions, the use of

APP to detect animals requiring treatment and animals
developing lung lesions is useful. For example, haptoglobin
(Hp) responses to inflammation in cattle have been
evaluated in acute bronchopneumonia [4-7], acute rumen
acidosis [8], coliform mastitis [9,10], hepatic lipidosis
[11], and transport stress [12,13]. Serum concentrations of
Hp in acutely ill cattle increase (>100-fold) reaching
maximum concentrations between 48 and 96 h; [14-17]
however, serum Hp appears to be a better indicator of
clinical responses of calves with BRD to intervention than
as a diagnostic for morbidity [5,18]. As the response of a
particular APP demonstrate tremendous species and
temporal differences, the gradual increase in serum
concentrations of Hp over 24-48 hours, while dramatic,
appear perhaps less sensitive than other APP in diagnosis
of acute disease [1,14]. Other acute phase proteins, such
as serum amyloid A (SAA) and alpha 1 acid glycoprotein
(AGP) have also been studied in cattle undergoing
LPS-challenge and experimental or naturally occurring
disease [1,14,19,20]. Several studies indicate that
LPS- challenge or experimental bacterial infection
elicited earlier increases in serum SAA concentrations,
suggesting SAA is more sensitive than Hp due to more
rapid production and release [1,14,19,20]. Likewise,
studies evaluating AGP after experimental LPS-challenge
and M. hemolytica A1-challenge demonstrate more
marked increases in serum concentrations of Hp and
AGP after live bacterial challenge [14]. In contrast, when
serum Hp, SAA and AGP were evaluated under field
conditions, serum concentrations of Hp were more useful
in predicting the presence of respiratory disease and
response to therapy, whereas SAA and AGP did not
discriminate between animals which became sick and
those that did not [21].
In the previous work, we demonstrated that phorbol ester

stimulation of isolated peripheral blood neutrophils are is
associated with appearance of Hp-MMP 9 complexes in
culture medium within 30 minutes [22]. We also identified
covalent, heteromeric complexes of Hp in complex with
matrix metalloproteinase 9 (Hp-MMP 9), within the serum
of cattle with clinically apparent acute onset of septic
inflammation of the abdomen or thorax [23]. In these cases,
sepsis was associated with the presence of Hp-MMP 9
complexes when serum was analyzed by ELISA. In contrast
to free serum Hp, whose main source is the liver during
inflammation, serum Hp-MMP 9 complexes are only
produced by neutrophils. As such, Hp-MMP 9 complexes,
in serum, represent neutrophil degranulation [22].
Intravenous LPS injection has been shown to pro-

duce physiologic and biochemical alterations in cattle
including increases in APP (Hp [14,24], seromucoid
[14], ceruloplasmin [14], α-1 proteinase inhibitor [14], and
SAA [24]), decreased feed intake [24-26], increased rectal
temperature [24,25,27], dyspnea [24,26,27], increased
cytokines (TNFα [24-27], IL-1β [27], IL-6 [27], and
IFN-γ [27]), increased cortisol [25,27]. We used this
reproducible model to determine the time course of
release of Hp-MMP 9 in comparison to other APP
(Hp, SAA, AGP) after an acute LPS challenge.
As neutrophils play key roles in the early onset of

bovine diseases, we sought to evaluate a biomarker specific
to neutrophils for monitoring very early inflammation
responses in cattle. The kinetics of most APP involves
recognition of pathogens/pathogen products, mediator
production and release, gene expression and protein
synthesis and release of protein into the circulation
[28-32]. Release of neutrophil granule proteins is rapid
after in vitro stimulation, occurring within 30 minutes
of phorbol ester treatment [22]. The objective of the
present study was to characterize the time course of
serum Hp-MMP 9 complex appearance in relation to
changes in the hemogram, serum C concentrations
and by comparing with other acute phase proteins in
calves (Hp, SAA, AGP).
We propose that Hp-MMP 9 complexes, observed

after phorbol ester stimulation of isolated peripheral
blood neutrophils in vitro and found in acute phase
sera, have specific functional significance differing
from un-complexed forms of Hp or MMP 9 alone and as
a consequence, serum concentrations of Hp-MMP 9 may
serve as an independent indicator of clinically important
events occurring during acute inflammation.

Methods
Experimental design
The following experimental protocol was approved by
The Ohio State University, Laboratory Animal Care and
Use Committee. The study group consisted of 9 healthy
Jersey bull calves between 65-82 days of age (average
weight – 75 ± 13 kg; range – 58-100 kg), acclimated to
grass hay and 0.7 kg mixed grain diet for 7 days prior to
the start of the study. The calves were born at The Ohio
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State University, Waterman Dairy Farm and were
transferred to our facility for use in these studies.
Calves were housed in groups of 2 animals, with one
group of 3 calves, in climate controlled stalls (average
temperature 21.7°C). Physical exams were performed
daily throughout the study and body weights were
monitored weekly. Twelve hours prior to LPS challenge,
calves were fitted with indwelling jugular venous cathetersa

after clipping the hair and aseptic cleansing the skin using
1% iodine scrub followed by 70% isopropyl alcohol. A
30 cm extension line with infusion port was attached and
the catheter was held in place with elastic tape. The
catheter was flushed with heparinized saline. Blood
was collected from the catheter for CBC and serum
biochemical analysis. Serum was collected from clotted
whole blood that was centrifuged at 2,000 × g for 20 minutes
after clotting at room temperature. The serum was removed
and stored at -80°C until analysis.
At time (T) =0 hours, a physical exam was performed

and blood was collected for a CBC and for serum collection
which was stored for later analysis. All rectal temperature
measurements were made using a digital thermometer.b

Lipopolysaccharide (LPS),c 2.5 μg/kg body weight, that
was diluted in 10 ml of autologous serum and allowed to
incubate at 37°C for 30 minutes. After incubation, the LPS
solution was administered rapidly via the IV catheter.
After administration, each catheter was flushed with
10 mL heparinized saline (10 IU/mL). Physical exams and
blood collection were performed at T = -24, 0, 0.5, 1, 1.5,
2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 72, 96 hr post-LPS infusion.
After each blood collection, equal volume of normal saline
(0.9% NaCl for injection) was administered to maintain
blood volume. IV catheters were removed after the last
collection time point.

Serum and blood analyses
All serum analyses were performed using commercially
available ELISA kits (Hp, SAA), single radial immunodif-
fusion (AGP, SRID) according to the manufacturers
recommendations, whereas the Hp-MMP 9 ELISA is
an in house laboratory assay. Serum C concentrations
were determined by use of a solid phase, competitive
chemiluminescent enzyme immunoassay and an auto-
mated analysis system as describedd [33] by an accre-
dited veterinary clinical pathology laboratory. Briefly,
aliquots of each calf ’s serum were placed into individ-
ual test units for analysis. The calibration range of
the assay is 28 – 1,380 nmol/L and analytical sensitivity is
5 nmol/L. All samples from each calf were analyzed in a
single run.
Serum total Hp was determined using a commercially

available bovine Hp ELISA kit.e The analysis was conducted
according to the manufacturer’s instructions. Specifically,
all serum samples from all calves were diluted 1:2,000 in
sample buffer prior to analysis. Serum concentrations
were determined from the concentration vs. absorbance
relationship of the standard haptoglobin concentrations
(7.8-250 ng/mL). All calf serum sample concentrations
were corrected for dilution (2,000 fold dilution). Analytical
variation between samples on the same day and on
multiple days is <8.8 and 12.9% respectively.
Bovine Hp-MMP 9 complexes were determined as

described previously [23]. All serum samples were
diluted 1:5 with sample diluent (TBS +1% Bovine serum
albumin +0.05% Tween 20. After blocking the wells, known
concentrations of Hp-MMP 9 (serum, pre-characterized
and shown to contain ~912.6 ng/mL Hp-MMP 9) and the
LPS challenged calf serum samples were added to wells. If
sample absorbance fell outside of the linear portion
of the concentration-absorbance line, samples were
further diluted to ensure linearity. Between plate variability
of calibrators from 5 different plates were less than 3%
(median =1.8%; range 0.98-2.7%). The average coefficient
of correlation determined from linear regression of
the absorbance versus concentration of calibrator was
0.91 (range 0.85 – 0.95). The analytical sensitivity of the
assay is 3.5 ng/mL.
Serum concentrations of SAA were determined

using a commercial multi-species ELISA (“Phase” Serum
Amyloid A assayf) used according to the manufacturer’s
instructions. All serum samples were diluted 1:500 with
sample diluent buffer, and 50 μL of sample or calibrator
were added to each well containing the detection antibody
and the absorbance determined on a plate reader.g The
intra- and inter assay coefficients of variation for the assay
were <11% and the analytical sensitivity of the bovine
assay is 0.3 μg/mL.
Serum alpha1 acid-glycoprotein (AGP) concentrations

were determined using a commercial single radial
immuno-diffusion assay.h After addition of 5 μL each, of
AGP calibrators (1,000 μg/mL, 250 μg/mL, 125 μg/mL)
and calf serum samples to individual wells on each plate,
the plates were incubated for 48 hours in a humidified
container at 37°C. After incubation, the plates were imaged
on a light table and the diameter of the rings measured
using a 10x scale loupe with metric reticule. The diameter
of precipitin rings of calibrators was plotted against the
concentration of AGP to obtain an equation of the line.
Repeated assay of the calibrators on 27 unique plates,
produced coefficient’s of variation between 2.7-3.5% over
the range of the calibrators (125-1000 μg/mL), the average
coefficient of correlation was 0.997.

Statistical analysis
Data from the LPS challenge study (temperature, pulse,
respiration, WBC count (total WBC, neutrophil counts,
band neutrophil counts, lymphocyte counts) differential
count, serum concentrations of C, Hp, Hp-MMP 9 complex,



Figure 1 Mean ± SD heart rate (beats/minute), respiratory rate
(breaths/minute), rectal temperarture (°C) and serum C
concentrations (nmol/L) observed after intravenous administration
of E. coli LPS (O111:B4; 2.5 ug/kg solubilized in autologous serum).
Statistically higher respiratory rates were observed by 0.5 hours post-LPS
(p < 0.001) and remained higher than baseline (-24 hour time point) until
6 hours post LPS infusion (p < 0.0034). Serum C values were significantly
greater than baseline by 1 hour post LPS (p < 0.0001). There was no
statistically significant change in the HR and RT for these calves.

Figure 2 Mean ± SD total white blood cell counts, lymphocyte
count and neutrophil counts in peripheral blood of Jersey calves
immediately prior to and up to 96 hours after an intravenous
bolus dose of E. coli LPS (O111:B4; 2.5 ug/Kg solubilized in
autologous serum). Plasma WBC were significantly lower than pre-LPS
(-24 hr time point) from 0.5 hour – 12 hour time points (p < 00001).
Plasma lymphocyte and neutrophil counts showed dramatic drop from
the 0.5 hour – 16 hour post LPS challenge time points (P < 0.05).
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SAA, and AGP concentrations) were tabulated by
time point and evaluated graphically in a commercial
spreadsheet.i After visual comparison of the data, the
changes in physiologic variables (temperature, heart
rate, respiration), number of peripheral white blood cells,
differential counts (total WBC, PMN, band, lymphocyte)
and concentrations of the analytes (C, Hp, Hp-MMP 9
complexes, SAA, AGP) over time were examined
using PROC MIXED in SAS (v.9.3).j To account for the
correlated data structure of the repeated measures from
individual calves over time, four covariance structures were
tested (compound symmetry, first order autoregressive,
heterogeneous first order autoregressive, and unstructured).
Time was included in the model as the main variable of
interest to evaluate how the different parameters changed
in response to the LPS challenge. Baseline (T = 0 hr) was
used as the reference level and significance was set at
P ≤0.05. All measurements at different time-points
were compared with the baseline value at T = 0. First
order autoregressive covariance structure fitted the data
best for SAA, AGP and C as outcomes, compound sym-
metry covariance structure was used with other outcomes.
The areas under the concentration-time (AUC), for each
acute phase protein analyte (Hp, Hp-MMP 9, SAA and
AGP) were calculated using standard formulae, from
time =0 to time =96 hours. No extrapolation of the
terminal portion of the curve was conducted. The
ratio of AUCHp-MMP 9 (ng*hr/mL), to each of the
other analytes (Hp, SAA and AGP) were expressed as
a percentage and compared using the Kruskal-Wallis, 1
way ANOVA on ranks with Dunn’s multiple comparison
test. Differences in ranks were considered significant when
p < 0.05 for each comparison.

Results
The most consistent clinical indicators of illness were
tachypnea and dyspnea developing within 30 minutes after
LPS infusion (p < 0.001 in comparison to T = -24 hours;
Figure 1). Respiratory rates remained significantly greater
than baseline until 4 h post-LPS and were not significantly
greater than baseline by 6 h post-LPS (p = 0.1542;
Figure 1). Changes in rectal temperature and heart
rate in these calves were minimal and not significantly
different from baseline (Figure 1). Significant changes in
respiratory rate, occurred with a marked reduction
in peripheral leukocytes and rapid increases in serum
C (Figure 1). Baseline serum C concentrations were
27.6 ± 7.8 nmol/L (range: 30 – 49.7 nmol/L) at time =0 hours
and peaked at 174 ± 40 nmol/L (range: 102-254 nmol/L)
by 3 hours post-LPS infusion (p < 0.0001; Figure 1). Total
white blood cells (WBC), lymphocytes and neutrophil
counts declined from baseline, reaching a nadir at 4 hours
(p < 0.0001) post-LPS (Figure 2). Total WBC returned to
levels that were not different from baseline by 24-36 hours
post-LPS challenge (Figure 2). Peripheral neutropenia was
associated with the appearance of “band” PMN at 8 hours
(0.2 ± 0.36 × 10 [9]/L; range: 0 – 1.2 × 10 [9]/L; P < 0.0007;
data not shown) and remained significantly greater
than baseline until 24 hours post LPS (0.66 ± 1.6 × 10 [9]/L;
p < 0.0001 compared to baseline; data not shown).
Other peripheral leukocyte types (monocytes, eosinophils,
basophils) did not change significantly throughout the
study period.
Administration of a single intravenous dose of LPS

resulted in increased serum Hp concentrations. Serum
concentrations of total Hp were <10 μg/mL until 8 hours
post-LPS infusion (Figure 3A), and increased to significantly



Figure 3 Mean ± SD of serum concentrations of Hp-MMP 9, total
Hp, SA A and serum AGP in peripheral blood of Jersey calves after
an intravenous bolus dose of E. coli LPS (O111:B4; 2.5 ug/Kg
solubilized in autologous serum). Concentrations of serum Hp-MMP
9 (B) is several orders of magnitude lower than total haptoglobin (Hp)
(A) and far lower than SAA (C) or AGP (D). Serum concentrations of
Hp-MMP 9 are in ng/mL. Serum concentrations of Hp, SAA and AGP
were converted to ng/mL for comparison to Hp-MMP 9 and as shown,
the serum concentrations are reported as logarithm (base 10).
Significant increases in serum Hp were detected at 12 hours
post-LPS challenge in comparison to pre-LPS time points (-24 hour
time points; p < 0.0006) and remained significant through the 96 hour
sampling time (p < 0.0087 compared to -24 hour time point). Serum
Hp-MMP 9 complex concentrations appeared by 0.5 hrs and were
significantly greater than baseline at 16 hour post-LPS challenge
(p < 0.008 compared to -24 sample) and returned to baseline values
after the 48 hour sampling time (72 hour; p = 0.1254 compared
to -24 hour time point). Serum AGP increased to significantly greater
than the -24 hour sampling point at 16 hours post-LPS challenge
(p < 0.05) and remained significantly greater than baseline through the
96 hour post-LPS time point (p < 0.007). Serum amyloid A concentrations
were significantly greater than baseline (-24 hour time point) by 8 hours
post-LPS (p < 0.05) and remained greater than baseline through the
96 hour time point (p < 0.05, compared to -24 hour time point).
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greater than baseline by 12 hours post-LPS infusion
(127 ± 100 μg/mL; range: 0-368 μg/mL; p = 0.0006)
(Figure 3A). Maximum serum concentrations of Hp were
400 ± 73 μg/mL (range: 257-460 μg/mL) 36 hours
post-LPS infusion in all 9 experimental animals (Figure 3A).
Serum concentrations of Hp remained significantly greater
than baseline through the 96 hour time point (p = 0.0087)
in 2 of the nine calves; the remaining 7/ 9 calves had serum
haptoglobin <30 μg/mL at the 96 hour time point. The
increase in serum Hp concentrations occurred after
resolution of clinical signs and was associated with
return of serum C to baseline concentrations, increasing
peripheral leukocyte counts.
Baseline concentrations of AGP were 591 ± 124 μg/mL

and did not change significantly until 16 hours post-
LPS challenge when serum AGP concentrations were
843 ± 452 ug/mL (p = 0.0434) (Figure 3D). Serum AGP
concentrations reached peak levels 24 hours post-LPS
(920 ± 466 μg/mL; p = 0.0065). Changes in serum AGP
concentration also occurred after clinical signs and
serum C concentrations returned to baseline and peripheral
blood total WBC and neutrophil counts returned to
baseline post LPS (p < 0.0001). Serum concentrations of
AGP remained >800 μg/mL throughout the remainder of
the study period.
Serum concentrations of SAA responded to LPS

challenge increasing from 29 ± 35 μg/mL at baseline to
162 ± 121 μg/mL; 12 h post-LPS challenge; p = 0.0049),
and remained significantly greater than baseline at 96
hours post-LPS infusion (98.4 ± 72 μg/mL; p = 0.03)
(Figure 3C). Like serum concentrations of Hp and
AGP, changes in SAA were significantly greater than
baseline by 8 hours and did not correspond to changes in
clinical signs, serum C and peripheral WBC counts.
Serum amyloid A concentrations peaked 12 hours post
LPS, and remained above baseline concentrations through
the end of the study.
Serum concentrations of Hp-MMP 9 complexes were

detectable (>3.5 ng/mL) from 0.5 – 12 hours post-LPS,
although these values were not significantly different from
baseline (p = 0.82) (Figure 3B). Serum concentrations
of Hp-MMP 9 continued to increase until 36 hrs
post-challenge, reaching concentrations of 665 ± 308 ng/mL
(range 298-1311 ng/mL; p < 0.0001). Unlike the other APP
markers (Hp, SAA, AGP), serum concentrations of
Hp-MMP 9 decreased to concentrations that were
not significantly different from baseline by 72 hours
post-LPS infusion (p = 0.1254). Serum concentrations of
Hp-MMP 9 were <55 ng/mL in 7/9 calves at 96 hours.
The average exposure (AUC), to LPS induced serum

acute phase proteins demonstrated that exposure
(concentration × time) to Hp-MMP 9 differed significantly
from that of Hp (p < 0.05) and AGP (p < 0.001), but
not SAA Figure 4). Area under the curve for Hp-MMP 9
(AUCHp-MMP 9) was 0.14 ± 0.05% of that for Hp,
0.13 ± 0.06% of that for SAA and 0.05 ± 0.03% of that for
AGP (P < 0.01 for Hp-MMP 9 compared to Hp and AGP



Figure 4 Total systemic exposure of animal to serum acute
phase proteins. Serum concentrations of serum acute phase
proteins over time were converted to ng/mL and the area
under the curve was calculated using the trapezoidal rule. Data
for each analyte are reported as AUC0-96 hr and plotted on log-linear
graph. Area under the curve of serum Hp-MMP 9 was significantly
lower than all 3 other serum acute phase proteins (p < 0.01) when
evaluated using Kruskal-Wallis, 1 way ANOVA on ranks with Dunn’s
multiple comparison test. There was no significant difference between
total serum Hp and SAA over the time course of analysis and both
SAA and Hp had significantly lower exposure in comparison to the
areas observed for AGP. Differences in the letters over bars indicate
significant differences between AUC for each analyte.
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responses; Figure 4). The AUCAGP was significantly greater
than AUCSAA (p < 0.01).

Discussion
The purpose of this study was to evaluate the time course
of a neutrophil biomarker (Hp-MMP 9 complexes) after
LPS challenge in calves in comparison to responses of estab-
lished serum APP markers in cattle. Using a single challenge
stimulus producing consistent clinical, hematologic, physio-
logic and APP responses, the concentration versus time
profile of this neutrophil biomarker may prove useful to
define the activation of neutrophils early in the course of
inflammation. While not fully replicating the major clinical
and pathologic findings associated with natural BRD, the
characteristics of the LPS stimulus should allow dissection
of neutrophil from other APP responses occurring in
inflammation [27,34,35]. In clinical terms, we believe early
and specific detection of neutrophil activation should
provide an indication of early responses to infection.
Further, this response is distinct from that of the liver [36].
Bovine neutrophils have been shown to play key roles in

host responses to infection [34]. Experimental bacterial
pneumonia models have demonstrated rapid recruitment
of neutrophils to the lung is associated with tachypnea,
dyspnea, hypercortisolemia, peripheral leukopenia and
influx of neutrophils into the lungs [27,34,35,37-40]. Our
previous studies demonstrated a unique form of neutro-
phil matrix-metalloproteinase 9, covalently linked to
haptoglobin (Hp-MMP 9) are stored in and released by
neutrophils; and these complexes are present within
the serum of cattle with acute, polymicrobial sepsis
[22,23]. Therefore, as a unique marker produced by
the neutrophil, serum Hp-MMP 9 complexes should
herald early changes in neutrophils associated with
the host response to inflammation.
Both natural and experimental infection studies

demonstrate the appearance of APP supporting their use
in detection of inflammation and response to therapy
[1,14,18,19,21,24,41-47]. Although some APP have proven
useful in the evaluation of illness in cattle, their contribu-
tions to the bovine serum acute phase response, represent
contributions of hepatocytes or other tissues in response to
proximate mediators produced by other cells [1,14,44,45].
Timing of APP responses vary by APP marker and do not
necessarily represent events occurring in the sub-clinical
phase of disease such as when changes in clinical signs,
serum C and peripheral leukopenia occur. Upon activation,
peripheral blood neutrophils are a source of many proteins,
including matrix metalloproteinase 9, Hp and AGP. These
neutrophil APP in serum are a part of the acute phase
proteome; however, current assays do not identify sources
of these proteins [48-50].
As a component of neutrophil granules, Hp-MMP 9

should not be present within the circulation of healthy
animals and prior studies demonstrated Hp-MMP 9
was not present in the serum of healthy cows [23]. After
an intravenous dose of LPS, serum concentrations of
Hp-MMP 9 were above the limit of detection of our
ELISA (>3.5 ng/mL) by 1 hour. Serum Hp-MMP 9
complexes are detected when changes in respiratory
rate, serum C and WBC numbers occur. We have
also demonstrated cattle undergoing experimental
bacterial pneumonia and naturally occurring cases of
acute poly-microbial sepsis were associated with increased
serum concentrations of Hp-MMP 9 complexes [23,24].
Experimental bacterial infection is associated with lung
lesions consistent with Mannheimia hemolytica infection
in these calves and with rapid increases in serum concen-
trations of Hp and Hp-MMP 9 complexes [51]. Similarly,
transportation is associated with increased incidence of
respiratory disease and Hp is proposed to be a marker of
non-inflammatory stress [52,53]. Stress induced induction
of serum Hp still involves release of production of
cytokines and hepatic expression of Hp and other APP.
[53] A recent study demonstrated the appearance of
Hp-MMP 9 in serum after transportation suggesting
transportation stress is also associated with measurable
responses of neutrophils [52,54]. These studies support
the further evaluation of Hp-MMP 9 complex as a marker
of early inflammation.
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Both neutrophil Hp-MMP 9 and SAA showed rapid
increases in serum concentrations in LPS challenged
calves, consistent with earlier studies [1,19,45,55]. However,
individual calf data for SAA varied somewhat, making them
significantly different from baseline only by 8 hours post-
LPS. However, serum Hp-MMP 9, and SAA concentrations
observed after LPS challenge increased concurrently with
onset of tachypnea, peak serum C concentrations and
reduction of circulating leukocytes. Our results are consist-
ent with these findings; however, we observed sustained
SAA concentrations to at least 96 hours post-LPS challenge
[1,19,27,43,45,55,56]. Other studies conducting i.v. LPS
challenge, characterized the induction of SAA out to
10 hours post-challenge [1,27,45]. Prolonged elevations of
SAA observed in our study suggest continued production
after LPS stimulation. It is plausible then, that use of
SAA in animals may be useful in diagnosis of acute
inflammation. However, most of the SAA produced in
association with LPS-induced inflammation also represents
hepatic responses [56].
In contrast, the clinical, hematologic and C responses

occurring in our calves after intravenous LPS challenge
preceded increased serum Hp and AGP concentrations
by several hours. Serum Hp concentrations remained
normal until 8 hours; however, 5/9 had no detectable Hp
until 12 hours post LPS challenge. Similarly, serum AGP
concentrations were observed to increase significantly at
16 hours post LPS. As previous studies demonstrate,
serum Hp and AGP concentrations remain significantly
greater than baseline until the end of the study period,
well after the LPS induced changes in respiratory function,
serum C and leukopenia had resolved [18-20]. Like Hp,
Hp-MMP 9, AGP is also produced by bovine neutrophils
[49]. It is plausible that serum AGP concentrations as
detected with currently available methods may reflect
contributions from the neutrophil. However, these methods
do not specifically identify this form autonomously of
others present.
Serum APP terminal half-life is been proposed to

be useful in terms of effectiveness of empirical anti-
microbial therapy for pneumonia in humans [57]. The
serum concentration versus time profile of Hp-MMP 9
(AUC) was smaller than that of other APP measured.
Area’s under the Hp-MMP 9, concentration-time curve
(AUCHP-MMP 9) in our calves were 0.14% of that measured
for serum total Hp (AUCHP), 0.13% of AUCSAA and
0.05% of AUCAGP. This suggests that the animal’s
exposure to Hp-MMP 9 is much lower than that for
Hp, SAA and AGP. This seems plausible since neu-
trophils and their granule proteins are limited in
comparison to hepatic APP induced by inflammatory
mediators. Characterization of the elimination pro-
cesses of each APP may help to define the half-life of
these proteins after induction. This information may
provide a means for evaluation of the rate of normalization
associated with therapy.

Conclusions
As Hp-MMP 9 is detectable early after a consistent inflam-
matory stimulus when animals develop clinical signs, we
believe that like SAA, it may serve as a useful marker of
early inflammation. The serum content of this neutrophil
protein complex induced by inflammation is limited in
extent and is masked by APP produced by the liver.
Dissecting the contribution of the neutrophil to the
APP responses produced by other sources may prove
useful as an adjunct to the clinical examination after
arrival at the feedlot, for pre-slaughter exams and other
situations. The availability of a test providing objective data
regarding the status of the neutrophil, so intimately
involved in acute inflammation, may have potential in clinical
algorithms and decision making used in diseased cattle.
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