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Abstract 

Background  A comprehensive overview of artificial intelligence (AI) for cardiovascular disease (CVD) prediction 
and a screening tool of AI models (AI-Ms) for independent external validation are lacking. This systematic review aims 
to identify, describe, and appraise AI-Ms of CVD prediction in the general and special populations and develop a new 
independent validation score (IVS) for AI-Ms replicability evaluation.

Methods  PubMed, Web of Science, Embase, and IEEE library were searched up to July 2021. Data extraction 
and analysis were performed for the populations, distribution, predictors, algorithms, etc. The risk of bias was evalu‑
ated with the prediction risk of bias assessment tool (PROBAST). Subsequently, we designed IVS for model replicabil‑
ity evaluation with five steps in five items, including transparency of algorithms, performance of models, feasibility 
of reproduction, risk of reproduction, and clinical implication, respectively. The review is registered in PROSPERO (No. 
CRD42021271789).

Results  In 20,887 screened references, 79 articles (82.5% in 2017–2021) were included, which contained 114 datasets 
(67 in Europe and North America, but 0 in Africa). We identified 486 AI-Ms, of which the majority were in development 
(n = 380), but none of them had undergone independent external validation. A total of 66 idiographic algorithms 
were found; however, 36.4% were used only once and only 39.4% over three times. A large number of different pre‑
dictors (range 5–52,000, median 21) and large-span sample size (range 80–3,660,000, median 4466) were observed. 
All models were at high risk of bias according to PROBAST, primarily due to the incorrect use of statistical methods. IVS 
analysis confirmed only 10 models as “recommended”; however, 281 and 187 were “not recommended” and “warning,” 
respectively.
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Conclusion  AI has led the digital revolution in the field of CVD prediction, but is still in the early stage of develop‑
ment as the defects of research design, report, and evaluation systems. The IVS we developed may contribute to inde‑
pendent external validation and the development of this field.
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Background
The surge in cardiovascular diseases (CVDs) has become 
a global challenge with a steadily climbing trend of car-
diovascular deaths from 12.1 million in 1990 to 18.6 mil-
lion in 2019 [1, 2]. Risk prediction, a primary strategy in 
addressing this worldwide problem, has brought signifi-
cant benefits to some developed countries through the 
improvement of the effectiveness of life intervention and 
reduction of economic burden [3, 4]. Therefore, risk pre-
diction has been expected as an efficient way to achieve 
World Health Organization (WHO) goals for reducing 
CVD-related mortality by 25% by 2025, and some clas-
sic CVD prediction models (e.g., the Framingham [5] and 
SCORE [6], referred to as traditional models [T-Ms] in 
this study) has been incorporated into clinical guidelines 
by the European Society of Cardiology (ESC) and the 
American College of Cardiology/American Heart Asso-
ciation (ACC/AHA) [7, 8].

Artificial intelligence (AI), encompassing machine 
learning (ML) and deep learning (DL), is a field within 
computer science dedicated to the development of com-
putational systems capable of performing tasks that tradi-
tionally necessitate human intelligence, such as learning, 
reasoning, problem-solving, perception, language com-
prehension, and decision-making. The application of AI 
in the healthcare sector, including disease risk prediction, 
is rapidly advancing and playing an increasingly signifi-
cant role [9–13]. Alongside the substantial transforma-
tions driven by AI in this domain, it also introduces a 
spectrum of challenges and issues, including concerns 
related to ethics, legality, data privacy, security, bias, fair-
ness, transparency, and explainability [14–20]. At this 
critical juncture in the AI field, characterized by a coex-
istence of challenges and opportunities in the era of big 
data, AI-driven disease risk prediction stands ready to 
harness immense potential and address substantial needs 
[11, 21]. It has demonstrated notable superiority over the 
T-Ms, owing to its more robust data-processing capabil-
ity, fewer condition restrictions, and better performance 
[11], thereby providing a more promising predictive 
strategy for CVDs.

However, a comprehensive and systematic overview 
of AI for CVD prediction is still lacking, despite the 
field has witnessed several recent comparative reviews 
that tend to emphasize specific aspects. For instance, 
Suri et  al. provided a comprehensive summary of ML 

paradigms with a technical emphasis [22]. Azmi et  al. 
focused on emphasis on comparing the predictive per-
formance of various ML-based classification algorithms 
using medical big data [23]. Infante et al. and Assadi et al. 
primarily reviewed the contributions of cardiac com-
puted tomography angiography and cardiac magnetic 
resonance to AI-CVD prediction [24, 25]. Triantafyllidis 
et  al. conducted a review on the impact of DL on the 
diagnosis, management, and treatment of major chronic 
diseases, including cardiovascular disease [26]. Zhao 
et  al. only observed social determinants contributing to 
AI-CVD prediction [27]. Liu et al. compared the ML and 
traditional approaches for atherosclerotic CVD risk prog-
nostication [28]. These articles provide limited insights 
for a comprehensive understanding of the current state of 
this field. Therefore, in reference to previously published 
reviews that elucidate the development status of T-Ms 
for CVD prediction [29], we conducted this summariza-
tion work and attempted to explore potential solutions to 
address the current challenges.

Methods
We conducted this systematic review using the CHARMS 
checklist. This review has been registered in the interna-
tional prospective register of systematic reviews (PROS-
PERO), with the registration number CRD42021271789, 
where all updates of the review will also be recorded. 
This review followed the Preferred Reporting Items for 
Systematic reviews and Meta-Analysis (PRISMA) state-
ment (Additional file 1). Patients and the public were not 
involved in setting of the research question, designing or 
implementing the study, or in interpreting or writing of 
the results.

Literature search
A literature search was conducted in PubMed, Web of 
Science, Embase, and IEEE, using search terms to identify 
primary articles focused on the development and/or vali-
dation of AI in predicting incident CVD up to July 2021. 
A cross-reference check was performed for all reviews on 
CVD prediction models identified by our search. Search 
strategies are described in Additional file 2: Text 1.

Eligibility criteria
We included only original research on risk prediction 
models for humans with full text in English, excluding 
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studies that (1) are for clustering and outcome classi-
fication and (2) in the postoperative or perioperative 
period of cardiac surgery or non-cardiac surgery. The 
detailed process and criteria are shown in Fig. 1.

Screening process
Two independent reviewers screened the titles and 
abstracts. The corresponding full texts were retrieved 
and reviewed after identifying potentially eligible articles. 
Any disagreements during this process were resolved 

Fig. 1  The flow diagram for the literature search performed in the present study
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through discussion among all team members to reach a 
consensus.

Data extraction and critical appraisal
The list of extracted items was based on the CHARMS 
checklist. Two independent reviewers extracted the data, 
with any discrepancies being resolved through discus-
sion by the entire team. The risk of bias was assessed 
using the Prediction Model Risk of Bias Assessment Tool 
(PROBAST) [30], and the extraction form included four 
domains: participants, predictors, outcomes, and statisti-
cal analysis. Results were summarized using descriptive 
statistics. Quantitative synthesis of the models was not 
performed.

Assessment of the feasibility of independent external 
validation
To evaluate the feasibility of independent external valida-
tion of each model, we conducted a literature review of 
existing assessment guidelines or tools in the field of AI/
ML medical research (Additional file  2: Text 2 and Fig. 
S1) and summarized initially candidate items for design-
ing a screening tool. Subsequently, a preliminary plan 
that weighs screening efficiency and initiatives for the 
study of ideal CVD prediction models [29] was further 
discussed and revised by a panel of experts, including cli-
nicians (G-W Z and D-X G), AI experts (T-C J and MG), 
clinical epidemiologists (ZY), and information technol-
ogy specialists (WH), among others. Ultimately, a novel 
scoring system was further developed through consistent 
feedback of three independent international experts in 
AI or CVD domains from ExpertScape™ rank and peer 
recommendations. It is called the independent validation 
score (IVS), comprising five steps with five score items as 
follows: transparency of models, performance of mod-
els, feasibility of reproduction, risk of reproduction, and 
clinical implication sequentially. After the five-step scor-
ing process, five grades of feasibility recommendation 
were set, including “strongly recommended”, “recom-
mended”, “neutral”, “warning”, and “not recommended”. 
The detailed definitions and rules are shown in Fig. 2 and 
Table 1.

Results
Study designs and populations
Overall, 79 articles were finally included from 2000 
to 2021 (Additional file  2: Table  S1) [49–127], with 65 
(82.25%) published between 2017 and 2021 (Fig.  3A). 
In total, 114 cohorts (datasets) were used, with 27 in 
Europe, 40 in America (mainly the USA), 27 in Asia 
(mainly Korea), and 5 in Oceania (Australia), 3 multi-
country cohorts, but 0 in Africa, as shown in Fig. 3C. A 
total of 647 different models were identified, including 

161  T-Ms excluded from this bibliometric research and 
486 AI-Ms involved in the following analysis. Most mod-
els were developed using data from 101 trials, and only 
a minority were from five case–control studies and eight 
nested case–control studies. All cohort participants were 
enrolled consecutively.

We included 63 papers focusing on the general popu-
lation and 16 that addressed subgroups for specific dis-
eases, including type 2 diabetes (n = 4, 5%), hypertension 
(n = 4, 5%), and kidney diseases (n = 4, 5%). Forty differ-
ent age ranges were reported across the cohorts, except 
for 45 cohorts which did not mentioning age range. The 
two most common ones were 40 to 79 years (n = 12, 15%) 
and 30 to 77 years (n = 6, 7%), and the average age ranged 
from 42 to 78 years. The majority of papers (n = 70, 89%) 
were not sex specific or stratified, with only 24 cohorts 
having roughly equal proportions of males and females 
(45–55% females or males in numbers).

Data sources and research environment
Only a minority of the articles (n = 24, 30%) used mul-
tiple datasets to develop models as indicated in data 
source analysis, showing an obvious dominance in sin-
gle dataset-deriving models. Of all 114 datasets, 42 are 
multi-centered, and 32 are single-centered; however, 40 
databases are unknown. In terms of information col-
lection, only 56 were from electronic health record 
(EHR), 11 from EHR + questionnaire, 1 from question-
naire + personal interview, and 46 did not clearly mention 
the data sources. Regarding the issue of missing variables 
problem, only 5 cohorts clearly described the number of 
participants with missing variables, whereas 94 cohorts 
did not mention this value. Fifteen cohorts excluded all 
participants with missing variables.

In the research environment, the largest number came 
from the hospital scene (n = 44, 39%), followed by com-
munity (n = 20, 18%), primary health care institutions 
(n = 5, 4%), and hospital scene + primary health care 
institutions (n = 1, 1%). Forty-four cohorts did not state 
the environment. The study periods ranged from 1965 
to 2019, with 57 cohorts reporting the study period, 26 
cohorts reporting only the baseline time, and 31 not 
mentioning the study period.

Criteria for inclusion and exclusion
Of all 79 articles, only 36 clearly reported the criteria 
for inclusion, mainly including age restriction, neces-
sary clinical examination and variables, special disease, 
adequate follow-up time, and number of visits during the 
period of follow-up. Twenty-two papers did not clearly 
state the exclusion criteria (Additional file 2: Table S2).
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Predictors
In all AI-Ms, the median number of predictors was 21 
(range 5–52,000), with an unquantifiable total number 
due to a lack of detailed information in individual arti-
cles. These predictors were into two types: traditional 
factors and new-added ones, according to whether they 
can be addressed by T-Ms. In addition to traditional 
factors such as age (in 400 models), sex (in 357 mod-
els), total cholesterol (in 276 models), and smoking sta-
tus (in 266 models), several new-added predictors have 
emerged in AI-Ms, including electrocardiogram (ECG) 
image (n = 84, 17%), ultrasound image (n = 44, 9%), 
magnetic resonance imaging (MRI) image (n = 18, 4%), 
computed tomography (CT) image (n = 12, 2%), sin-
gle nucleotide polymorphisms (SNPs) (n = 9, 2%), and 
proteins (n = 4, 1%) as shown in Fig. 4. Further analysis 

showed that 135 models (30.96%) were built using these 
new-added data.

CVD outcomes and measurement method
We found a large variation in predicted outcomes 
among different models. A total of 42 single endings 
and 61 combined endings were confirmed in all models. 
The most common in all 103 endpoints were complete 
CVD (n = 40, 39%) and death (n = 16, 16%). However, a 
considerable heterogeneity was identified in the defi-
nitions of these outcomes, such as 19 different defini-
tions for CVD. The main origin of definitions is diverse, 
including disease codes (ICD9 or ICD10, n = 36, 
35%), self-report (n = 4, 4%), and other international 

Fig. 2  The sketch map of the independent validation score procedure and results
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Table 1  The specific evaluation criteria of IVS

Score items Grade Specific evaluation criteria References

Transparency of algorithms I Post the trained models that can be directly loaded by other 
researchers for a contiguous independent validation or online/
mobile user-friendly calculators that can allow batch processing 
of participant information (e.g., a prediction software or tool)

∙ APPRAISE-AI [31]
∙ MI-CLAIM [32]
∙ AI-TREE [33]

II Apply and report the classic algorithms that can be found in some 
common tools/platforms OR report complete codes and hyperpa‑
rameters and required description, allowing independent research‑
ers to run the pipeline end to end

III Report formulas and/or incomplete hyperparameters with‑
out required description, leading to difficulties in replication 
or incomplete reproducibility

IV Incomplete reports that cannot be used for reproduction

Performance of models I At least report the discrimination (preferably c-index) and calibra‑
tion (preferably calibration plot/table) of the model, and the perfor‑
mance index version is clearly reported and index is excellent (e.g., 
0.9 < c-index <  = 1.0; calibration intercept close to 0 and calibration 
slope close to 1)

TRIPOD [34]
∙ CHARMS checklist [35]
∙ Official statement [36]
∙ AI-TREE [33]
∙ Expert comment [37]

II At least report the discrimination (preferably c-index) and calibra‑
tion (preferably calibration plot/table) of the model, and the per‑
formance index version is clearly reported and index is good (e.g., 
0.7 < c-index <  = 0.9; calibration intercept deviates moderately 
from 0, and calibration slope deviates moderately from 1)

III Do not report the discrimination or calibration of the mod‑
els; OR the performance index version is not clearly reported; 
OR the value of the index is unknown

IV The model performance is at a low accuracy (e.g., c-index <  = 0.7; 
calibration intercept deviates severely from 0 and calibration slope 
deviates severely from 1)

Feasibility of reproduction I The office-based models without requirement for laboratory 
and inspection data (also known as non-laboratory models)

∙ Validation and evaluation framework [38]
∙ AI standardization [39]
∙ AI-TREE [33]
∙ MI-CLAIM [32]
∙ CONSORT-AI [40]
∙ MAIC-10 [41]
∙ SR of validity and clinical utility [11]
∙ WHO laboratory-based and non-labora‑
tory models [42]
∙ Laboratory-based and non-laboratory 
models [43]

II The laboratory-based models only requiring routine clinical struc‑
tured data, which are easy to obtain and do not need secondary 
operation (e.g., image pre-processing or annotation, etc.)

III Include data derived from unconventional laboratory and inspec‑
tion, complex gene-related testing, tissue specimen, and other 
resource-limiting extensive applications, which are hard to obtain 
or require secondary operation (e.g., labeling)

IV Do not report the variables

Risk of reproduction I No domain high risk (evaluated by using PROBAST) ∙ PROBAST [30]

II Only one domain is high risk (evaluated by using PROBAST)

III Two domains are high risk (evaluated by using PROBAST)

IV Over two domains are high risk (evaluated by using PROBAST)

Clinical implication I Identified novel risk markers or novel risk standards, which will 
optimize existing clinical preventive strategies and contribute 
to patient benefit for the general population and major CVDs, 
similar to classical T-Ms (e.g., Framingham Score)

∙ SR of T-Ms [29]
∙ Biomedical research AI guideline [44]
∙ BS30440 [45]
∙ APPRAISE-AI [31]
∙ Consolidated AI reporting guideline [46]
∙ AI-TREE [33]
∙ SR of validity and clinical utility [11]
∙ Rare CVD [47, 48]

II Do not identify novel risk markers or novel risk standards, 
but enhance the predictive capacity beyond that of existing meth‑
ods, which may optimize existing clinical preventive measures 
or offer additional benefits for the non-rare population and non-
rare subset of CVDs (more than 1/2000 of the general population)

III Only enhance the predictive capacity beyond that of existing 
methods, but cannot alter the existing preventive interventions 
or provide additional benefits for the non-rare population and non-
rare subset of CVDs (more than 1/2000 of the general population)

IV Do not enhance the predictive performance beyond that of exist‑
ing methods OR only target a rare population or subset of CVDs 
(fewer than 1/2000 of the general population, e.g., infiltrative 
cardiac diseases), leading to inadequate validation and a lack 
of clinical utility for a broader population



Page 7 of 18Cai et al. BMC Medicine           (2024) 22:56 	

Fig. 3  A The bar chart of number analysis for articles per year (up to July 31, 2021). B The bar chart of number analysis for validated models per year 
(up to July 31, 2021). C The pie graph of papers’ geographical distribution. US, The United States of America; UK, The United Kingdom of Great Britain 
and Northern Ireland. D The bar chart of bias risk analysis with PROBAST

Fig. 4  The bar chart of summary and categories of predictors involved in all models
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guidelines (n = 3, 3%). Additionally, there were 149 
models (30.66%) not reporting the definition of the out-
comes in 21 papers.

The most common prediction horizons in AI-Ms were 
10 (n = 107, 22%) and 2.5 years (n = 70, 14%) with a range 
between 1 day and 15 years. Only 25 papers reported the 
measurement methods for all included outcomes, which 
primarily comprised clinical records, national institute 
statistics, questionnaires, and personal interviews. Only 
11 articles reported that the outcome measurement was 
blinded, and two articles explicitly reported not using the 
blinding method. Other detailed information is summa-
rized in Additional file 2: Table S3.

Sample size and performance
In total, 4 articles did not report the sample size and 22 
articles did not report the number of events. Based on 
reported data, the number of participants included in 
AI-Ms ranged between 80 and 3,660,000 (median 4466), 
and the commonly used order of magnitudes of the 
number ranged from 1000 to 10,000 (n = 44). The end-
ing events occurred ranging from 10 to 152,790 (median 
504).

In all the articles (n = 79), at least one measure of pre-
dictive performance was reported, which was also one of 
the inclusion criteria for the article in this system review. 
C index was mainly reported for 482 models. The calibra-
tion plot was for 90 models. Sensitivity/recall was for 312 
models. Specificity/true negative rate (TNR) was for 209 
models. Precision/positive predictive value (PPV) was for 
201 models; accuracy was for 199 models; F1 score was 
for 137 models; Matthews correlation coefficient (MCC) 
was for 7 models.

Assessment of algorithms transparency and model 
reproductivity
Overall, 13 categories of 66 idiographic algorithms were 
identified based on their operation mechanisms and 
accepted classification principles. The most frequently 
applied algorithm in all models is logistic regression 
(n = 74, 15.2%), followed by random forest (n = 71, 14.6%) 
and neural network (n = 63, 13.0%) as summarized in 
Additional file  2: Table  S4. Only 26 (39.4%) were used 
more than 3 times, while 24 (36.4%) appeared only once 
in all algorithms. In total, 212 models did not report 
codes, formulas, or hyperparameters, consequently iden-
tified as non-reproductive.

Development models and external validation models
Of the 486 models, 380 were development models and 
106 were external validation models (validating 103 
development models), as reported in their primary 
papers. Notably, no independent external validations 

were found in this field. Additionally, most datasets 
(n = 17, 68%) used for external validation were from the 
same countries as those used for development models 
in their primary papers; however, most datasets used for 
external validation were from different research peri-
ods (n = 13, 52%) and different settings (n = 18, 72%) as 
those used for development models. The development 
and external validation of models were conducted by the 
same investigators in the same article. Our additional 
exploratory analysis revealed a lower validation propen-
sity in the developed models with new variables (25.24% 
vs. 43.68%, P = 0.001) and an AUC < 0.7 (0% vs.70.45%, 
P < 0.001), which provide important information for us to 
build IVS.

Risk of bias
All models were at high risk of bias (n = 486, 100%) 
according to the assessment using PROBAST, as shown 
in Fig.  3D. The most common reasons were as follows: 
1) inappropriate data sources or inappropriate enrol-
ment strategy in the participant domain (n = 161, 33%); 
2) not mentioning the definition and measurement of the 
predictors, or not mentioning whether the predictor’s 
assessments were blinded to outcome knowledge in the 
predictor domain (n = 401, 83%); 3) inappropriate out-
come classification method, outcome definition was not 
the same for all participants, predictors included in the 
outcome definition, or the determination of outcomes 
with the knowledge of predictors in the outcome domain 
(n = 52, 11%); 4) not accounting for the complexities of 
data, not evaluating the performance of models appro-
priately, or not accounting for model overfitting and opti-
mism in the statistical analysis domain (n = 486, 100%). 
The details are shown in Additional file 2: Table S5.

Summary of existing assessment guidelines or tools
Overall, a total 29 of guidelines or tools related to qual-
ity assessment or control in the past decade (mainly 
in the last four years), with 5 for developing quality, 14 
for reporting quality, and 10 for both (Additional file  2: 
Table S6) [11, 30–32, 34, 38, 40, 41, 44–46, 128–145]. In 
addition to the study design, statistical methods, model 
performance, risk of bias, AI ethics risk, replicability, as 
well as clinical implementation, application, and impli-
cation in both developing and reporting assessments, 
the complexity and standardization of data acquisition 
and processing, required resources (such as software 
platforms, hardware, or technical professionals), and 
cost-effectiveness are also focal points in many develop-
ing assessments. These provide a core framework for the 
construction of IVS.
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Independent validation score
Most models were identified as “not recommended” 
(n = 281, 58%) or given a “warning” (n = 187, 38%). Only 
10 (2%) were classified as “recommended,” and none were 
identified as “strongly recommended” as revealed by our 
IVS for all 486 models in Fig. 2. The recommended mod-
els are displayed in Additional file 2: Table S7. Insufficient 
transparency of models contributed the largest number 
of “not recommended” (n = 212), followed in turn by per-
formance (n = 56), feasibility of reproduction (n = 12), 
and comprehensive reasons (n = 1).

Discussion
This systematic review is the first to encompass global 
AI studies of CVD prediction in the general popula-
tion for more than 20 years, starting from the first arti-
cle published in 2000 [72]. It presents the current status 
and broad trends in this field through a comprehensive 
search and careful selection of studies. We performed 
an extensive data extraction and thorough analysis of 
key characteristics in publications, including the predic-
tors, populations, algorithms, performance, and bias. On 
top of this, we have developed a tool for evaluating rep-
licability and applicability, to screen appropriate AI-Ms 
for independent external validation, addressing the key 
issues currently hindering the development of this field. 
The findings and conclusions are expected to provide 
references and help for algorithm developers, cohort 
researchers, healthcare professionals, and policy makers.

Principal findings
Our results revealed significant inefficiency in external 
validations and a lack of independent external validation 
for the existing models, indicating that researchers in 
the field of AI risk prediction were more inclined to put 
emphasis on new models developing, instead of validat-
ing, although validation is crucial in determining clinical 
decisions [146]. According to the experience in the field 
of T-Ms research, these may lead to a large number of 
useless prediction models, thereby suggesting that more 
attention should be paid to external validation to avoid 
research waste and facilitate the translation of high-per-
forming predictive models into clinical practice [147–
149]. Based on the facts that most studies used data from 
only one cohort, we conjecture that limited data source 
may be one of the main reasons that restrict the imple-
mentation of external validations. Therefore, the multi-
centers studies, especially multi-countries studies (only 
three were found in our review), should be encouraged to 
establish multi-source databases.

It is found that the majority of studies were conducted 
in Europe and North America, with only a few in the 

developing countries from Asia and South America, and 
unfortunately none in Africa. The similar geographical 
trends have been confirmed in the conventional CVD 
prediction models through previous literature reviews 
[29, 150]. However, the prevalence of the CVD is dra-
matically increasing in those low- or middle-income 
countries, consequently contributing over three quarters 
of CVD deaths all over the world and causing great bur-
den to the local medical system [151–154]. Considering 
the influence of ethnic heterogeneity on the prediction 
model [155], native AI-Ms tailored to these countries 
should be developed for local prevention of CVD.

Four classic indexes, age, sex, total cholesterol, and 
smoking status, were more frequently used in AI-Ms in 
all presented predictors (some papers not fully repre-
senting the used predictors), similar to T-Ms. However, 
more importantly, the following summary demonstrates 
that AI-Ms have triggered a profound revolution to pre-
dictors owing to its strong data computing capability. 
First, the median number of predictors in the AI-Ms was 
approximately 3 times greater than that in T-Ms as col-
lated by Damen et  al. [29]. Second, except for the clas-
sic predictors (e.g., demographics and family history, 
lifestyle, and laboratory measures), several new indexes 
have been involved in AI-Ms, mainly consisting of some 
multimode data that cannot be recognized and utilized 
by T-Ms at all (e.g., image factors and gene- or protein-
related information). Third, the limitation of data range 
has been eliminated, as proven by the no fixed age range 
and sex-specific equation for the development of AI-Ms, 
which were important concerns in classic T-Ms. Fourth, 
AI models allow data re-input and utility. Researchers 
gathered data many times in the follow-up procedure in 
recurrent neural network (RNN) models, and these time 
series data were used to retrain the AI-Ms for further 
improvement of performance [55, 112]. Another interest-
ing improvement is that the screening of predictors could 
be executed automatically by AI instead of classic log cal-
culation [50, 52].

The systematic review of specific models is imperative 
for the head-to-head comparison of these models and the 
design of the relevant clinical trials [156, 157]. Our analy-
sis of report quality was performed through reference to 
the TRIPOD statement and CHARMS-CHECKLIST, to 
inform readers regarding how the study was carried out 
[158]. Worryingly, we found that many articles did not 
report important research information, which not only 
significantly restrict the readability of articles largely but 
also may lead to the unwarranted neglect for the previ-
ous evidence through subsequent researches [159–162]. 
Therefore, we have to strongly recommend that each 
study should upload a statement of TRIPOD or upcom-
ing TRIPOD-AI designed specifically for AI prediction 
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models when the manuscripts were submitted [12, 163, 
164].

According to PROBAST, a common evaluation method 
of risk of bias for traditional prediction models [165], all 
included AI-Ms were judged as high risk in our summary, 
mainly owing to ignorance or failure to report compet-
ing risk in the item of statistical analysis. Similar trends of 
high risk have been confirmed in many previous system-
atic reviews regarding AI-Ms for other diseases, although 
there are some differences in specific reasons, which 
involved more frequently sample size, calibration, miss-
ing data handling, and so on [12, 166–168]. This could 
potentially be another significant constraint on the inde-
pendent external validation of models, in addition to the 
various issues mentioned earlier, which currently hinder 
the widespread adoption of AI-Ms for CVD clinical prac-
tice. Therefore, it is strongly suggested again that more 
attention should be focussed on statistical analysis, not 
only for authors in the research and writing process, but 
also for reviewers and editors during review and publica-
tion. Meanwhile, these widely high-risk judgment ratios 
prompt us to raise question whether the current criteria 
are too harsh for AI-Ms, because it is unclear whether 
some algorithms may offset competing risk due to their 
“black box” effect, and it should not be ignored that the 
classic method of EPV may not be suitable for the sam-
ple size calculation in some ML algorithms owing to their 
specific operation mechanism [169–171].

Best practice guidance and specific pathways for the 
translation of AI-healthcare research into routine clinical 
applications have been developed. Holmes et al. summa-
rized the AI-TREE criteria [33], while Banerjee et al. cre-
ated a pragmatic framework for assessing the validity and 
clinical utility of ML studies [11]. Building on this prior 
work and the experiences reported in studies involving 
AI risk prediction models for various diseases [75, 172–
174], our insights gained during the validation process of 
existing AI models, as well as a combination of summary 
of existing AI research assessment guidelines or tools 
and experts’ suggestions, we have developed an IVS for 
screening independent external validation models. This 
tool is primarily intended for researchers involved in 
the validation process rather than developers during the 
implementation phase. In this scoring system, in addi-
tion to the two recognized criteria of transparency and 
risk assessment, the performance and clinical implica-
tion were included to determine their suitability for inde-
pendent external validation, which to some extent, align 
with factors typically considered during the model devel-
opment process, such as impact, cost-effectiveness, and 
AI-ethics [11, 33]. In assessing performance, we opted for 
the two most widely reported and strongly recommended 
indices for discrimination and calibration, namely the c 

index and calibration plot/table, instead of specificity or 
sensitivity, as they are not recommended by the TRIPOD 
and checklist guidelines [34, 35, 158]. Furthermore, the 
consistency of retrospective validation datasets and the 
challenges in acquiring prospective study data are key 
factors influencing external validation [75, 172–174], 
especially in the case of factors like imaging, biomark-
ers, genomics, which may also encounter issues such as 
lack of standardization and biased reporting [33]. Build-
ing upon the WHO’s principles of model utility [42], the 
acquisition and handling of laboratory-based and emerg-
ing multimodal predictive factors’ acquisition and han-
dling are essential assessment components in evaluating 
the feasibility of independent external validation.

Our IVS results have indicated that more than 95% of 
the models may not be suitable for independent exter-
nal validation by other researchers, and as a result, may 
not provide any useful help for the following clinical 
application. Therefore, it is rather reasonable to explain 
why there have been no independent external validation 
researches in the field of CVD-AI prediction for over 
20 years. In addition to the problem of model transpar-
ency, the following other four reasons also are considered 
to account for irreproducibility of the models, includ-
ing increased difficulty in parameter acquisition and 
processing, uncertain expected performance, and low 
reliability owing to high risk. Therefore, it is strongly sug-
gested that the assessment of model replicability should 
be performed in the process of project research, and a 
statement of IVS should be reported at the time of sub-
mission. However, even after screening, it is still neces-
sary to comprehensively consider other factors, such as 
unquantifiable AI ethics issues, due to the emphasis on 
assessing technical feasibility and impact in the scoring 
system. It is also important to emphasize that the current 
scoring system remains theoretical and requires practi-
cal validation and adjustment, necessitating input and 
refinement from numerous scholars.

Challenges and opportunities
Despite over 20  years of development, the AI field of 
CVD prediction experienced a surge of articles in the 
past 5  years, accompanied by the aforementioned phe-
nomena regarding the emphasis on development but 
validation, no independent validation studies, and a large 
number of new algorithms studied only once. This field 
has been concluded as being in an early stage of devel-
opment, similar to the traditional Framingham model 
from the 1970s to 1990s [175, 176]. Different from T-Ms, 
however, the AI ones are quite hard to comprehend and 
implement for clinical researchers owing to their com-
plexity and “black box”. Meanwhile, there appear contin-
ually new algorithms or new combinations of the existing 
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(such as model averaging and stacked regressions), even 
there may be rather different ranking indexes in the same 
algorithm [160, 177]. Therefore, it is reasonable to specu-
late that new exploratory research will continue to domi-
nate for the foreseeable future, which may be the inherent 
demand for this field, although the external validation of 
existing models was necessary to avoid research waste, as 
advocated strongly by many researchers [10, 11, 164].

Several pivotal problems limiting the development of 
this field still require to be emphasized again. First, the 
solution to study design and reporting defects, including 
insufficient external validation, geographical imbalance, 
inappropriate data sources, and deficiency in algorithm 
details, largely depends on improving scientific research 
consciousness and level of all researchers in this industry, 
which is a gradual process, and thereby uneven develop-
ment and research waste will be difficult to stop in a short 
time. Second, another grim situation is how to improve 
model intelligibility, reproducibility, and replicability, 
which may far outweigh our understanding concluded 
in the studies of T-Ms, although some researchers have 
been making great efforts to explore underlying mecha-
nisms of AI operation, with the increasingly intense 
expectations of a revolutionary breakthrough as soon as 
possible [178]. Additionally, it is urgent to establish an 
integral system of quality control and performance evalu-
ation for the studies in this field. However, this requires a 
gradual development process, although the World Health 
Organization (WHO) and International Telecommuni-
cation Union (ITU) have established a Focus Group on 
Artificial Intelligence for Health (FG-AI4H), which has 
begun shaping guidelines and benchmarking process for 
health AI models through an international, independent, 
and standard evaluation framework to guide and stand-
ardize the industry development [179].

In addition to the challenges posed by the “black box” 
issue leading to non-interpretable problems, biases and 
fairness, technical safety, preservation of human auton-
omy, privacy, and data security are significant AI ethics 
concerns within this field [20, 180]. The development 
of trustworthy AI in healthcare has become a crucial 
responsibility worldwide [181]. For instance, the Euro-
pean Commission has enacted both the “Ethics Guide-
lines for Trustworthy AI” and the “Artificial Intelligence 
Act” [182, 183]. Similarly, in the USA, the creation of the 
National AI Initiative Office aims to promote the devel-
opment and utilization of trustworthy AI in both the 
public and private sectors [184]. Although the articles in 
this review have devoted limited discussion to these top-
ics, it is essential to note that the aforementioned aspects 
(including improvement of model transparency and 
interpretability, reduction in bias risk, enhancement of 
reproducibility, as well as placing additional emphasis on 

data and privacy protection), in addition to their scien-
tific research roles, also play a crucial role in addressing 
AI ethics concerns. These efforts are beneficial for alle-
viating public concerns about AI ethics issues related to 
predictive models, thereby increasing trust and accept-
ance of the models. These aspects improve the balance 
between AI-assisted decision-making and the preserva-
tion of human autonomy, facilitating the clinical appli-
cation and dissemination of the models. Therefore, we 
strongly recommend that AI ethics considerations be 
thoroughly integrated into the model development and 
validation processes.

For AI intervention studies, the relatively excellent 
guidelines for the design, implementation, reporting, and 
evaluation have been developed by the EQUATOR-net-
work, including STARD-AI, CONSORT-AI, and SPIRIT-
AI, as well as different scientific journals and associations 
[139, 142, 185–187]. These guidelines will also serve as a 
roadmap for the development of predictive AI. In prac-
tice, Banerjee et  al. have designed a seven-domain, AI-
specific checklist based on AHA QUADAS-2 CHARMS 
PROGRESS TRIPOD AI-TREE and Christodoulou, to 
evaluate the clinical utility and validity of predictive AI 
algorithms [11]. Oala et al. are building a tool of AI algo-
rithm auditing and quality control for more effective and 
reliable application of ML systems in healthcare, helping 
to manage dynamic workflows that may vary through 
used case and ML technology [188]. Collins et  al. have 
begun to develop TRIPOD-AI and PROBAST-AI for AI 
prediction models [21, 163, 164]. Additionally, based on 
the results of our IVS analysis, we are planning an inde-
pendent external validation study with multiple datasets 
to fill the gap in AI field of CVD prediction. These will be 
expected to propel this field into a new and mature stage 
of development.

Recommendations
Despite the increasing recommendations by health-
care providers and policymakers for the use of predic-
tion models within clinical practice guidelines to inform 
decision-making at various stages in the clinical pathway 
[161, 189], we still suggest that experts in this field should 
put more emphasis on establishment and implementation 
of scientific research guidelines, for example, promoting 
ML4H supervision and management for AI prediction 
models [188]. Additionally, referring to the requirements 
for intervention AI statement, some AI-relevant informa-
tion should be added into TRIPOD-AI, such as algorithm 
formulas, hyperparameter tuning, predictive perfor-
mance, interpretability, sample size determination, and 
so on [186, 190]. Certain items in PROBAST need to be 
modified for AI prediction models, especially 2.3, 4.1, 
and 4.9, due to inappropriate standards or nonexistent 
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coefficients in some algorithms. Items 4.6–4.8 should be 
renegotiated on the premise of fully considering the algo-
rithm characteristics. Furthermore, algorithm auditing, 
overfitting control, sample size calculation, and identi-
fication of variables in image data should be added into 
PROBAST-AI.

In light of studies on conventional models, a greater 
responsibility falls upon AI algorithm developers, which 
include improving the transparency in reporting to facili-
tate model reproduction, and heightening the compre-
hensibility and enforceability of algorithms to users for 
wider clinical practice [191]. Furthermore, we should 
improve the transparency of reporting not only at the 
time of publication but also in the process of pre-sub-
mission, reviewing, or post-publication stages. Mean-
while, editors and reviewers should also play a key role in 
improving the quality of reporting.

Study limitations
The systematic review has several limitations. Firstly, 
similar to other studies [10, 11, 29], the papers not in 
English, without available full text, or published in other 
forms (for example, conferences, workshops, news 
reports, even the unpublished) were also excluded in 
our review, which may lead to an underestimation of 
the number of models and an imbalance in geographical 
contribution as mentioned above. Second, the potential 
impact of AI on healthcare might still be overestimated 
during the present procedure of retrospective litera-
ture analysis, owing to unavoidable publication bias and 
reporting bias, despite some measures that have been 
performed to reduce the omission of included literature 
[11, 192]. Furthermore, we did not evaluate the clinical 
usefulness aspects such as net benefit or impact study 
[159, 193, 194], which are outside our scope and require 
further investigation.

Conclusions
In summary, AI has triggered a promising digital revolu-
tion for CVD risk prediction. However, this field is still in 
its early stage, characterized by geographical imbalance, 
low reproducibility, a lack of independent external valida-
tion, a high risk of bias, a low standard-reaching rate of 
report quality, and an imperfect evaluation system. Addi-
tionally, the IVS method we designed may provide a prac-
tical tool for assessing model replicability. It is expected 
to contribute to independent external validation research 
and subsequent extensive clinical application. The devel-
opment of AI CVD risk prediction may depend largely on 
the collaborative efforts of researchers, health policymak-
ers, editors, reviewers, as well as quality controllers.
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